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LOGICAL AND ALGORITHMIC PROPERTIES OF 
CONDITIONAL INDEPENDENCE AND GRAPHICAL 

MODELS1 

BY DAN GEIGER AND JUDEA PEARL 

Technion-Israel Institute of Technology and University of California, 
Los Angeles 

This article develops an axiomatic basis for the relationship between 
conditional independence and graphical models in statistical analysis. In 
particular, the following relationships are established: (1) every axiom for 
conditional independence is an axiom for graph separation, (2) every graph 
represents a consistent set of independence and dependence constraints, (3) 
all binary factorizations of strictly positive probability models can be en- 
coded and determined in polynomial time using their correspondence to 
graph separation, (4) binary factorizations of non-strictly positive probabil- 
ity models can also be derived in polynomial time albeit less efficiently and 
(5) unconditional independence relative to normal models can be axioma- 
tized with a finite set of axioms. 

1. Introduction. A useful approach to multivariate statistical modeling 
is to first define the conditional independence constraints that are likely to 
hold in the domain, and then to restrict the analysis to probability functions 
that satisfy those constraints. An increasingly popular way of specifying 
independence constraints are graphical models, such as Markov networks and 
Bayesian networks, where the constraints are encoded through the topological 
properties of the corresponding graphs [Lauritzen (1982), Lauritzen and 
Spiegelhalter (1988), Pearl (1988) and Whittaker (1990)]. 

The key idea behind these specification schemes is to utilize the correspon- 
dence between separation in graphs and conditional independence in proba- 
bility; each node represents a variable and each missing edge encodes some 
conditional independence constraint. More specifically, if a set of nodes Z 
blocks all the paths between two nodes, then the corresponding two variables 
are asserted to be conditionally independent given the variables corresponding 
to Z. 

The notions of graph separation and conditional independence, which at 
first glance seem to have little in common, share key properties which render 
graphs an effective language of specifying independence constraints. This 
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article develops an axiomatic characterization of these properties, thus provid- 
ing a theoretical basis for understanding the role of graphical models in 
statistical analysis. 

The article is organized as follows. Section 2 provides preliminary defini- 
tions. Section 3 proves the existence of perfect probability models, that is, 
probability models that, given an arbitrary list of conditional independence 
statements, satisfy every statement on that list, every statement that logically 
follows from that list and none other. Using this result, Section 4 then shows 
that every axiom for conditional independence is an axiom for graph separa- 
tion and that every graph represents a consistent set of independence and 
dependence constraints. In other words, graphs provide a "safe" language for 
encoding statistical associations; the set of conditional independencies and 
dependencies encoded by any graph is guaranteed to be realizable in some 
probability model. 

Section 5 deals with special kinds of conditional independence relationships, 
those that permit the factorization of a probability model into a product of two 
functions. It is shown that graphs provide a parsimonious code (requiring 
polynomial space) for representing the entire set of binary factorizations that 
are realizable in strictly positive probability models. Graphs also facilitate a 
polynomial time algorithm for determining whether an arbitrary binary factor- 
ization logically follows from a given set of such factorizations. 

The rest of the article provides a complete axiomatic characterization for 
special families of independence relationships. We first develop complete 
axiomatizations for saturated independence (Section 6) and marginal indepen- 
dence (Section 7) and then address the axiomatization of conditional indepen- 
dence in general (Section 8). Section 9 generalizes several results to qualitative 
independence, and Section 10 provides a tabulated summary of our results. 

2. Preliminaries. Throughout this article, let U be a finite set of dis- 
tinct symbols {u 1, ...., u n}, called attributes (or variable names). A domain 
mapping is a mapping that associates a set, d(ui), with each attribute ui. 
This set is called the domain of u i and each of its elements is a value for u i. 
An attribute combined with a domain is a variable. For example, the variable 
describing the age of a person will be characterized by the attribute age and 
may be assigned a domain such as {ilO < i < 120} or [infant, child, young 
adult, other adult}. The distinction between attributes and variables allows us 
to associate several domains with the same variable name, as done in some of 
the following. 

