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Abst ract  
A paradigm for reactive disassembly planning is developed which combines prior information about the 
disassembly task encoded in a predictive plan as well as measurements collected during the process in order 
to select the current most promising disassembly operation. Planning relies on a probabilistic inference 
mechanism which employs a Bayesian Network. It integrates perception and action and uses the 
dependencies among various parts of a product to propagate uncertainty regarding their condition as sensed 
during the disassembly process. Our methodology allows a computerized assessment of an End-Of-Life 
value of a product which will enable manufacturers to combine design principles that take into account 
environmental considerations at minimum cost during the design cycle. The approach is demonstrated by a 
case study. 
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1. Introduction 
Environmental legislation urges many manufacturers 

to develop effective technologies to cope with obsolete 
products. The natural solution is product disassembly 
which can lead to cost minimization, hazardous materials 
isolation, and opportunities to re-use or re-utilize 
materials and components. However, unlike assembly 
processes, disassembly processes are characterized by 
a high variety of products and manufacturers, uncertain 
product condition after usage, and a termination goal that 
has to be updated during the disassembly process. 
Therefore, an appropriate methodology must be able to 
generate plans of disassembly processes that take these 
features into account. 
In this paper we develop a paradigm for reactive 
disassembly planning which combines prior information 
about the disassembly task encoded in a predictive plan 
as well as measurements collected during the process in 
order to select the current most promising disassembly 
operation. 

A predictive plan takes into account the generic 
product, its design, materials, mode of usage, expected 
deterioration, etc., but ignores the conditions of a 
specific product as revealed during the disassembly 
process. Given a predictive plan, one can start a 
disassembly process, however, in general, the plan 
should be adapted to the current condition of the product. 
The adaptation is carried out dynamically during the 
recycling process whenever the information in the 
predictive plan becomes incomplete. This re-planning 
process is often called Reactive planning; it can be 
viewed as the task of re-establishing a valid plan once the 
assumptions of a predictive plan need an update. 

We present a model-based planner which relies on a 
probabilistic inference mechanism. Our reactive planner 
employs a predictive plan which is represented using a 
Bayesian Network [6]. A Bayesian network is a 
knowledge-based system that represents a collection of 
random variables combined with Markovian properties of 
independence. Using this network, one can represent 
time-variant parameters of the product such as rust and 
deformation at various locations. Other random variables 
represent success or failure of specific disassembly 
operations. This network is called the Static model. In 
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addition we have a Recovery Graph which models the 
various disassembly options, their costs and their 
benefits. Once the most promising action is taken, the 
appropriate random variable in the Bayesian network is 
set to its observed value (say, success or failure) and 
one can compute the success probability of each of the 
next possible disassembly operations using the well 
developed techniques of Bayesian networks. Then, a new 
plan is generated using the updated success probabilities 
such that the End-Of-Life (EOL) value is maximized. To 
the best of our knowledge, it is the first model for 
disassembly plans which integrates perception and 
action and which uses the dependencies among various 
subsystems of a product to propagate uncertainty 
regarding their condition as sensed during the 
disassembly process. Currently, disassembly planners 
within the Computer Aided Process Planning (CAPP) 
community assume that the product is known a-priori with 
certainty [2,7,8]. 

The rest of this paper is organized as follows: Section 
2 introduces the Static Model which describes the 
probabilistic inference mechanism and introduces the 
product's Bayesian Network. Section 3 presents the 
Dynamic Model, which integrates probabilistic inference 
and operational decision of the disassembly process and 
yields a reactive planner. A case study is presented in 
Section 4. 

2. The Static Model 
The basic premise in building a model for disassembly 

is the presence of uncertainty in the abilities to 
disassemble a product up to its basic elements. 
Deformation, rust, missing parts, unloosenable joints are 
some of the factors that may influence disassembly and 
may suggest an appropriate disassembly method, e.g., 
destructive or non-destructive [l]. Moreover, the ability 
to disassemble one part of a mechanical system is tightly 
related to the disassembly of other parts through the 
topology of the system, e.g., a deformation in one end of 
an assembly raises the probability that other objects 
have been deformed as well. A model for disassembly 
must represent the topology of a product, and use the 
representation to propagate the effect of disassembly 
operations (whether successful or not) applied to one part 
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of the product to other yet-to-be-decomposed object. 
Clearly, any effect can influence the entire system, 
however, restricting the effect to neighboring 
components is a sensible computational compromise. 
That is to say, we assume a Markovian property, in which 
the disassembly of an object is independent of the 
decomposability status of other objects, given the status 
of its immediate neighboring objects. 

