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ABSTRACT
Motivation: We consider models useful for learning an evolu-
tionary or phylogenetic tree from data consisting of DNA
sequences corresponding to the leaves of the tree. In par-
ticular, we consider a general probabilistic model described
in Siepel and Haussler that we call the phylogenetic-HMM
model which generalizes the classical probabilistic models
of Neyman and Felsenstein. Unfortunately, computing the
likelihood of phylogenetic-HMM models is intractable. We con-
sider several approximations for computing the likelihood of
such models including an approximation introduced in Siepel
and Haussler, loopy belief propagation and several variational
methods.
Results: We demonstrate that, unlike the other approxima-
tions, variational methods are accurate and are guaranteed
to lower bound the likelihood. In addition, we identify a par-
ticular variational approximation to be best—one in which
the posterior distribution is variationally approximated using
the classic Neyman–Felsenstein model. The application of
our best approximation to data from the cystic fibrosis trans-
membrane conductance regulator gene region across nine
eutherian mammals reveals a CpG effect.
Contact: vjojic@psi.toronto.edu

1 INTRODUCTION
We consider the problem of learning an evolutionary or
phylogenetic tree from data consisting of DNA sequences
corresponding to the leaves of the tree. We concentrate on
a standard probabilistic model-selection approach wherein
models are scored by some criterion (e.g. maximum like-
lihood, Bayesian information criterion) and some heuristic
search method is used to find a tree or set of trees with high
scores (e.g. Felsenstein, 1981; Durbin et al., 1998). We fur-
ther concentrate on methods for computing the likelihood of
a given model.

∗To whom correspondence should be addressed.

The classic probabilistic model used in this approach is
described by (e.g.) Neyman (1971) and Felsenstein (1981).
The model incorporates several strong assumptions includ-
ing (1) evolution takes place independently at each base-pair
site, (2) the base-pair substitution rate is uniform over sites,
(3) there is no recombination, (4) there is no lateral gene
transfer and (5) the sequences are aligned. There have been
numerous efforts to relax these assumptions (e.g. Siepel and
Haussler, 2003; Yang, 1995; Felsenstein and Churchill, 1996;
Strimmer and Moulton, 2000; Nakhleh et al., 2003). In
this paper, we address the relaxation of the first assump-
tion by considering the combined tree-HMM model described
in Siepel and Haussler (2003) in which base-pair substi-
tutions are dependent on neighboring bases. We call this
hybrid model a phylogenetic-HMM model. We do not address
the relaxation of the other assumptions so as to isolate the
effects of the first assumption and to avoid substantial added
complexity.

One important drawback of phylogenetic-HMM models
is that evaluating the likelihood of such a model (and
hence finding parameters that maximize this likelihood) is
intractable. Recently, Siepel and Haussler (2003) introduced
an efficient approximation for computing the likelihood of
phylogenetic-HMM models. Unfortunately, as we shall see,
this approximation has no accuracy guarantees and, thus, may
be inappropriate for use in model selection. In this paper,
we describe phylogenetic-HMM models in terms of Bayesian
networks, also known as directed acyclic graphical (DAG)
models (e.g. Pearl, 1988). We introduce several approxim-
ations developed for graphical models based on variational
techniques (e.g. Jordan et al., 1999) that efficiently yield
a lower-bound on the likelihood of a phylogenetic-HMM
model. In experiments on real data, we show that these lower-
bounds are tight. We also describe another approximation for
computing likelihood in graphical models known as loopy
belief propagation (e.g. Pearl, 1988). This approximation
has no accuracy guarantees and, as we show experimentally,
yields poor likelihood estimates.

Bioinformatics 20(Suppl. 1) © Oxford University Press 2004; all rights reserved. i161

 at D
epartm

ent of m
athem

atics on N
ovem

ber 9, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


V.Jojic et al.

In Section 2, we describe phylogenetic-HMM models in
terms of Bayesian networks or DAG models. In Section 3, we
describe the approximation for evaluating the likelihood of
phylogenetic-HMM models presented in Siepel and Haussler
(2003). In Section 4, we discuss the theoretical basis for
the variational approximation; and in Section 5, we intro-
duce structured variational techniques tailored to our model.
Structured variational approximations go beyond the standard
mean-field approximation, and our tailored approximations
(to our knowledge) have not been described previously. In
Section 6, we discuss experimental results on real data and
find that, among the approximations, the one that performs
best is the structured approximation in which the posterior
distribution is variationally approximated using the classic
Neyman–Felsenstein model. In Section 7, we apply this
approximation to data from the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene region across nine
eutherian mammals and, in doing so, identify a ‘CpG effect’
(a high mutation rate of CG to TG, due to methylation and
spontaneous deamination).

