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ABSTRACT

The haplotype block structure of SNP variation in human DNA has been demonstrated by
several recent studies. The presence of haplotype blocks can be used to dramatically increase
the statistical power of genetic mapping. Several criteria have already been proposed for
identifying these blocks, all of which require haplotypes as input. We propose a compre-
hensive statistical model of haplotype block variation and show how the parameters of this
model can be learned from haplotypes and/or unphased genotype data. Using real-world
SNP data, we demonstrate that our approach can be used to resolve genotypes into their
constituent haplotypes with greater accuracy than previously known methods.
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1. INTRODUCTION

EVERAL RECENT STUDIES OF SNP variation in human DNA have demonstrated the presence of haplotype

blocks (Goldstein, 2001; Jeffreys et al., 2001; Daly et al., 2001; Patil et al., 2001; Gabriel et al., 2002).
A haplotype block is defined as a genomic region in which a small number of multi-site allelic variants
cover the observed variation. These blocks are believed to be caused by recombination hotspots, which
separate stretches of DNA that are almost never divided during meiosis (Jeffreys et al., 2000). Since
recombination is extremely rare within these stretches, the enclosed SNPs segregate together from one
generation to the next, acting as a combined multi-site allele.

The low level of variation within haplotype blocks can be explained by bottleneck effects and genetic
drift. Bottlenecks occur when a local population is descended from a small group of individuals, for
example, due to migration or strong selection, resulting in a sharp reduction in genetic variation. Genetic
drift refers to the gradual decrease in variation due to repeated random sampling of the alleles in a
population from those in the previous generation. Since genetic drift is strongest when a population is
small, the early generations following a bottleneck event will undergo the greatest reduction in diversity,
leaving behind a small number of ancestral haplotypes upon which the future population is built.

The identification of haplotype blocks improves the effectiveness of the linkage disequilibrium (LD)
approach to genetic mapping. The LD method is based on the assumption that the genetic variants under-
lying a disease are the product of mutations which took place in only a few founding individuals. Any
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marker allele possessed by one of these founders which is located in the same haplotype block as the
disease allele will be found together with it in future generations. Therefore, the presence of the disease in
affected individuals will be correlated with that marker allele, allowing the gene affecting the disease to
be mapped. Knowing the haplotype block structure of a chromosomal region allows tests to be performed
on multiple adjacent markers belonging to each block, dramatically increasing the chance of detecting
associations.

Several tests have recently been proposed for detecting haplotype blocks in DNA. Daly et al. (2001)
identify stretches which have significantly less heterogeneity than would be expected considering the
frequencies of the constituent SNPs. Patil er al. (2001) and Zhang et al. (2002) examine the ratio between
the number of SNPs in a region and the size of the smallest subset of these which is sufficient to uniquely
identify all of its haplotypes. Gabriel er al. (2002) look for areas within which the allelic correlation
between most pairs of SNPs is high. Koivisto et al. (2003) use a MDL method based on a set of haplotype
profiles within each block. All of these criteria are local in that an assessment of each putative block is
based only on the haplotype distribution observed within.

A potential obstacle for both haplotype block identification and LD mapping in general is the cost
involved in separately identifying the complete haplotypes on each of a subject’s two chromosomes. In the
absence of additional information from relatives, a standard genotyping process will yield an unordered
pair of alleles for each locus, with no information on which alleles are co-located on the same chromosome.
Molecular laboratory techniques to identify chromosomal haplotypes have been developed (Michalatos-
Beloin et al., 1996; Woolley et al., 2000; Lizardi et al., 1999; Douglas et al., 2001), but their cost remains
prohibitive in many cases.

A series of observed marker pairs containing s heterozygous sites can be separated into constituent
haplotypes in 2°~! different ways. This degeneracy leads to the haplotype resolution problem, which seeks
to infer the pairs of haplotypes from which a set of observed genotypes are constituted. An early approach
to haplotype resolution was Clark’s parsimony-based algorithm (1990), later improved by Gusfield (2001).
A likelihood-based EM algorithm (Excoffier and Slatkin, 1995; Long et al., 1995; Templeton, 1988) gives
far superior results but is infeasible for large experiments, since for genotypes with s heterozygous loci, its
complexity is O(2*). Recently, Stephens et al. (2001) and Niu et al. (2002) have proposed new MCMC-
based methods which are computationally feasible and give good results. None of these methods for
haplotype resolution consider the implications of the blocklike structure of DNA.