Let us consider an assembly composed of a chain of 
objects. Let AT ,..., A, denote these objects and J2 ,..., J, 
denote their joining elements (Fig. 1). We define a set X of 
random variables xi , i  = Z.... n such that xi is true if joint 
Ji can be disassembled, and false otherwise. Our 
Markovian assumption, in this example, states that given 
values for xi-T and xi is independent of 
X I  {xi-T,x;+T). This model summarizes all the factors 
influencing a particular joint with one bi-valued random 
variable. Of course, having several values to each xi to 
indicate the degree of decomposability, is a reasonable 
extension. 

I 
. AT 

A ,  m 

Figure 1: An Electronic Assembly { 4 , A 2 , A 3 }  and Its 
Connectivity Graph for n=3 

Our purpose, however, is to model each individual 
factor, such as rust and deformation, according to the 
way it influences disassembly, as well as the way local 
disassembly attempts influence the whole disassembly 
process. Moreover, we would like to model sensing 
operations which may cause further uncertainty as well. 
Consequently, we extend the Markov chain and use what 
is known as a Bayesian Network. Instead of giving a 
formal definition we shall first build a Bayesian network for 
this assembly example. We define a random variable di 
to represent the deformation level of part Ai, and q t o  
represent the rust level of part Ai The domain of djand rj 
is discrete, as is the domain of all variables we consider. 
We define jias a random variable that connotes the 
hardness of the connection between Ai and 4-T, that is, 
the degree of difficulty of separating these objects. 
Variable sli stands for 'joint i can be disassembled using 
disassembly method j '. Finally, fik is the result of a 
sensing operation k, applied after a disassembly attempt 
has been performed on joint J; . A graphical model of the 
Bayesian Network of the above assembly is given in 
Figure 2. 
Note that edges are drawn from causes to their effects 
whenever possible. For example, rj, di, ri-1 and di-7 are 
the only factors that influence the hardness of 
decomposability of joint i. Also, the success of a 
disassembly operation depends only on ji, the hardness 
of the joint, and sensing depends only on the 
decomposition method used. The joint distribution of the 
variables relevant to the Is joint as implied by this model 
is given by: 

P(di.r;.,ji.sil,s/2.fil.fiZ I di-1,q-T) = 
P(d1 I di-l)P(q I ~-1)Pti/ I dj,q,di-TrG-l). 
P(SH I j/)P(ST I%)p(s/2 I j;)P(42 1 % )  

(1 1 

This equation holds for any assignment of values to 
the random variables involved in the equation. To be more 
precise, we should have written di = k, to stand for the 
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statement variable di receives its Ks value, namely, the 
deformation at the i-th joint is of level k. But we leave the 
value implicit for notational convenience. 

I 
I I 
I I 

I 

Figure 2: The Bayesian Network of the Assembly 
@7eA2nA3) 

Let d = {di);r = {c), j = ti/)$= {si1,Si2),f = {S1,42} be 
sets of random variables formed by running the index i. 
The joint distribution function represented by Figure 2 is 
given by: 

P(d, r, j, s, 0 = 

P(d0) P(r0 P(di I q I ji, s; T I si 2 I S 2 I di-7,Q-r ) (2) 

This equation forms a joint distribution over all 
variables of interest from a collection of local distributions 
listed in the right hand side of Eq. 1. Each of these local 
distributions can be quite easily quantified. For example, 
P(sil I ji) specifies how disassembly method #1 is 
effective in decomposing joint i for different hardness 
levels given by the value of j i  . Similarly, P(fT I sil) tells 
us the probability that sensor #1 indicates success given 
the operation succeeds (e.g., 95%) and given it fails 
(e.g., 2%). In general, a Bayesian network for a set of 
random variables xT,  ..., x, [6] is a directed acyclic graph 
where each node is associated with a discrete random 
variable Xi and a local probability table P(xi I x i ) ,  where 
~i are the nodes that point into xi (parents of Xi) and 
where 

i>O 

P(x1, ..., x,) = n P(Xi I X i )  (3) 

Clearly, not every joint distribution can be 
represented by a given network because some 
independence constraints are imposed by Eq. 3. In 
particular, each node is independent given its parents 
from all the preceding variables. There are more 
independence assumptions encoded in the graph, and 
these assumptions allow efficient computation of 
posterior probabilities to be made [3]. Inference 
algorithms for performing these computations are given in 
[W. 