2 THE MODEL
The phylogenetic-HMM models that we consider are identical
to those described in Siepel and Haussler (2003). As we shall
see, it will be convenient to describe these models as DAG
models. Given a domain of interest having a set of finite vari-
ables s = (s1, . . . , sn) with a positive joint distribution p(s),
a DAG model for s is a pair (G, P) where G is a directed
acyclic graph and P is a set of conditional probability distri-
butions. Each node in G corresponds to a variable in s. We
use Si to refer to both the variable and its corresponding node.
Arcs in the graph correspond to probabilistic dependencies
or, more precisely, the absence of arcs correspond to prob-
abilistic independencies. These independencies are precisely
those that allow us to write the joint distribution as follows:
p(s) = ∏N

i=1 p(si | pa(si)), where pa(si) are the parents of si
in the graph. The distributions p(si | pa(si)) are called local
probability distributions.

The DAG model structure corresponding to the tree model
of (e.g.) Felsenstein (1981) is shown in Figure 1a. The variable
hi

j corresponds to the unknown nucleotide in ancestor spe-

cies i at nucleotide site j . The variable xi
j corresponds to the

observed nucleotide in existing species i at site j . The strong
assumption that evolution takes place independently at each
nucleotide side is reflected in the lack of arcs among the sites.
The DAG model corresponding to a simple phylogenetic-
HMM model is shown in Figure 1b. In this dinucleotide model
(Siepel and Haussler, 2003) the identity of nucleotide at site
j is dependent on the ancestor nucleotide at site j (as in the
Neyman–Felsenstein model), as well as the corresponding
child and parent nucleotides at site j − 1.

Additional complex models are defined in Siepel and
Haussler (2003), wherein two or more previous slices

influence the identity of the base as a given position. To discuss
all such models, we introduce the following notation. First,
we often drop the explicit indication of whether a variable is
observed or not, using si

j to refer to the variable for species i

at site position j . Further, we use the regularity of the Bayes
net to define the connectivity by two sets of parent indices for
each variable:

• Ti is a set of species indices that are parents of the
i-th species. This parent information is the same for each
site j and defines the phylogenetic tree. In Figure 1, e.g.
T3 = {2}

• Cj is a set of site indices that are parents of the j -th site.
This parent information is the same in each sequence i,
and defines the Markov-chain model. In Figure 1b, e.g.
C2 = 1. In fact, in this paper, it is always true that Cj =
{j − 1}, but the derivations presented here can be carried
out in an analogous way for more general situations, e.g.
when Cj = {j − 1, j − 2, . . . , j − k}.

The indices of all parents of a variable si
j can then be

written as

P(si
j ) = Ti × Cj ∪ {i} × Cj ∪ Ti × {j}, (1)

and the parent variables are pa(si
j ) = {sk

l }(k,l)∈P(si
j )

. Or, to

use a different notation, pa(si
j ) = sP(si

j )
. We will also use

sTi

j to denote the parents of si
j that share its site index j , and

si
Cj

to denote the parents that share its species index i. The

joint probability distribution is p(s) = ∏
i,j p(si

j | sP(si
j )
).

For instance, if C and T define a chain each, i.e. Ti =
{i − 1}, Cj = {j − 1}, then pa(si

j ) = {si−1
j−1, si

j−1, si−1
j },

and the resulting grid probability model is defined as p(s) =∏
i,j p(si

j | si−1
j−1, si

j−1, si−1
j ).

Our experiments are restricted to the dinucleotide model
wherein Cj = {j − 1} (although the tree is not reduced to a
chain and Ti �= {i − 1}). As in a regular phylogenetic tree,
each node has a single parent species, and thus Ti has a single
element, unless i is the root, in which case it is empty. Thus,
pa(si

j ) still has at most three variables as in the case of a grid
model. However, we derive the methods in a general form
so as to apply to other neighborhood relations, including the
case when each site j in a sequence is connected to several
previous sites, rather than just to site j − 1, and the case of
the horizontal gene transfer, where Ti could have more than
one variable.