We have developed an integrated approach to both haplotype block identification and haplotype res-
olution, suitable for high density SNP data. It is based on a statistical model which takes account of
recombination hotspots, bottlenecks, genetic drift, and mutations. We show how the parameters of this
model can be recovered from observed haplotype or genotype data and demonstrate the effectiveness of
our technique by applying it to the haplotype resolution problem. For high density regions of chromosome
21, our site pairwise error rates are between 3 and 200 times lower than those achieved by previously
published methods.

The rest of this paper is organized as follows. Section 2 describes our statistical model and its parameters.
Section 3 explains the criterion used to assess how well a particular model fits some observations. Section
4 outlines the algorithm we use to search for a model which optimizes this criterion. Section 5 explains
how a specific model can be applied to perform haplotype resolution. Section 6 compares the results of
applying our approach in this way against existing methods for haplotype resolution. Section 7 outlines
an extension to our inference algorithm, in which a set of suitable models are sampled based on observed
data. Finally, Section 8 describes some future directions we aim to pursue.

2. STATISTICAL MODEL

Our model for the distribution of haplotypes descended from a bottleneck event can be represented
as a Bayesian network. A Bayesian network is a directed acyclic graph, where each vertex v = 1...n
corresponds to a discrete variable X, and each directed edge represents conditional dependencies between
these variables (Pearl, 1988; Jensen, 1996). The distribution for each variable X, is conditional upon the
variables in Pa,, which is defined as the set of vertices from which there are edges leading to v in the
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FIG. 1. Bayesian network for haplotype data.

graph. The joint probability of a full assignment x1, ..., x, to variables X1, ..., X, is the product of these
conditional probabilities. In other words, Pr(X| = x1,..., X, = x,) = I—[v Pr(X, = xy|Pay, = pay),
where pa, is the joint assignment {x;|X; € Pa,} to the variables in Pa,. From here on, we will use the
notation Pr(y|z) as an abbreviated form of Pr(Y = y|Z = z) for any sets of variables ¥ and Z. For
example, the joint probability could be rewritten as Pr(xi, ..., x,) = [[, Pr(x,|pay).

An important query is to compute the probability of a partial assignment x; to variables X; € {X1, ..., X,}.
This is defined as the sum of Pr(xy,...,x,) over all full assignments xi, ..., x, which are compatible
with xg, so that Pr(x;) = le ~~~Zx” Pr(x1, ..., xylxs). The independence assumptions embedded in
the Bayesian network allow such computations to be performed efficiently, for example by bucket vari-
able elimination, a technique applied extensively in our work (Dechter, 1996). Suitable parameters for the
conditional distributions in a Bayesian network can be learned from observed datasets by the Expecta-
tion Maximization (EM) Algorithm, which we use at many stages during our search for a model to fit
observations (Lauritzen, 1995).

An example of our model is shown by the Bayesian network in Fig. 1. It consists of a random variable
Cy. for each block k = 1...b and two random variables A; and H; for each SNP j = 1...[. Variable
Cy takes values 1... g, where gi specifies the number of different haplotypes for block k£ which emerged
from the bottleneck event, hereafter referred to as the ancestors for block k. Both A; and H; take values
from the set B of SNP alleles, where B = {A, C, G, T, —} contains the four nucleic acids and a deletion.
A partition by recombination hotspots of the SNPs into blocks is defined by the groups of variables A
pointed to by each Cy in the Bayesian network. For example, the model in Fig. 1 places hotspots between
adjacent SNP pairs 3—4 and 5-6.

An assignment of values to the variables in the Bayesian network reflects the history of a single observed
haplotype. The value of each variable Cy is the index of the ancestor for block k from which the observed
haplotype is descended. The sequence of that ancestor is specified by the values of Ay, ... A,,, where
Ay and A,, are the first and last variables descended from Cy, respectively. The observed haplotype is
specified by the values of variables Hj ... H;. Clearly, H; = A; unless a mutation has taken place at site
Jj since the bottleneck event.