DEFINITION. A probability model over a finite set of attributes U= 
{u1, . . ., u } is a pair (d, P), where d is a domain mapping that maps each ui 
to a finite domain d(u ), and P: d(u1) x ... x d(u n) - [0, 1] is a probability 
distribution having the Cartesian product of these domains as its sample 
space. The class of probability models over U is denoted by 9. 
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Unless stated otherwise, U and its domain are assumed to be finite. 

DEFINITION. The expression I(X, YIZ) where X, Y and Z are disjoint 
subsets of U is called an independence statement. Its negation I(X, YIZ) is 
called a dependence statement. An independence or dependence statement is 
defined over V c U if it mentions only attributes in V. 

DEFINITION. Let (d, P) be a probability model over U. An independence 
statement I(X, YIZ) is said to hold for (d, P) if for every value X, Y and Z of 
X, Y and Z, respectively, 

(1) P(X,Y,Z) P(Z) = P(X,Z) * P(Y,Z). 

Equivalently, (d, P) is said to satisfy I(X, YIZ). Otherwise, (d, P) is said to 
satisfy -I(X, YIZ). 

DEFINITION. When I(X, YIZ) holds for (d, P), then X and Y are condi- 
tionally independent relative to (d, P), and if Z = 0, then X and Y are 
marginally independent relative to (d, P). 

DEFINITION. A probability model over U is strictly positive if every combi- 
nation of U's values has a probability greater than 0. The class of strictly 
positive probability models is denoted by Yt 

DEFINITION. A probability model over U is binary if it assigns every 
attribute in U a domain with only two values, say 0 and 1. The class of binary 
probability models is denoted by f9. 

Equations (2) through (6) list some properties of conditional independence. 
Variants of them were first introduced by Dawid (1979) and further studied by 
Spohn (1980), Pearl and Paz (1985), Pearl (1988) and Geiger (1990). 

Trivial independence: 
(2) I(X,90IY). 

Symmetry: 

( 3) It X, YlZ ) = I( Y, XZ ) . 
Decomposition: 

(4) I(X, Y u WIZ) =>I(X, YIZ). 
Weak contraction [the axiomatic theory of Pearl and Paz (1985) invoked a 

stronger version of this axiom which is not needed in the discussion of this 
article]: 

(5) If X u W9 YIZ) , IfX XWIZ u Y) =>IfX, Y u WIZ). 
Weak union: 

(6) I(X, Y U WIZ) => I(X, YIZ u W). 
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DEFINITION. An independence Horn clause is an implication of the form 

I(X1, Y11ZI), I(X2, Y21Z2), ... I(Xk, YklZk) =- I(Xk+l, Yk+llZk+l). 

Each independence statement on the left of the implication is called an 
antecedent and the one on the right is called the consequence. Independence 
Horn clauses may also have no consequence [as in (2)]. 

DEFINITION. An independence Horn clause is instantiated if each of the 
Xi's, Yi's and Zi's is substituted with a specific subset of U [e.g., 
I U 1 U 2), 0 {u3, U 4)) is an instance of trivial independence]. 

We use o-, possibly subscripted, to denote an independence statement, - a 
to denote the negation of a-, X to denote a set of independence statements and 
SF to denote a subset of 6 (i.e., a class of probability models over U such as O 
or q+). 

DEFINITION. An independence Horn clause is sound relative to S iff for 
every instantiation of the clause, every probability model in F that satisfies 
the clause's antecedents also satisfies its consequence. 

DEFINITION. When an independence Horn clause is sound relative to F, it 
is called an axiom relative to E. An axiom relative to 9 is simply called an 
axiom. 

For example, (7) is an axiom relative to + but not relative to '. 

Intersection: 

(7) I(X, YIZ u W),~ I(X, WIZ u Y) =>I(X, Y u WIZ). 

DEFINITION. Given a set of axioms d, an independence statement a is 
derivable from a set of statements X, denoted X W- a, if there exists a deriva- 
tion sequence a1, ..., an such that on = aJ and for each oj, either (1) oj E E or 
(2) aj is the consequence of some instantiated axiom in v for which every 
antecedent is in {0-, ... , oj- ). The closure of E is the set of derivable 
statements, {fa IY- a,), and is denoted by E+. 