Returning to our example of the assembly, we face 
the need for the following computation. Given that 
disassembly method #1 failed to decompose joint i, what 
is the probability that the other method would succeed, 
that is, compute P(sIp = 7 I sil = 0). In the language of 
Bayesian networks, the failure of siT is called evidence. 
As evidence accumulates, we proceed by computing new 
posterior probabilities for decomposition tasks in other 
parts of the product based on the experience (evidence) 
accumulated from parts that were subjected to a 
disassembly operation. Moreover, sensing is also 
modeled. If a sensor is reliable, then our knowledge of the 
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success of a certain decomposition operation is sharper 
and thus influences more drastically our future decisions. 

3. The Dynamic Model 
The static model described in the previous section 

serves as a procedure within our decision system. 
However, it does not take into account the cost of various 
decomposition methods, the benefits expected from a 
decomposition or the effects of a decomposition on the 
product once an action has taken place. We shall now 
describe a reactive model that performs the needed 
computations by using the static model for computations 
of posterior success probabilities and updating its 
parameters when the result of a disassembly action has 
been executed. 

For modeling the reactive disassembly processes we 
propose to represent all feasible disassembly sequences 
in a Recovery Graph (RG), which is a variant of an And/or 
graph [7,2]. AndOr graphs are directed graphs, where 
edges emanating from the same node are either in an AND 
relation or an OR relation with each other. In our context, 
each node in the AndOr graph of a product represents a 
possible subassembly. Edges in the graph emanating 
from the same node are partitioned via an AND relation, 
so that edges i(u,vo),(U,Vl) ...(U ,Vm)} are all in A N D 
relation to each other if and only if sub-assembly u can 
be disassembled by a single operation into sub- 
assemblies vo,vl, ... vm. (Equivalently, a single joint 
connects them to form u). An implicit OR relation exists 
between different AND groups emanating from the same 
node, meaning that if {(u,v), (u,g) } and { (u,h), (u,x)} are 
two such groups, then it is possible to disassemble u into 
either v and g or h and x (see Fig. 3). 

Figure 3: The Recovery Graph of the Assembly 
b%nA2nA31 

It is evident that such an And/or graph is acyclic and 
that each disassembty plan of the product corresponds to 
a subtree of this graph. The recovery graph of a product 
is its And/or graph, where with each node and each 
group of AND edges we associate a recovery value. For a 
node v this recovery value c(v) is the End-Of-Life (EOL) 
value (costmenefit) incurred by reusing, using-on, 
utilizing, dumping, or shredding v without further 
disassembly, that is, 

c(V) = Max {Creuse (v), Cuse-on (V), Cuti/ize 
(4) 

For a group of AND edges, say {(u,v), (u,g)), the recovery 
cost, c(u,v,g) is the cost of disassembling the sub- 
assembly, represented by u into the sub-assemblies 
represented by v and g. To find the EOL value of a 
product and its optimal recovery plan, we associate, in 
addition with each node v in the recovery graph, an €01 
value d(v). First, our aim is to calculate d(p).where p is 
now the node representing the entire product (the root of 
the graph). We do this by incrementally calculating the 
d(v) values for all nodes in the graph. To simplify our 
presentation we assume each AND group contains 
exactly two edges. The generalization to groups with 
arbitrary number of edges is obvious. For a node v which 
represents an atomic component d(v) = c(v), since v 