The topology of the Bayesian network defines the joint distribution over all variables Pr(cy, ..., cp,
ai,...,ay, hy, ... hp) as
b b e
Pr(cy) [ Pricclex—0) [ | ] Priajlc) Prinjlay).
k=2 k=1 j=s

The conditional distributions for ancestor index variables Cy are defined by the vector parameter 6.
For the first block, Pr(c1) = 61 ,,, and for subsequent blocks, Pr(cklck—1) = 6k,¢,_;—¢,- The conditional
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distributions for ancestor sequence variables A ; are defined by the vector dy .. ; € B overblocks k =1...b,
ancestors ¢ = 1...qx, and sites j = si...ex. Each subvector a; . defines the sequence of ancestor ¢ of
block k, so that Pr(ajlcy) = 1 if a;j = ke, j and O otherwise. Note that the conditional distribution
for A; is deterministic, as denoted by its double border in the graph. The conditional distributions for
observed sequence variables H; are given by the vector parameter 1t} 45, defined over sites j =1.../
and alleles a, h € B. In each case, Pr(hjla;j) = tja;—n;- The small dot in each vertex H; denotes that
this variable’s value is observed, whereas all others must be inferred. On this point, it is worth noting the
similarities between our model and a hidden Markov model (HMM), since in each case there is a Markov
chain of distributions over unobserved variables upon which the observed data is conditional.

Many biological assumptions underlie our model’s design. Most fundamentally, we assume our popula-
tion is in Hardy—Weinberg equilibrium, so we define our distribution over individual haplotypes instead of
genotypes (Hardy, 1908). The Markov chain connecting variables C ... Cj also implies that the probability
of a haplotype being descended from a particular ancestor for block k depends only on their ancestor for
block k£ — 1. This first-order property is based upon the observation that recombination is a Markovian
process, under the assumption of no chiasma interference. Simulations have also shown that the Markov
chain provides a very close approximation to the joint distribution of variables Cj ...Cj generated by
random mating and recombination. The values of g for each block k are allowed to differ, since the
processes of drift and selection act somewhat independently on each block.

The parameter independence of each conditional distribution Pr(A;|Cy) lifts all constraints on the
phylogenetic relationship between each block’s ancestors, since we are interested in tracing ancestry only
as far back as the formative bottleneck event. The parameter independence of each conditional distribution
Pr(Hj|Aj) allows for both site- and allele-specific mutation rates, justified by recent evidence for mutation
hotspots (Templeton et al., 2000; Fullerton et al., 2000). This is a marked departure from the traditional
infinite sites model of mutation, which assumes that each SNP has mutated only once in evolutionary
history. Our model also assumes that a site’s mutation rate is independent of the alleles at other sites, or
the ancestor from which it is descended.

Nonetheless, a model’s mutation rates are constrained in other ways. First, if either a or h are not
observed alleles of site j, we fix @45 = 0, since such mutations are assumed either never to occur or
to be deleterious. For other alleles a # h, mutation rates are constrained by parameters (i, and Wiy,
so that min < ja—sh < Wmax. The values of wyin and wpq, should ideally be based on the mutability
and history of the chromosomal region being studied. Since we generally lack such knowledge, suitable
guideline values are i, = 107% and WUmax = 1073, based on mutation rates of 1.6 x 1077 to 5.5 x 10~
per generation, a generation length of 20 years, and a most recent bottleneck event between 100,000 and
5,000 years ago (Nachman and Crowell, 2000).

The Markov chain parameters 6 determine some additional values of interest. For the first block, the
marginal distribution 7 . for each ancestor c is clearly given by 71 . = 61 .. For subsequent blocks k > 1,
we obtain the marginal distribution from that of the previous block and the transition parameters, where
The =Y o (ﬂk—l,c' . 9k,c'—>c)- The conditional entropy &x—1)— across each hotspot measures the degree
of recombination between blocks k — 1 and k and is given by Ex—nymi = — Y o Th—1.¢/ 2Ok, c/—c -
log 6k .o/ —c).