For example, I(u1, u310) is derivable from the set {I({u1u3}, u210), 
I(u1, u3 u2)) using axioms (2) through (6) via the derivation sequence 
I({ulu3, U210), I(U1, U3lu2), I(U1, {U2, U3)10), I(U1, U310). The third and 
fourth statements in this sequence are derived from the previous ones by weak 
contraction and decomposition, respectively. [For simplicity, throughout, 
I(ui ujIuk) stands for I({Qu),{uj)I{uk)]. 

DEFINITION. An independence statement af is entailed by a set of state- 
ments E relative to a set of probability models , denoted I= a, if every 
probability model in F that satisfies E satisfies ar as well. The set of entailed 
statements, {fall = a), is denoted by .*, keeping S implicit. 
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PROPOSITION 1. Let d be a set of axioms relative to 5. For every set I of 
independence statements, we have .' + *, where E.+ is derived from X using 
the axioms in a?, and E* is entailed relative to . 

PROOF. The proof follows by induction on the length of a derivation 
sequence of each o in E +, using the fact that the axioms in d are sound 
relative to Y. O 

Equality of E+ and L* holds only if no axioms are "missing." 

DEFINITION. A set of axioms v is complete (relative to 95-) if for every set 
M of independence statements, E* = E+. 

PROPOSITION 2. A set of axioms v is complete (relative to F) if and only 
if for every set of statements E and every statement o, - + there exists a 
probability model (dc, P,) in F that satisfies X and does not satisfy a. 

PROOF. The proof follows immediately from the definition of completeness 
and Proposition 1. ol 

Next, we seek conditions under which, for every set E of independence 
statements, there exists a probability model in a given class F that satisfies 
precisely the statements in E* and none other. Fagin (1982) spelled out such 
conditions and showed, in the context of database theory, that they imply the 
existence of an operator ? that maps a set of probability models to a 
probability model, such that an independence statement holds in the latter if 
and only if it holds in every constituent of the former. The next section 
constructs such an operator. 

3. Perfect probability models. The main result of this section is that, 
for any given set X of independence statements, there exists a probability 
model in Y that satisfies precisely E* and no other statements. (Fagin called 
models with this property "Armstrong models.") An immediate application of 
it, as we shall see, lies in determining whether a given set of independence and 
dependence statements is consistent. 

DEFINITION. Let E be a set of independence statements. A probability 
model is perfect for X (relative to F) if it satisfies precisely the set of 
statements 1* entailed by X (relative to Y) and none other. 

The key idea in showing the existence of perfect probability models rests 
with the notion of direct product defined below, which extends Fagin's defini- 
tion (1982) from database relations to probability models. 

DEFINITION. The (binary) direct product for F is a mapping, 0: 91x 31-* 
5Y, where F is a class of probability models over a finite set of attributes 
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{uJ, ... , uJ, and (d, P) = (d1, P1) ? (d2, P2) is defined as follows: Let d l(u ) 
and d2(u i) be the domains associated with u i in (d1, P1) and in (d2, P2), 
respectively. Let ai and bi be values drawn respectively from these domains. 
Set the domain of ui in (d, P) to be the Cartesian product d1(u ) x d2(ud), 
and let 
(8) P(alb1, a2b2, . . ., ab,,) = Pl(al, a2,..., an) * P2(bl, b2, .bn , 

where a i b, denotes a value of u i in (d, P). 

A notable property of X is the assignment of a new domain, d1(u i) x d2(u ), 
to each u j. Thus u is treated as an attribute rather than a variable with a 
fixed domain. We will show at the end of this section that if the domain of each 
attribute is fixed, then the existence of perfect models is not guaranteed. 

The next lemma shows that the product form of (8) remains valid after 
marginalization. 