In the remainder of this section, we examine the local
probability distributions p(s | pa(s)) in our models. These
distributions correspond to well-known models of DNA
substitution.

First, consider the Neyman–Felsenstein model wherein
evolution at each slice is independent. Here, we need
p(si

j | sk
j ), where species k is the parent of species i. Models

of DNA substitution for this case are generally based on a
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Learning phylogenetic HMM models

Fig. 1. Probabilistic phylogenetic models expressed as DAG models. (a) The Neyman–Felsenstein tree model. (b) The dinucleotide
phylogenetic-HMM model.

continuous-time Markov model of base substitution, with the
instantaneous rate of replacement of each base for each other
defined by a rate matrix Q (Yang et al., 1994; Whelan et al.,
2001). As a continuous-time Markov matrix, Q = {qi,j }
(1 ≤ i, j ≤ 4) is constrained to have each of its rows sum to
zero. In an “unrestricted” model, Q has 42 − 4 − 1 = 11 free
parameters. To determine the local distribution, we assume
that the Markov process defined by Q runs for a given (evol-
utionary) time t . Let P(t) be the matrix of substitution
probabilities—i.e. the local distribution—for length t (note
that P(t) is a discrete Markov matrix, with rows summing
to 1, while Q is a continuous Markov matrix, with rows
summing to 0). P(t) is thus given by the solution to the differ-
ential equation (d/dt)P (t) = P(t)Q with initial conditions
P(0) = I , which is P(t) = eQt . Q is generally diagonal-
izable as Q = S�S−1, allowing P(t) to be computed as
P(t) = Se�tS−1, where e�t is the diagonal matrix obtained
by exponentiating each element on the main diagonal of �t .

Now, consider the local probability distributions for the
dinucleotide model used in our experiments. The local dis-
tribution is built from a continuous-time Markov model
for dinucleotide pairs associated with a 16 × 16 Q mat-
rix. Given time t , we obtain the conditional distribu-
tion of a dinucleotide pair given its parent species—say
p(si

j , si
j−1 | sk

j , sk
j−1)—in the same manner as described for the

Neyman–Felsenstein model. This distribution then determ-
ines p(si

j | si
j−1, sk

j , sk
j−1). To reduce the number of possible

free parameters in Q, we assume that substitutions are strand
symmetric. For example, we assume that the substitution
rate for CG to TG is equal to that for CG to CA. In addi-
tion, simultaneous substitutions involving more than one base
are disallowed [despite biological evidence for such changes
(Averof et al., 2000)]. This model is called the U2S model in
Siepel and Haussler (2003).

We note that this model for substitutions is inconsistent in
spirit with our dinucleotide model. In particular, the dinuc-
leotide model assumes that substitutions are dependent on the
current and previous base-pair sites. If such dependence were
allowed to propagate across the many generations implicit in
a single edge of an evolutionary tree model, then the substi-
tution at any given site would be a function of the base pairs
at all other sites. The same inconsistency is present and noted

in Siepel and Haussler (2003). Methods for removing this
inconsistency for the simple (two-sequence) case have been
discussed (Jensen and Pedersen, 2000; Pedersen and Jensen,
2001; Arndt et al., 2002), but these methods are difficult to
extend to the general case.

3 A SIMPLE MARKOV-CHAIN
APPROXIMATION

As discussed in the introduction, a key task in learning evolu-
tionary trees from data is the evaluation of a given model’s
score. Here, we shall restrict our attention to the likelihood or
log-likelihood score log p(x | θ) = log

∑
h p(x, h | θ), where

x and h are the set of all xi
j and hi

j , respectively, and θ are the
parameters that specify the local probability distributions. The
computation of this likelihood is also important, because it
corresponds to the E step of expectation–maximization (EM)
and EM-like algorithms that are used to identify the maximum
likelihood parameters for a model. Felsenstein (1981) showed
how to perform inference exactly and efficiently for his model.
Pearl (1988) discovered the same algorithm—essentially a
tree version of dynamic programming in which independence
relations are used to rearrange sums of products as products
of sums.

Unfortunately, no efficient inference method for the
phylogenetic-HMM models are known. The phylogenetic-
HMM models contain numerous undirected cycles, making
it extremely unlikely that the log likelihood score can be
computed efficiently.