cdump (v)i Cshred (v)j 

cannot be further disassembled. Let u be a node such 
that for all its sons d(v) is already calculated. Clearly, it 
would be advantageous to disassemble u into its sub- 
assemblies, v and g, i f  and only if: 
c(u) c d(v) i d(g) - c(u,v,g). In the same manner, u should 
not be disassembled any further if for all groups of AND 
sons v, g of u: c(u) > d(v) i d(g) - c(u,v,g). If it should be 
disassembled, the optimal disassembly operation would 
be to the AND group of nodes which maximizes the 
expression d(v9 i d(g9 - c(u,vi,gi) over all AND groups Vj, 
gi of sons of u. Hence, 

d(u) = Max Mu), M a i  id(Vj 1 + dfgi ) - ~(ur Vi gill1 (5) 
The computation just described does not take into 

account the probability of success of a disassembly 
method. Let p(si I evidence)  be the probability of 
success to decompose u using some specific 
disassembly method. Evidence stands for the sequence 
of decomposition attempts that led to u or direct 
observation of other factors. We apply a disassembly 
action if the expected utility of taking the action is greater 
than not taking it, that is, if 

c(u) < p(si I evidence)(d(v) + d(g) - c(u,v, g)) + 
(1 - p(Si I evidence))(c(u) - C(U, V, g)) 

If there are several possible decompositions of u, 
then we choose a pair v,g that maximizes the right hand 
side of Eq. 6. To make a disassembly plan we unroll all our 
possible actions until we reach the atomic components or 
until an additional decomposition is not worthy due to Eq. 
6. Once a decomposition action has been attempted, we 
update the information using the static model and create 
a new planning phase, based on the current state and the 
new information. 
The algorithm for the planning phase is best described 
recursively as follows: 
We call a procedure Eva/(p) with the root p as its 
parameter. This procedure returns the EOL value of p, as 
follows: 

(6) 

1. If u is a leaf (has no children), then €val(u)= c(v). 
Let {gj,v,) be ds children where (gj, V j }  are 
decompositions of u. 
2. Compute the probability of success pi for 
disassembling u into {gj, vr) 
3. Find the maximum overall decomposition of u: 
M; = Maxi ipi[Eval(vi) + Eval(gi) - c(u, vi ,  gi)] + 

f 1 - Pi )fCfu.J - ci (us V i  Si 111 
(Note that this is a recursive call to Eva/ with sub- 
assembljbs gj and Vj ). 

4. If c(u) > MI then Eval(u) = c(uJ 
5. Otherwise Eva/@) = Mi. 

The reactive mechanism, which takes into account 
previous decomposition of sub-assemblies is used in the 
overall decomposition strategy as follows: Once we make 
a step towards the most promising decomposition, as 
indicated by the given planning algorithm, that is, when a 
specific (usually) irreversible action has been taken, we 
initialize the appropriate node in the static model to true or 
false, depending on the success of the operation. If 
sensing is modeled, then the node for the appropriate 
sensor is instantiated accordingly. The Bayesian network 
procedures allows us now to compute the success 
probability of all other attempts based on the successes 
and failures encountered so far and based on other 
evidence such as missing parts. Furthermore, costs and 
benefa that depend on the evidence are updated as well. 

This methodology is most suitable for massive 
disassembly tasks, since it uses the principle of 
maximum expected utility without taking financial risk 
factors into account. If a choice should be made between 
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a value of $100 given to a manufacturer for a product as 
is or between investing $20 in a disassembly attempt with 
a 50% success rate to obtain a net value of $120, then 
clearly the expected utility of the two options is equal. 
However, the first option is less risky. If the gain would 
have been slightly larger than $120 then, as the number 
of products to be decomposed n increases the risk 
reduces. If es is taken to be the probability of success of 
a disassembly method then it is straightforward to 
compute the probability of a loss as n increases and 
make sure the loss probability falls below a desired 
threshold. 