Under a particular model M, the likelihood Pr(h|M) of a haplotype h = hy, ..., h; is obtained by calcu-
lating the probability of the corresponding partial assignment in the Bayesian network. This is given by the
summation of the joint probability function over all unassigned variables, i.e., > . . >, o Prici, ...,
Cp,ay,...,ap, hy, ..., hy|M), calculated efficiently by bucket variable elimination (Dechter, 1996). In some
cases, we lack observations for particular sites due to failed measurements in the laboratory, in which case
the variables H; corresponding to those sites are unassigned and so included in the summation.

The likelihood Pr(g|M) of a genotype g is calculated using the Bayesian network shown in Fig. 2.
This contains two identical copies of the haplotype Bayesian network corresponding to M, where the
mirrored copy has variables renamed to C,/c, A.//’ and H /’ The new discrete variable G; corresponds to
the joint observation at site j, so we evaluate a genotype’s likelihood by calculating the probability of
the partial assignment Pr(gy, ..., g|M). Each G; takes values from the set D of possible unordered
pairs of SNP alleles, given by D = {[b1, b2] : by, b € B}. The conditional distribution for each G; is
deterministic, since it is fixed by the alleles present on each chromosome at site j, i.e., Pr(g;|h;, h’j) =1

if g; = [hj, h/j] and 0 otherwise.
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FIG. 2. Bayesian network for genotype data.

3. MDL CRITERION

Our core problem is to learn a suitable model from observed SNP data, consisting of a set of hap-
lotype observations H and/or genotype observations G. Assuming sample independence, the likelihood
Pr(H, G|M) of the data under model M is given by [[,. Pr(h|M) ngc Pr(g|M).

Seeking a model which maximizes this likelihood produces erroneous results, since any observed hap-
lotype distribution can be reproduced exactly by a simple model with no recombination or mutation. We
address this problem of model overfitting using the minimum description length (MDL) criterion, which
seeks to minimize the total number of bits required to represent data with a model, akin to finding its
optimal compressed encoding (Rissanen, 1978). If DL(M) bits are required to represent a model M for
data D, then DL(D, M) = DL(M) — log, Pr(D|M). For general Bayesian networks, the Bayesian infor-
mation criterion (BIC) can be used to calculate DL(M), but we diverge somewhat from that formulation
here (Schwarz, 1978).

Formally, the description length DL(M) of model M is the number of bits required to represent it with
optimal efficiency. For our models, we ignore elements of this description whose lengths are fixed, for
example, the Boolean vector describing the partition into blocks and the site mutation rates u, since these
make no difference to model comparisons. We consider only an efficient representation of the ancestor
sequences a and the parameters 6 of the Markov chain.
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Ancestor sequences are represented using a distribution-based optimal encoding scheme (Shannon, 1948).
First, for each SNP j, the frequency f;(a) in the model’s ancestors of each allele a is calculated indepen-
dently. If SNP j falls in block %, this is given by f;(a) = q]—k ]{c YAk, = a}‘. These independent frequen-
cies are multiplied to form a distribution over the SNPs in block &, so that Pr(ak,.) = j": st fiCk.c, ).
Using our scheme, the representation length of the sequence of ancestor ¢ of block k is given by
L(ak,c) = —log, Pr(ax,c), so the total length for all ancestor sequences of block k is Sy = >_. L(dk.c).
Note that we ignore the cost of representing the actual allele frequencies f;(a), since this is fixed for all
models to be compared.

Since each parameter 6 of the Markov chain is a continuous value with potentially infinite representation
size, a limit must be placed on its accuracy. We apply Rissanen’s result, which states that the optimal
representation size for continuous parameters of a distribution from which m samples are taken is % log, m
bits (Rissanen, 1983). Therefore, the cost 77 to represent all 61 . parameters for the first block is given by
T = % log, n, where n = |H|+2|G]| is the number of haplotypes represented by our data. Similarly, the

cost Ty to represent all 6 ~_,. parameters for subsequent blocks k > 1 is given by Ty = q"z_ lqk_ 1 log, n.
Thus, the total description length of a model M is given by DL(M) = )", (Sx + Ti), and our aim is to
find M which minimizes DL(H, G, M) = DL(M) —log, Pr(H, G|M).