In this section, we examine a simple Markov-chain
approximation introduced in Siepel and Haussler (2003)
for performing this inference. For simplicity, we describe
this approximation for the dinucleotide model only. To
understand this approximation, let xj denote the set of
observed nucleotides at site j . In the approximation, we
model the observed data as a Markov chain: p(x | θ) ∼=
p(x1 | θ)

∏J
j=2 p(xj | xj−1, θ). We further approximate each

term by imposing additional (and mutually inconsistent) inde-
pendence assumptions on the dinucleotide model in Figure 1b.
For example, to compute the first term in this approximation,
we assume that {s1} and {s2, . . . , sJ } are independent. To com-
pute the second term, we assume that {s1, s2} and {s3, . . . , sJ }
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are independent. To compute the third term, we assume that
{s1}, {s2, s3} and {s4, . . . , sJ } are mutually independent.

As may be expected, this approximation has no accuracy
guarantees and consequently may be inappropriate as a cri-
terion for model selection. To understand this observation,
consider a tree structure that has a root node and two leaves.
For simplicity, suppose that our alphabet has only two let-
ters and the two sequences at the leaves are identical: 212.
Consider two parameterized models for this structure having
the following dinucleotide Q matrices (columns and rows are
indexed by dinucleotides in lexicographic order):




−2 1 1 0
1 −2 1 0
0 0 0 0
1 1 1 −3







−3 1 1 1
0 0 0 0
0 1 −2 1
0 1 1 −2




Then, for the first model, the true and approximate like-
lihood of the data are 0.5361 and 0.0175, respectively. The
approximation underestimates the true likelihood. For the
second model, the true and approximate likelihood of the
data are 0.01609 and 0.4602, respectively. In contrast to
the first situation, the approximate overestimates the true
likelihood.

In what follows, we consider an approximation that comes
with a guarantee.

4 FREE ENERGY AND LOG LIKELIHOOD
As noted in the introduction, a standard criterion to optimize in
graphical models is the likelihood or the log likelihood of the
observed data, obtained by summing or integrating over the
hidden variables for a given set of parameters θ , log p(x | θ) =
log

∑
h p(x, h | θ). However, for many models, including the

model we study in this paper, finding the maximum-likelihood
parameters and even just the computation of the log likelihood
is intractable. Instead, we optimize the free energy of the
model (Neal and Hinton, 1998; Jordan et al., 1999)

F =
∑

h

q(h) log
q(h)

p(x, h | θ)

=
∑

h

q(h) log q(h) −
∑

h

q(h) log p(x, h | θ)

where q(h) is an arbitrary distribution. Making the substi-
tution q(h) = p(h | x, θ)) yields F = − log p(x | θ). In
addition, using Jensen’s inequality, it can be shown that
F ≥ − log p(x | θ) for any probability distribution q(h)—
i.e. for any function q(h) such that

∑
h q(h) = 1. Thus, q is

seen as an approximate posterior distribution, that can be used
to compute a lower-bound on the log likelihood of the data.

Estimating the posterior distribution can be achieved by
minimizing the free energy. If q is unrestricted, then F is
minimized at q = p(h | x). For example, if in our model, Cj

are all empty, the model decomposes into a collection of inde-
pendent graphs (except that they share parameters), and for
each of them, the free energy has the form:

Ftree =
∑

{hi}I
i=1

q({hi}Ii=1) log q({hi}Ii=1)

−
∑

{hi}I
i=1

q({hi}Ii=1)
∑

i

log p(si | sTi ),

where s denotes both hidden (h) and observed (x) variables,
as described earlier. Minimizing this energy with respect to
q({hi}Ii=1) leads to q({hi}Ii=1) = p({hi}Ii=1 | x) and F =
− log p(x). We will later use this observation in reverse—
i.e. we iteratively will update various costs of this form, but
instead of optimizing the cost using a numerical procedure,
we will use belief propagation (described in Section 2), to
compute optimal p({hi}Ii=1 | x) and log p(x) efficiently.

For the more complex case, when each variable is connected
both vertically and horizontally, belief propagation cannot be
used (except as an approximation), and (as we shall see) we
are better off optimizing F by varying the function q with the
aim of lowering it to be as close to − log p(x) as possible.
Such approaches are known as variational techniques in the
machine-learning community.