LEMMA 3. Let (d1, P1), (d2, P2) and (d, P) be probability models over Uas 
in (8). Then, for every subset ull, ..., uil of U, 

(9) P(a ilb , a2 b2,. . . , a11bil) = Pl(a -, ai2, * , ail) . P2(bi , b, bil ) 

PROOF. Assume without loss of generality that in (9), i1 = 1, i2 = 2, ... 
i = 1. (otherwise reorder u , u n to meet this assumption.) When 1 = n 
this equation is identical to (8). We proceed by descending induction. Assume 
(9) holds for 1 = k ? n; then 

P(albl,... ,ak-lbk-l) 

- EP(albl,.*.,ak-lbk-1,Xk) 
Xk 

= E Pl(al,..., ak-1 ak) * P2(bl,..., bk-1 bk) 
akedl(Uk), bk ed2(Uk) 

= E PI(a,*...., ak-, ak)) ( E P2(bl,..., bk -1 bk)) 
ak Edl(Uk) bk Ed2(Uk) 

-Pl(al,.. .,ak-1) * P2(bl,.* *, bk-J1)E 

The key property of ? is given in the following lemma. 

LEMMA 4. Let (d 1, P1), (d2, P2) and (d, P) be probability models over U as 
in (8). Then, for any three disjoint subsets X, Y and Z of U, 

(10) I(X, YIZ) holds for (d, P) iffI(X, YIZ) 
(10) holds for (d1, P) and for (d2, P2). 

PROOF. Let ax, a y, az be respective values of X, Y, Z in (d1, P1) and 
bX, by,bz be respective values of X, Y, Z in (d2, P2). 



PROPERTIES OF CONDITIONAL INDEPENDENCE 2007 

The if part of (10) follows from 

P(b) P(axbx, ayby) az Z) 

=Pj(ax, ay , az) Pl(az) P2(bx, by,~ bz) P2(bz) 

=Pl(ax az) PI(ay) az) * P2(bx I bz) P2(by) bz) 

P(axbx, azbz) P(ab, a bz). 

(Note the implicit use of Lemma 3.) 
The only if part of (10) follows from 

Pl(ax, ay) az) * PI(az) P2(bxg by, bz) P2(bz) 

= P(axbx, a by, a bz) P(azbz) 

= P(axbx, azbz) P(ayby, azbz) 

=Pl(ax Iaz) Pl(ay , az) P2(bx, bz) * 2bXbz). 

By summing once over ax and once over bx, it is evident that I(X, YIZ) 
holds for (d1, P1) and for (d2, P2). 0 

Next, we extend the direct product to be a mapping from families of 
probability models (rather than pairs) into probability models. 

THEOREM 5. There exists an operator ? that any nonempty finite family 
{(di, Pj)Ii = 1,... , n) of probability models over a set of attributes U into a 
probability model over U, such that if o- is an independence statement, then a- 
holds for ? {(di, Pi)ji = 1,..., n} if and only if or holds for each (di, Pi). 

PROOF. Since the binary direct product is commutative and associative, it 
can be extended to sets as follows: 

09 {(di, Pj)Ii = 1,..., n} = ((((d1, P1) (d2, P2)) ?9 (d3, P3)) (dn, PO)) 

Due to Lemma 4, 

a- holds for 0) ((di, Pj)Ii = 1,..., n} iff oa hold for every (di, Pi), 

as stated by the theorem. E1 

Consequently, the existence of perfect probability models can be established 
[similar to (Fagin 1982)]. 

COROLLARY 6. For every set of independence statements E over the at- 
tributes of U, there exists a probability model (d, P) in .7 such that (d, P) 
satisfies every statement in E* and none other, that is, (d, P) is a perfect 
model relative to 4?. 
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PROOF. Let (d, P) be ?{(d,, P9)Io, * }, where (d,, P,) is a probability 
model that satisfies E* but does not satisfy ac. By the definition of E*, a 
probability model (d,, P,) always exists except for the degenerated case where 
E* renders all variables mutually independent, in which case Corollary 6 holds 
trivially. (Also note that the set {lo- - E*} is finite because U is finite.) Due to 
Theorem 5, (d, P) satisfies the statements in E* and none other because these 
are the only statements that hold for every (da, P9). r 

The probability model C) {(d , Pi) Ii = 1, . . . , n) is strictly positive whenever 
each (di, Pi) is strictly positive. Consequently, we obtain the following result. 