4. SEARCH ALGORITHM

Clearly, for any nontrivial input, the space of possible models is vast (to begin with, there are 2/~!
different partitions into blocks), so any form of exhaustive search is infeasible. Instead, our strategy takes
advantage of two features of the search space which were observed during development.

Firstly, it was noted that if the optimal model has several recombination hotspots, adding these one by
one will tend to incrementally improve the score. This means that hotspots may be examined individually
and accumulated over several iterations. Secondly, even if the recombination hotspots in a model are
not quite at their ideal locations or the number of ancestors for each block is slightly suboptimal, the
model will nonetheless have a relatively strong score. This means that an initial quick scan can be used
to assess regions of the search space, leading to further exploration in those areas which look most
promising.

Globally, we adopt a myopic search strategy, retaining and attempting to improve only the best-scoring
model M found to date. We begin by assigning M to an initial model containing no recombination hotspots,
optimizing the number of ancestors for the single block. Following this, we repeatedly execute a set of
three phases, hotspot addition, nudging, and removal, replacing M as we go by any model found with a
lower DL score. If two full rounds of these three phases produce no improvement, the algorithm finishes
and the model is output, after its parameters are refined by additional rounds of EM.

During hotspot addition, we attempt to insert a single new hotspot somewhere within each block of
the current model, optimizing the number of ancestors for the new blocks generated on both sides. When
nudging, we try moving each existing hotspot a small distance, also allowing small changes in the number
of ancestors for the blocks on both sides. In the removing phase, we attempt to take out each existing
hotspot, optimizing the number of ancestors for the newly reunited block.

Any particular assignment of hotspots and values g fixes the topology of the Bayesian network and
the cardinality of each variable within, allowing the remaining parameters @, u, and 6 to be inferred
by the EM algorithm (Lauritzen, 1995). However, to speed up our search, we learn a and p for each
block independently, before learning parameters 6 for the Markov chain from adjacent pairs of blocks.
This is equivalent to performing EM on nodes A; and H; in the broken Bayesian network shown in
Fig. 3, followed by EM on each node Cj with just the single edge from Ci_; to Cj reintroduced
from Fig. 1.

Learning in this modular fashion means that during our model search, we need only recalculate pa-
rameters of blocks which are immediately affected by each adding, nudging, or removing operation. At
the cost of losing some information, this shortcut introduces greater locality into our search space, re-
ducing calculation time a great deal. For example, having added a hotspot within block &k in an existing
model M, we only relearn the ancestors gy and a1, mutation rates [, . .., [, +1» and Markov transition
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FIG. 3. Broken Bayesian network for haplotype data.

probabilities 6, i1, and 6x12. Parameters for unaffected blocks are copied from M, shifting indices appro-

priately. Furthermore, to calculate the new value of DL(H, G, M), the elements Sy, ..., Sk—1, Sk+1,---, Sp
and Tp,...,Tg—1, Tx42,...,Tp can be reused, along with cached forward probabilities such as
Pr(hs,, ..., he_y, cx—1|M) and backward probabilities such as Pr(hsg,,,, ..., he,lck+1, M) for each input

haplotype h.

Our model requires a deterministic conditional distribution for each variable A ; but the EM algorithm will
rarely produce this. Therefore, when learning parameters within block k, we begin by fixing the conditional
distribution for each Hj, ... He, as if no mutations have taken place. Then we perform EM for the variables
Ay ... Ag, effectively clustering the observed sequences into gy self-similar clades. Ancestor sequences
are assigned based on each conditional distribution, setting i ; = argmax, Pr(A; = a|C; = o).
Only then do we perform EM for variables H;, constraining site mutation rates to [;in and [Uyax as
appropriate.

Unlike the nudging and removal phases, which examine each hotspot in the current model in turn, the
addition phase requires testing every possible hotspot location within each block, significantly raising its
complexity. For a new hotspot tried in block k, different numbers of ancestors g; and gx4; for the new
blocks must also be considered, with only an upper limit on the likely range of suitable values. Furthermore,
because the EM algorithm is guaranteed only to find parameters which lead to a local maximum for the
likelihood of the observed data, multiple iterations with different random seeds must be run for each
assignment to gx and gi41, in order to allow the observed sequences to be clustered best. Clearly, it
would be infeasible to implement such a full search for every hotspot that could be introduced into
a model.