4. A Case Study 
The disassembly planning approach has been 
implemented using the HUGIN software [4]. In this section, 
we present a case study for disassembling a sub- 
assembly of an obsolete radio which weighs 6 N. Due to 
space limitations, the model is oversimplified, however, 
the mechanism of the planning system is demonstrated. 
The sub-assembly consists of four components: an ABS 
plastic cover A 7, an Aluminum case Ap, a Printed Circuit 
Board A3, and a Transformer A4 (Fig.4). Let d7 and d2 
denote the deformation level of A 7 and A2 respectively, j j  
the 'hardness' degree of joint Jj, b7 the cracking condition 
level of part A 7, h3 the shape of the screws' heads which 
connect part A3, and r4 the rust of A4, and suppose for 
simplicity that each of these variables has two states. If 
additional factors have to be modeled, then a larger 
network would be required and, furthermore, each 
variable can be described with more states depending on 
the level of details that is required. The direction of the 
graph's arcs usually reflect cause and effect relations 
among the different model's variables. Figure 5 shows a 
screen of H U G I N  that includes the static model. The 
conditional probability tables can be seen by clicking on 
each node of the Bayesian Network. For example, 
P(q, I j ,  = 0) = 0.95 which 
reflects a success of a non-destructive disassembly 
method (unscrewing). On the other hand, 
P(q2 I j ,  = 0) = 0.95 P(q2 I j ,  = 7) = 0.95 which 
shows that q2 is almost always successful since, say, it 
is a destructive method. Note that when decomposition 
method ql is sensed as failure, then the success 
probability of decomposing joint J2 is decreased, and 
similarly, the probability of deformation and rust in the 
rest of the sub-assembly is increased. When a success 
of a destructive decomposition method s12, which is 
hardly influenced by rust and deformation, is sensed, 
then the success probability of decomposing of joint Jz 
is hardly affected. 
The predictive plan of the product is to decompose the 
sub-assembly {A,,Az,A3,A.,) into {A2,A3,A4) and {A,) 
and furthermore into {A2,A4) and {A3) and then into 
{Az) and {A,). This disassembly yields a benefit of $0.8. 
Starting with the reactive planning, during the 
disassembly process we discover that ~ 2 7 ,  the 
disassembly operation on {A3), does not succeed, then 
the updated probabilities imply that it is best to leave the 
product as is since a failure at the other part {A4] is likely 
and costly. The resulting sub-assembly is {Az,A3,A4) 
with a benefit of $0.6. 

5. Concluding Remarks 
We have introduced a paradigm for planning disassembly 
processes based on static and dynamic models. The 
static model is based on the product topology, 
deterioration processes, and alternative disassembly 
methods each of which is represented by means of a 
random variable in a Bayesian Network. The dynamic 
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and P ( q ,  I j ,  = 7) = 0.70 

and 

' 

model integrates evidence and measurements which are 
gathered during the disassembly process. This 
integration creates an appropriate environment for 
reactive planning, which takes into account the uncertain 
conditions of the product to be decomposed. 
The planning method can be used directly at the 
disassembly process planning stage as a Process 
Navigator to assist in the product's dismantling process, 
or in an autonomous disassembly system. Another 
promising usage is at the early product design stages, 
where various possible designs can be modeled and 
tested from the perspective of their End-Of-Lfe value. 

I A7 I 

Figure 4: A SubAssembly of an Obsolete Radio and its 
Recovery Graph 

Figure 5: The static model of the sub-assembly 

References 
(1) Feldmann, K., Meedt, O., Schelkr, H., 1994, Life 
Cycle Engineering , ClRP - Int. Seminar on Life Cycle 
Engineering, 195-209, Erlangen, Germany. 
(2) Elmaraghy, W.H., 1993, Evolution and Future 
Perspectives of CAPP, Annals of the CIRP, 42,2. 
(3) Geiger, D., Verma, T., Pearl, J., 1990, Identifying 
Independence in Bayes Networks, Networks, 20:507- 34. 
(4) HUGIN - Reference Manual, http:,hww.hugin.dk. 
(5) Lauritzen, S.L., Spiegelhalter, D.J., 1988, Local 
Computations with Probabilities on Graphical Structures 
and their Applications to Expert Systems, J. Royal 
Statist. Soc., 8, 50,2:154-227. 
(6) Pearl, J., 1988, Probabilistic R e a s o m  In I n t e l l i a  

Work of Plausible In ference , Morgan 
Kaufmann. 
(7) Zussman, E., Kriwet, A., Seliger, G., 1994, 
Disassembly Oriented Assessment Methodology to 
Support Design for Recycling, Annals of the ClRP 43,l: 9- 
14. 
(8) Alting, L., Zhang, H.C., 1989, Computer Aided 
Process Planning: the State of the art Survey, IJPR, 
27,4: 553-558. 