COROLLARY 7. For every set of independence statements X, there exists a 
strictly positive probability model (d, P) such that (d, P) satisfies every state- 
ment in 1* (relative to 4?+) and none other, that is, (d, P) is a perfect model 
relative to + 

The existence of a perfect model implies that any algorithm that determines 
whether a given statement is entailed by E can also determine whether a 
disjunction of statements in entailed by E. For example, to show that 

(11) {I(U1, U210), I(U1, U21u3)} t? I(U1, U310) V I(U2, U310), 

we will see that one must merely check that each disjunct is not entailed by 
itself. 

To refute the first disjunct, construct a probability model (dl, P1) in which 
u1 and u2 are two independent binary variables and u1 equals U 3. This 
probability model satisfies the antecedents but does not satisfy the first 
disjunct. To refute the second disjunct, construct a probability model (d2, P2) 
in which u 1 and u 2 are two independent binary variables and u 2 equals u 3; it 
satisfies the antecedents but not the second disjunct. The probability model 
(dl, P1) ? (d2, P2) satisfies the antecedents but does not satisfy the disjunc- 
tion. Hence, the disjunction is not entailed by the antecedents. 

Notably, if we fix the domain of u3 to be binary, the antecedents of (11) do 
entail the disjunctive consequence [Pearl (1988), pp. 129 and 137]; the con- 
struction of (dl, P1) X (d2, P2) fails because ? assigns a domain of size 4 to 
U 3. Consequently, we obtain the following result. 

COROLLARY 8. There exists a set of independence statements X for which 
no binary probability model is perfect. 

PROOF. Let E = (I(u1, u210), I(u1, u2lU3)}. Every binary probability model 
that satisfies E satisfies either I(u1, u3 1 0) or I( u2, u3 1 0). However, neither 
statement in itself is entailed by E (relative to 9) and therefore none is in E. 

[ 

Another application of Theorem 5 is facilitating tests for consistency. 

DEFINITION. A set of independence statements Yp and a set of negated 
independence statements (i.e., dependence statements) In is consistent if there 
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exists a probability model that satisfies lp U In. The task of deciding whether 
a set of independence and dependence statements is consistent is called the 
consistency problem. The task of determining whether a set of independence 
statements entails an independence statement is called the implication prob- 
lem. 

The following algorithm determines whether or not Up u In is consistent: 
For every member m o- of In, determine whether ,p l= o-. If the answer is 
negative for all members of In, then Up u In is consistent; otherwise it is not 
consistent [(Geiger, Paz and Pearl (1991)]. 

This algorithm works when the following two conditions are met: (1) we can 
efficiently check whether or not I l= o and (2) entailment is taken with respect 
to a class of probability models that has perfect models (i.e., 9+ but not q). 
In Section 5 we examine a class of independence statements, called saturated, 
for which these conditions are met. 

The correctness of the algorithm stems from the fact that if the negation of 
each member oa of In is not entailed by lp, that is, each member of In is 
individually consistent with ;p, then there exists a probability model (dv, P,) 
that satisfies lp and does not satisfy a*. The probability model (d, P) = 
s {(dh, POl o ff- E n} satisfies every statement in Yp U In, and therefore the 
algorithm's decision that the two sets are consistent is correct. In the other 
direction, namely, when the algorithm detects an inconsistent member of I,n, 
then the decision is obviously correct. 

4. Graphs and independence. The use of graphs for representing prob- 
ability distributions is well documented in the statistical literature [Whittaker 
(1990) and reference therein]. The basis of these representation schemes is the 
similarity between separation in graphs and conditional independence in 
probability. We will show that these two concepts are related in a stronger 
sense than was previously known; we will show that every axiom for condi- 
tional independence must also be an axiom for graph separation, and that the 
set of separation-connection conditions embodied in any graph always corre- 
sponds to a consistent set of independence-dependence statements in probabil- 
ity. 

DEFINITION. An undirected graph is a pair (U, E), where U is a finite set 
of attributes, called nodes, and E is a set of unordered pairs of distinct nodes, 
called edges. When (u, u 2) is an edge, u1 and u2 are directly connected. A 
path between two nodes is a sequence of nodes for which every pair of adjacent 
nodes is directly connected and no node appears twice. 