To overcome this problem, the addition phase takes advantage of the properties of the search space, as
mentioned above. The search for a suitable hotspot addition within block & takes place in two stages, called
scan and isolation. In the scan stage, we generate a vector of new models V; for each possible insertion
site j = sx+1...ex — 1, in each case copying the number of ancestors g; and g1 in the two new blocks
from g in the original model. Then, for each model in the vector, we try removing ancestors from each
of the two new blocks in ascending order of their prior probability 7, keeping any improvements in score.
Having done so, the score of each model V; is a fair guide to the value of adding a hotspot at j.

In the isolation stage, we begin by discarding all models in V whose score is lower than that of either
of their neighbors. This search for local minima is guaranteed to remove at least half (rounded down)
of the models remaining. Then, we try to improve each model V; by slightly moving the newly placed
hotspot and reselecting ancestors, as in the nudging phase described above. Having done so, the search
for local minima is repeated, continuing the isolation process until a single model remains. In each round
of the isolation stage, we double the search time expended on improving each remaining model, leading
to a constant cost per round. To prevent a bias towards hotspot accumulation in early blocks, we do not
attempt to add hotspots into new blocks generated by the current phase of hotspot addition.

In a similar fashion, the nudging and removing phases also focus more effort on models whose parameters
are closest to the best one seen. This approach is effective because models with similar parameters tend to


http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410300&iName=master.img-002.png&w=407&h=155

502 GREENSPAN AND GEIGER

produce similar scores, especially when the parameters are close to optimal. Nonetheless, for best results,
multiple independent runs of the search algorithm may be performed, selecting the best-scoring model
among those obtained.

5. HAPLOTYPE RESOLUTION

Using our approach, we perform haplotype resolution in two stages. First, we search for the best model
M for observed genotype data G, as explained in Section 4. We then use this model to define a function
H(g, M), which gives a pair of haplotypes (h, h’), which is compatible with each genotype g € G and
likely under M. Ideally, this function would find the assignment of Ay, ..., A, h/l, e, h; with maximum
likelihood in the model’s genotype Bayesian network, giving argmax, 1y Pr(g, h, h'|M).

Unfortunately, computing this is infeasible, since it requires a summation over all paths through the two
Markov chains to generate joint distributions over & and &’ before calculating their maximal assignments,
an operation with exponential complexity in terms of /. Instead, we find the joint maximum likelihood
assignment of the haplotype pair A1, ..., h;, b}, ..., h; and ancestor indices ci, ..., cp, ¢}, ..., c, which
is compatible with g by bucket variable elimination (Dechter, 1996). In doing so, we consider only the
single most probable path through the Markov chain that could lead to each haplotype, analogous to
applying the Viterbi algorithm on a hidden Markov model. This approximation is reasonable because one
path is likely to give a much higher probability for a particular haplotype than the others, since mutations
are rare.

6. RESULTS

Many studies of the haplotypes in particular genomic regions have been carried out over the past few
years (Ardlie et al., 2002). However, in most cases, the haplotypes used for the study were obtained using
one of the haplotype resolution algorithms described in Section 1, so they hardly form a suitable basis for
a comparison of such methods. Furthermore, not all studies are based on closely spaced SNP markers, so
our block-based approach would be ineffective on the datasets obtained.

Our results are based on two sources of high density haplotype data. Rieder et al. studied the gene
ACE located on chromosome 17, thought to be related to cardiovascular disease, examining variation
at 52 biallelic markers, which extend over a genomic region of 24 kb (Rieder et al., 1999). In their
paper, they obtained 22 haplotypes from 11 subjects using allele-specific PCR to ensure that ambiguous
genotypes were resolved correctly (Michalatos-Beloin et al., 1996). Patil er al. (2001) undertook a full
study of chromosome 21, examining variation at 24,047 SNPs over a total length of 21.7 Mb. They
obtained 20 haplotypes from 10 subjects by separating the two copies of each subject’s chromosome using
a somatic cell hybrid technique (Douglas et al., 2001). For the purposes of this comparison, we examined
the five contiguous stretches of approximately 100 SNPs in chromosome 21 which extend over fewer than
35,000 bp.