Because the inequality F ≥ − log p(x | θ) is satisfied for
all probability distributions q, it is possible to limit the search
space to approximate forms of the function q that lead to more
tractable optimization. As the bound is tighter the closer we get
to the true posterior, one should naturally attempt to limit the
severity of the approximations. Usual ways of approximating
the posterior are to either choose a particular functional form
(e.g. exponential, even if the true posterior does not follow this
form), and/or to decouple hidden variables that are in the true
posterior correlated. These approximations are typically less
severe when the posterior has a small number of pronounced
modes, although the optimization of the free energy could get
stuck in a local minima.

One efficient form of q is q = ∏
i,j q(hi

j ). This form leads
to a standard variational approximation known as mean field.
The derivation of the approximation resulting from this form
is given in Jojic et al. (2003). In Section 5, we introduce forms
with less independence leading to novel structured variational
approximations that produce considerably better bounds on
the log likelihood. An alternative standard method is loopy
belief propagation, also described in Jojic et al. (2003).

5 STRUCTURED VARIATIONAL
APPROXIMATIONS

In order to capture more correlations among the variables
in the posterior, and at the same time avoid worrying about
whether the marginal distributions agree, we can model the
distribution q as a product of distributions defined on disjunct
subsets of the model’s hidden variables. In this section, we
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develop two such approximations. In the first approximation,
the variables are grouped according to the index j—i.e. each
factor in q is a distribution over all variables in a single tree at
site j (the classic Neyman–Felsenstein model). In the second
approximation, we group variables according to the sequence
index i.

5.1 Product of trees
Under the assumption that the posterior can be factored into
J different individual probability distributions, each defined
over nucleotides in different sequences but at the same site j ,
q = ∏

j qj ({hi
j }Ii=1), the free energy assumes the following

form:

F =
∑

j

∑
hj

qj log qj

−
∑
i,j

∑
hj ,hk∈Cj

qj


 ∏

k∈Cj

qk


 log p[si

j | pa(si
j )],

where we use bold notation hj = {hi
j }Ii=1 to denote the

set of all variables in the j -th tree. This expression is
easily arrived at using the fact that

∑
h�

q� = 1. Con-
sequently, thus in

∑
h q log p(si

j | pa(si
j )), the distributions

that do not use si
j , or pa(si

j ) drop out. Note again that for
simplicity in notation s denotes both hidden and observed
variables, but the posteriors q are defined only over hidden
variables.

Each individual distribution qj , defined on variables hj =
{hi

j }Ii=1, is used in multiple terms in the above summation, as
variables from hj are sometimes used as parents and some-
times as children in the conditionals log p(si

j | pa(si
j )). As

opposed to deriving the estimation algorithm by setting the
derivatives of the free energy to zero, we first isolate the part
of the free energy that depends on qj ,

Fqj
=

∑
hj

qj logqj

−
∑
hj

qj

∑
hk∈Cj


 ∏

k∈Cj

qk


 ∑

i

log p[si
j | pa(si

j )]

−
∑
hj

qj

∑
k | j∈Ck

∑
hk ,

hCk\j

qk


 ∏

�∈Ck\j
q�


 ∑

i

log p[si
k | pa(si

k)].

Then, we rewrite it as

Fqj
=

∑
hj

qj log qj −
∑
hj

qj

∑
i

log φ(si
j , sTi

j ), (2)

with

log φ(si
j , sTi

j ) =
∑
hk∈Cj


 ∏

k∈Cj

qk


 log p[si

j | pa(si
j )]

+
∑

k | j∈Ck

∑
hk ,

hCk\j

qk


 ∏

�∈Ck\j
q�


 log p[si

k | pa(si
k)].

Finally, we recognize that if all relevant (neighboring) dis-
tributions but qj are fixed, then (2) has exactly the form of
the standard tree model (4). Thus, given the log potentials
log φ(si

j , sTi

j ), we can use the forward–backward algorithm
(belief propagation on trees) to find qj that optimizes Fqj

exactly, as discussed in Section 4. On the other hand, having
computed the optimal qj , it can be used to perform the neces-
sary expectations in computation of the potentials (3) for the
neighboring trees. Thus the optimization of the free energy
can be performed by initializing all distributions qj to be uni-
form, and then iterating over each distribution while keep the
others fixed so as to minimize F . Iterations continue until the
change in F is negligible.

Like the mean field method, and unlike the loopy belief
propagation or the simple Markov-chain approximation
(Siepel and Haussler, 2003), this algorithm comes with the
guarantee that it will converge to the value of the free energy
that bounds the negative log likelihood of the data. Unlike both
the mean field and the loopy belief propagation technique, this
algorithm captures in the posterior the entire marginal distri-
bution on all tree variables for each site j , and thus, as we
show later, provides a significantly better bound than other
techniques.