DEFINITION. Let X, Y and Z be disjoint subsets of nodes in a graph 
G = (U, E). A separation statement J(X, YIZ) is said to hold for G if every 
path between a node in X and a node in Y includes a node in Z. Equivalently, 
we say that G satisfies J(X, YIZ) or X and Y are separated by Z in G. 
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Connection (negated separation) statements, separation Horn clauses and 
separation Horn axioms for a set of graphs are defined analogously to the 
corresponding concepts of independence defined in Section 2. 

It is easy to see that axioms (2) through (7) remain sound when I is 
replaced with J; that is, whenever the antecedent of one of these axioms holds 
in some graph, its consequence holds as well. For example, if X and Y u W 
are separated by Z in some graph G, then X and Y are also separated by 
Z u W as dictated by the weak-union axiom (6). This correspondence between 
independence and graph separation is not a coincidence; we show next that 
every axiom of conditional independence is an axiom for separation. The 
converse does not hold [Pearl (1988)]. A preliminary definition and a lemma 
are needed. 

DEFINITION. Let (d, P) be a probability model over a finite set of attributes 
U, and let G be a graph whose nodes are the elements of U (i.e., each node is 
associated with an attribute). Then G is said to be a Markov network of (d, P) 
if for every three disjoint subsets X, Y and Z of U, 

J(X, YIZ) holds for G implies that I(X, YIZ) holds for (d, P). 

For example, a language in which the probability of the i th letter is 
determined solely by the (i - 1)th letter via P(li I i- ) can be represented by 
the Markov network of Figure 1. This graph shows, for example, that 11 and 13 
are conditionally independent given 12, since 12 separates 11 and 13. Note that 
this independence statement holds regardless of the domain associated with 
each li (i.e., the alphabet of the language need not be specified). Markov 
networks are discussed in Darroch, Lauritzen and Speed (1980) and Lauritzen 
(1982). 

A variant of the next lemma was independently derived by Frydenberg 
(1990). 

LEMMA 9. Let G be an undirected graph with U as its set of nodes. Let X, Y 
and Z be disjoint subsets of U such that X and Y are not separated by Z. Then 
there exists a strictly positive probability model (d, P) over a set of attributes 
U, such that G is a Markov network of (d, P) and I(X, YIZ) does not hold for 
(d, P). 

PROOF. Since X and Y are not separated by Z, there exists a path 
r1, r2, . . , r, which contain no nodes of Z and which connects a node r1 in X 
to a node r1 in Y. Let every node ri be associated with a binary variable vi and 

O-?-(, 3 4 

FIG. 1. A five-node chain. 
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every node not on the path be associated with a binary variable s . A 
probability model (d, P) where 

1-1 

P(v1,...., vl, S1, ...) = (1/2) H f(V, vi+1) HFg(si), 
i=l i 

g(si) = 1/2, and 

I1/2, if vi=0, vi+1 =, 

f(vi, vi+1) 1/4, if vi = 1, vi+ - 1, 

t3/4, if vi= 17Vi+1 = 1 

satisfies the requirements; I(v1, v1IZ) does not hold and if J(X', Y'lZ') holds, 
I(X', Y'IZ') holds as well. o 

THEOREM 10. Every independence Horn clause ao, U2' ... , o-n c=r o- that is 
an axiom for independence relative to P+ is also an axiom for separation, 
where each ri is interpreted as a separation statement. 

PROOF. Suppose by contradiction that there exists a graph that satisfies 
= {1,. . . ,on} and does not satisfy a. Then by Lemma 9 there exists a 

strictly positive probability model that satisfies E and does not satisfy v. Thus 
1 C2 *... * o'n => oa is not sound relative to +. El 

Consequently, in particular, axioms (2) through (7) as well as those dis- 
cussed by Studeny (1992) are axioms for separation. A complete list of axioms 
for separation was found by Pearl and Paz (1985). 