To compare the quality of haplotype resolution, we used 10 random pairings of the true haplotypes for
each region to generate genotypes, which were then passed to each algorithm for haplotype resolution. We
applied our approach for three different values of (i, and p,qyx in two ways, first restricting the search to
models which place all the SNPs in a single block (i.e., b = 1) and then allowing the block divisions to also
be learned. The results are compared against those for four other methods: (i) Clark’s algorithm, slightly
modified to deal with unknowns (1990), (ii) our local variation of the EM algorithm which overcomes
its exponential complexity (Excoffier and Slatkin, 1995; Long et al., 1995; Templeton, 1988), (iii) the
PHASE algorithm developed by Stephens et al. (2001), (iv) a beta version of the HAPLOTYPER algorithm
developed by Niu et al. (2002).

Table 1 compares the quality of haplotype resolution, as measured by the proportion of individuals
phased incorrectly. A finer comparison, shown in Table 2, is generated by measuring the proportion of
pairs of adjacent sites which are phased incorrectly relative to each other. Although the first metric is
common in the literature, it forms a crude basis for comparison, since it ignores the useful information
contained in a pair of haplotypes which is phased wrongly at only one site. The second metric overcomes
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TABLE 1. MEAN PROPORTION OF SUBJECT GENOTYPES PHASED INCORRECTLY

Proportion of subjects® Cc21a® C21b C2lc C21d C2le ACE
Clark .8222 7300 .5300 7900 .8444 .5091
Local EM¢ .5889 .3900 .1300 .5800 5667 .3545
HAPLOTYPERY 6667 — .6000 .6000 — 2818
PHASE 6778 .5000 4800 4800 .6556 4727
HaploBlock®, b = 1, umax = 10~4 4222 .2200 .1400 .2600 .6889 .5364
HaploBlock, b = 1, umax = 1073 4556 2300 .1000 3100 6778 .5636
HaploBlock, b = 1, pmax = 102 4333 .5500 .0800 4600 .5667 5364
HaploBlock, wmax = 1074 4556 .3400 .1200 .2800 .5667 4818
HaploBlock, wmax = 1073 4778 .3300 .1200 .3800 6444 6818
HaploBlock, pmax = 102 111 4700 .1200 4300 .5667 1273

Sites with unknowns were excluded from the comparison.

YAll chromosome 21 regions are from contig NT002836, over the following stretches of base pairs—a: 1262471-1292884,
b: 7490174-7517009, c: 10972404-10996329, d: 13622368-13650628, e: 14999072-15030226.

®For Local EM and HAPLOTYPER, we took the maximum likelihood result of 20 runs.

dThe HAPLOTYPER beta version failed on data with many unknowns—averages are for successful runs, if any.

€For each HaploBlock run, we set i, = ,u%wx.

TABLE 2. MEAN PROPORTION OF ADJACENT SITES PHASED INCORRECTLY RELATIVE TO EACH OTHER

Proportion of pairs C2la C21b C2lc C21d C2le ACE
Clark .0548 .0251 .0280 .0329 .0234 .0381
Local EM .0095 .0042 .0009 .0047 .0083 .0152
HAPLOTYPER .0224 — .0204 .0077 — .0102
PHASE .0669 .0403 .0655 .0262 .0183 .0419
HaploBlock, b = 1, pmax = 10—4 .0052 .0011 .0007 .0014 .0161 .0100
HaploBlock, b = 1, pmax = 1073 .0053 .0016 .0001 .0012 0171 .0144
HaploBlock, b = 1, wmax = 1072 .0036 .0074 .0006 .0027 0116 .0185
HaploBlock, pmax = 104 .0039 .0015 .0001 .0008 .0048 .0109
HaploBlock, wmax = 1073 .0030 .0030 .0005 .0015 .0045 .0109
HaploBlock, pmax = 1072 .0068 .0058 .0005 .0024 .0080 .0173

this shortcoming and is particularly relevant if the inferred haplotypes are to be used for LD mapping,
which is based on correlations between disease susceptibility and the alleles present at contiguous sites.