5.2 Product of chains
Another similar way to approximate the posterior is to
factor it into I different individual probability distributions,
each defined over all nucleotides in one sequence, q =∏

i qi({hi
j }Jj=1). The variational optimization technique that

uses this approximation is derived in the same way, essentially
just by switching i and j and Ti and Cj in the equations of the
previous section.

The advantage of this technique is that it groups many more
variables into each distribution, as the length of the sequences
can be of the order of hundred of thousands, while the number
of different species is much smaller. However, the product-of-
trees approximation focuses on the combinations of variables
that are much more correlated, and (as we shall see in our
experiments) is more accurate.

6 EXPERIMENTS AND DISCUSSION
In this section, we compare the performance of four dif-
ferent posterior approximations on the task of computing
the log likelihood of the data as a model score: (1) vari-
ational inference using the product-of-trees approximation,
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Fig. 2. Quality of the bounds (a)–(c); and the computational cost comparison (d).

(2) variational inference using the product-of-chains approx-
imation (3) loopy belief propagation and (4) the simple
Markov-chain approximation. The mean field and ICM
approximations under perform these techniques.

We learn the parameters using a generalized EM algorithm
(Neal and Hinton, 1998) in which the generalized E step
is a computation of the approximate posterior as described
in Section 5, and the M step is performed using BFGS
quasi-Newton optimization.

As our main goal is to evaluate how close different
approximations are to the exact inference, we also used an
(expensive) technique to compute the exact log likelihood
and posterior p(h | x). In this exact approach, we clique all
observed nodes xj and unobserved nodes hj , and consider
them as new variables with a much larger configuration space.
For example, when there are five hidden nodes in slice j in the
model, the total number of possible configurations for hj is 45.
The modified model assumes a form of a single HMM; and we
can estimate the true posterior in the form

∏
j p(hj | hj−1, x)

using the forward–backward algorithm, thus avoiding the
brute force search over all 4I∗J configurations. Even when

done in this manner, exact inference is still extremely slow,
and that limited us to models with only three species at the
leaves, hence two hidden sequences in the inner nodes of tree.

We ran tests on two subsets of data used in Siepel and
Haussler (2003). Both datasets correspond to trees with three
species at the leaves. Set A consisted of sequences from cow,
mouse and human; and set B had sequences from cow, pig
and dog. Sequences were of length 133 and 99 Kb, respect-
ively, and were taken from the region of the CFTR gene. The
alignment used in Siepel and Haussler (2003) was used here
as well.

Figure 2 illustrates the tightness (or looseness) of the vari-
ous bounds. In Figure 2a, we show exact log likelihood as
well as the free energy of the variational and loopy belief
propagation approximations during exact EM learning—i.e.
during parameter learning that uses an exact-inference E step.
These curves illustrate how tight the various approximations
are for a range of model parameters. In Figure 2b, we show a
similar graph, but for parameters obtained during generalized
EM learning based on the product of trees approximation. In
Figure 2c, the plots are for the parameters obtained during
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Learning phylogenetic HMM models

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
Equilibrium frequencies

0.09 0.05 0.07 0.08 0.07 0.05 0.006 0.07 0.06 0.04 0.05 0.05 0.07 0.06 0.07 0.1
Rate matrix

AA -1.29 0.14 0.44 0.12 0.16 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.11 0.00 0.00 0.00
AC 0.17 -2.00 0.17 0.90 0.00 0.17 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.14 0.00 0.00
AG 0.74 0.14 -1.67 0.16 0.00 0.00 0.15 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.10 0.00
AT 0.12 0.55 0.17 -1.68 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.12
CA 0.17 0.00 0.00 0.00 -2.01 0.18 0.56 0.14 0.12 0.00 0.00 0.00 0.85 0.00 0.00 0.00
CC 0.00 0.18 0.00 0.00 0.11 -2.19 0.14 0.80 0.00 0.14 0.00 0.00 0.00 0.82 0.00 0.00
CG 0.00 0.00 0.52 0.00 7.81 0.42 -17.50 0.52 0.00 0.00 0.42 0.00 0.00 0.00 7.81 0.00
CT 0.00 0.00 0.00 0.16 0.10 0.37 0.15 -1.67 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.74
GA 0.72 0.00 0.00 0.00 0.15 0.00 0.00 0.00 -1.68 0.12 0.44 0.11 0.15 0.00 0.00 0.00
GC 0.00 0.76 0.00 0.00 0.00 0.18 0.00 0.00 0.17 -2.21 0.18 0.76 0.00 0.17 0.00 0.00
GG 0.00 0.00 0.80 0.00 0.00 0.00 0.14 0.00 0.82 0.14 -2.19 0.18 0.00 0.00 0.11 0.00
GT 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.17 0.14 0.45 0.17 -2.00 0.00 0.00 0.00 0.17
TA 0.16 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.16 0.00 0.00 0.00 -1.75 0.16 0.54 0.16
TC 0.00 0.11 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.12 0.00 0.00 0.15 -1.68 0.15 0.72
TG 0.00 0.00 0.14 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.18 0.00 0.85 0.12 -2.01 0.17
TT 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.14 0.11 0.32 0.16 -1.29