Each graph can be thought of as a specification language for independence 
and dependence statements; whenever a separation condition holds in the 
graph, the corresponding independence statement is asserted, and whenever a 
connection condition holds in the graph, the corresponding dependence state- 
ment is asserted. We will show next that, in any graph, the two sets of 
statements are always consistent. This result justifies the use of undirected 
graphs as a general language for encoding intricate patterns of statistical 
associations. Similar results hold for directed acyclic graphs [Geiger and Pearl 
(1988)]. 

THEOREM 11. For every graph G with U as its nodes, there exists a strictly 
positive probability model (d, P) over U, such that for every three disjoint sets 
X, YandZ of U, 

J( X, YIZ) holds for G if and only if I( X, YIZ) holds for (d, P). 

PROOF. Let E be the set of separation statements that hold in G. For every 
statement a 0 X, there exists a probability model (dc, P,) that satisfies E and 
does not satisfy a- where l and a- are interpreted as independence statements 
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(Lemma 9). Let (d, P) be {(do, Pa)Ic o- Y}. (The set {tojo - E 1) if finite 
because U is finite.) Due to Theorem 5, (d, P) satisfies precisely the state- 
ments in E and none other. o 

Note, however, that ? assigns to each attribute in U an arbitrary domain 
size. We conjecture that this arbitrariness is not needed. 

CONJECTURE 1. For every graph G with u , . . .X, u as its nodes and for 
every n integers k1, ... , k n all greater than 2, there exists a strictly positive 
probability model (d, P) over U, such that (1) Id(ui)l = ki and (2) for every 
three disjoint sets X, Y and Z of U, 

J( X, YIZ) holds for G if and only if I( X, YIZ) holds for (d, P). 

5. Graphs and binary factorizations. The relationship between graph 
separation and conditional independence is even stronger than that shown so 
far if we restrict ourselves to strictly positive probability models and to 
saturated statements. 

DEFINITION. An independence statement I(X, YIZ) or a separation state- 
ment J(X, YIZ) is saturated if X u Y U Z = U, where U is the finite set of 
attributes of interest. 

In the following discussion we show that saturated independence state- 
ments (relative to _9) and saturated separation statements satisfy precisely 
the same axioms. This correspondence provides us with an efficient algorithm 
to deterine all saturated independence statements entailed (relative to '9) by 
a given set of such statements. 

Moreover, each statement I(X, YIZ) holds for a probability model (d, P) if 
and only if (d, P) has a binary factorization, namely, 

P(X, Y, Z) = f (X, Y) g(Y, Z), 

where g and f are any functions [Lauritzen (1982)]. Consequently, the 
proposed algorithm provides an efficient way to determine all binary factoriza- 
tions entailed (relative to + by a given set of binary factorizations. [The 
terms saturated independence and binary factorizations are borrowed, respec- 
tively, from Lee and Buehler (1986) and Malvestuto (1992)]. 

We use the following theorem of Pearl and Paz (1985) which generalizes a 
result by Lauritzen (1982). 

THEOREM 12. Let E be a set of independence statements over a finite set of 
attributes U, and let E + be the closure of E with respect to trivial indepen- 
dence, symmetry, decomposition, intersection and weak union. Let G0 be the 
graph having U as its nodes and an edge between x and y if and only if 
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I({x}, {y} I U \ {x, yl) E E +. Then (1) for every three disjoint subsets X, Y and Z 
of U, 

J(X, YIZ) holds for Go implies that I(X, YIZ) E X,, 

and (2) if any edge is removed from Go property 1 ceases to hold. 

Next, we strengthen Theorem 12 when E consists of saturated indepen- 
dence statements. 

THEOREM 13. Let X be a set of saturated independence statements over a 
finite set of attributes U, and let E + be the closure of X with respect to 
saturated trivial independence [i.e., all statements of the form I(X, 0IZ) 
where X u Z = U], symmetry, intersection and weak union. Let G0 be the 
graph defined in Theorem 12. Then for every three disjoint subsets X, Y and Z 
of U, such that X u Y u Z = U, 

J(X, YIZ) holds for G0 iff I(X, YIZ) E E+. 