The first set of tests, in which the number of blocks b is fixed to 1, demonstrates the effectiveness
of our ancestor and mutation model, even when the possible presence of haplotype blocks is ignored.
In other words, model-based Bayesian clustering is an effective method for haplotype resolution over
closely linked SNPs. For the high resolution data from chromosome 21, the results are compelling—
our approach consistently outperforms previously published algorithms, with the exception of some cases
where ptmax = 1072. The contrast is particularly marked in the site pairwise error rates, indicating the
suitability of our method for high-resolution disease mapping. Our model-based approach also obtained
better results than did our own local EM algorithm, with the exception of dataset C21e, to be discussed
further below. For the ACE dataset, the results are more mixed, perhaps because the lower SNP density in
that study makes it less suitable for our model.

The second set of tests, in which an unrestricted model search is performed (allowing b > 1), demon-
strates the extra accuracy that is achieved by allowing recombination hotspots to be included in a model.
However, for chromosome 21 datasets (a) through (d), there is no significant difference between the results
of the two experiments. This surprising result is explained by the fact that even in the unrestricted model
search, many of the models learned from these regions placed all the SNPs in a single block. By con-
trast, the unrestricted searches for dataset (e) showed a clear improvement in mean site pairwise error rate
from (0.0161, 0.0171, 0.0116) to (0.0048, 0.0045, 0.0080) for the three values of w4y, reflecting the fact
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that they all indicated the presence of recombination hotspots. Clearly, for data that extends over longer
chromosomal regions, the contrast between the two types of search will increase in prominence.

Our algorithms have been implemented in ANSI C as the HApLOBLOCK package, available online with
documentation at bioinfo.cs.technion.ac.il/haploblock/. Running times on a 2 GHz Pentium Xeon work-
station were under five minutes for each search performed on genotype input data, while learning from
haplotypes is typically 20 times faster. The search algorithm can accept a mixture of haplotypes and
genotypes and imposes no limits on input size.

7. MODEL SAMPLING

Recent research has suggested that it is oversimplistic to assume that a single “true” block partition
can be identified for a genomic region, due to the complexity of the patterns generated by recombination
and mutation (Schwartz et al., 2003; Bafna et al., 2003). We are therefore developing a less deterministic
approach, in which a set of suitable models are sampled based on observed data and then applied to
perform haplotype resolution.

Our initial sampling strategy lies somewhere between the myopic search outlined in this paper and
a fully fledged Monte Carlo Markov chain approach. The space of possible models is explored using
Gibbs-style iterations, in which the existence and location of each recombination hotspot is treated as the
variable for resampling. During a sampling iteration, each of the hotspots in the current model is removed
in turn, creating a larger block into which we attempt to add one or more new recombination hotspots.
Each iteration has the potential to up to triple the number of hotspots in the current model, so models
containing thousands of recombination hotspots can be reached quickly within a few rounds.

Having sampled a set of suitable models, a final haplotype resolution is obtained using the individual
resolutions given by each sampled model. In the simplest case, the alleles at each heterozygous site in the
final haplotype pair are oriented relative to the previous heterozygous site so as to be compatible with the
maximum number of individual model-based resolutions. Since homozygous sites are irrelevant in terms of
haplotype phasing, they have no role during this operation. Initial studies show that haplotype resolutions
calculated from samples in this way are more accurate on average than those based on a single model.

8. FUTURE WORK

The results in this paper demonstrate the potential of our approach for modeling high-density SNP data.
We are now expanding our study, generating a full recombination map of chromosome 21. Using that
dataset, we also wish to assess the extent to which recombination hotspots are responsible for generating
the observed haplotype block structure.

We are incorporating a linkage disequilibrium mapping test directly into our technique, to look for
correlations between inferred haplotype block ancestors and phenotypic status. This will be extended to
deal with the case of multiple sampled models, either by applying a model averaging technique as for
haplotype resolution or by developing a method for extracting consensual ancestral haplotypes from a set
of different models.

On a more fundamental level, our technique might be improved by the introduction of prior distributions
for some model parameters. This is particularly relevant for mutation rates, since the alleles at adjacent
sites have been observed to affect SNP mutability (Nachman and Crowell, 2000). Similarly, we wish to test
whether the first-order property of our Markov chain holds true for real data, since it might be undermined
by genetic drift, local interactions between alleles, or interference-like effects.
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