Fig. 3. Equilibrium distribution of nucleotides and rate matrix estimated using product-of-trees method on sequence from region of the CFTR
gene in human genome and homologous sequences from eight eutherian mammals. The matrix is scaled so that at the equilibrium the expected
number of substitutions per site is one on a branch of length one. The rates corresponding to CpG effect are shown in boldface.

generalized EM learning based on the product of chains
approximation. In order to lower the total amount of com-
putation, these experiments were performed on shorter 20 Kb
sequences from dataset A.

When tracking behavior of various bounds during exact
EM iterations, we see that, for the product-of-trees approx-
imation, the bound is much tighter than for the other two
approximations. The difference between the bound and the
true likelihood is due to the dependencies that are absent
from the approximation but are present in the true posterior.
The product-of-chains approximation, which is not capturing
the correlations arising from evolution, is performing worse.
Finally, the loopy belief propagation technique that captures
only short-range dependencies performs worst of all.

Also interesting to note, the approximation errors accumu-
late during EM learning, resulting in a much worse final result
in the product of chains approximation than one would expect
looking at Figure 2a. This illustrates the importance of using
an approximation that bounds the log likelihood as tightly as
possible.

Figure 2d illustrates the computational gain that we obtain
by using the product-of-trees approximation on this relatively
small task. In this graph, we show the log likelihood estimate
as the function of time during EM and variational EM learning.
The computational gains are even more dramatic for a larger
number of longer sequences. The complexity of the variational
E step is linear in the number of hidden variables, which in
turn is linear in number of data points; the complexity of the
exact EM is exponential in the number of nodes in the tree
and linear in length of the aligned sequences.

Finally we compared the simple Markov-chain approxim-
ation to the other bounds available on the full sets A and
B. Using U2S parameters that are at a local maximum for
the simple Markov-chain approximation, we computed the
following values:

Likelihood
Method Set A Set B

Exact EM −296 413 −217 843
Variational −299 756 −219 427
Siepel–Haussler −300 139 −220 408

We see that the simple Markov-chain approximation method
of likelihood computation underestimates the likelihood
of data, compared to the product-of-trees variational
bound.

7 APPLICATION
We applied our best approximation, the product of
trees approximation, to the CFTR gene in human gen-
ome and homologous sequences from eight eutherian
mammals: chimp, baboon, cow, pig, cat, dog, mouse and
rat. These sequences have been selected from non-coding
regions. Length of an aligned sequence for each of the spe-
cies was 162 743 nucleotides. We ran our approximation with
a near uniform Q matrix and obtained rate matrix estimates
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presented in Figure 3. We found that the estimated rate mat-
rix Q had mutation rates from CG to TG (and from CG
to CA, due to the strand symmetry of the U2S model),
indicative of the presence of a CpG effect. Note that, with
a single-site evolutionary model as opposed to a dinuc-
leotide model, a CpG effect cannot be captured by the rate
matrix.

The substitution rates we estimated are within 6.7% of
the estimates from Siepel and Haussler (2003). The rates
in Siepel and Haussler (2003) were estimated using shorter
20 Kb sequences from the same region. We also found that
the branch length estimates are on average 12.2% shorter than
those estimated using PAML (Yang, 1997) with single-site
models HKY (Hasegawa et al., 1985) and UNR (Yang, 1994)
on the whole dataset. The unrooted phylogenetic trees for
the nine species based on dinucleotide and mononucleotide
models are shown in Jojic et al. (2003).
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