PROOF. The key point to notice is that I(X, YIZ) E lI+ if and only if 
I({x}, {ylIZ u (X\ {x}) U (Y\ {y})) is in E+ for every x E X and y E Y. Each 
of these independence statements is derivable from I(X, YIZ) by an applica- 
tion of weak union followed by symmetry, weak union and finally followed by 
symmetry. The statement I(X, YIZ) is derivable by repeated applications of 
intersection and symmetry. The same equivalence holds when I is replaced by 
J because separation satisfies the three axioms we have used in the preceding 
argument. Consequently, J(X, YIZ) holds for Go if J({x, {y lIZ u (X \ {x}) u 
(Y\ {y})) holds for G0 for every x E X and y E Y. By the definition of G0, the 
latter set of statements holds if and only if I({x}, {ylIZ u (X\ {x}) u (Y\ {y})) 
is in E.+ for every x E X and y E Y. In addition, these statements are in E+ 
if I(X, YIZ) E Zi+. An additional minor observation is that each trivial inde- 
pendence statement holds in every graph (U, E) in particular in Go. O 

Similarly, we obtain the following result. 

THEOREM 14 (Completeness relative to 9+). Let E be a set of saturated 
independence statements, and let E + be the closure of X with respect to 
saturated trivial independence, symmetry, intersection and weak union. Then, 
for every a t X +, there exists a strictly positive probability model (d, P) over 
U, where U is the set of attributes that appears in X, that satisfies I + and does 
not satisfy cr. 

PROOF. By Theorem 13 there exists a graph Go that satisfies E + and no 
other independence statement. By Lemma 9 there exists a strictly positive 
probability model (dv, Pa) that satisfies the statements that hold in Go and 
does not satisfy ar. Thus (dc, Pa) satisfies the requirement of the theorem. o 
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Theorems 13 and 14 together show that saturated independence statements 
and saturated separation statements share precisely the same axioms (relative 
to + This equivalence permits us to compute the set of all saturated 
independence statements entailed relative to 4+ by a given set of saturated 
statements, using a purely graph-theoretic approach. 

The algorithm is simple: Given a set of saturated independence statements 
X over U, construct the graph Go = (U, E) as follows. 

Step 1. Replace each given statement I(X, YIZ) with a set of independence 
statements {I({x}, {ylIZ U (X\ {x}) u (Y\ {y}))I x E X, y E Y}. 

Step 2. Introduce an edge between x and y if I({x}, {y}IZ u (X\ {x}) u (Y\ 
{y})) is not among the statements generated in Step 1. 

Step 3. Output I(X', Y'IZ') E E+ if J(X', Y'IZ') holds in the graph pro- 
duced in Step 2. Otherwise output I(X', Y'IZ') t E+. 

The algorithm requires 0(11 I n2) steps to construct G0 where n is the 
number of attributes because it scans each statement of the input once and 
each statement may require checking n2 pairs of attributes. Once G0 is 
constructed, it permits us to check whether a specific saturated statement 

= I(X, YIZ) is entailed (relative to F+) by E in only 0(n) steps-the time 
needed to check whether Z separates X and Y in Go. 

This method allows us to represent in polynomial space (in the number of 
attributes) the entire set of binary factorizations entailed (relative to 97+) by a 
given set of binary factorizations and to determine, in polynomial time, 
whether or not a specific binary factorization is in this set. We will see next 
that a similar implication algorithm, albeit less efficient, can be developed 
without the assumption of strict positiveness. 

6. Saturated independence. The next completeness theorem is the 
analog of Theorem 14 with weak contraction replacing intersection. This 
change is needed because intersection is sound relative to 9+ but not relative 
to 5 . 

THEOREM 15 (Completeness relative to "F . Let E be a set of saturated 
independence statements over a finite set of attributes U, and let E+ be the 
closure of X with respect to saturated trivial independence, symmetry, weak 
contraction and weak union. Then, for every o- I S+, there exists a probability 
model (d,, P) that satisfies E + and does not satisfy o. 

PROOF. Let o- = I(X, YIZ) be a saturated statement not in E+ where 
X u Y u Z = U. At first we assume that o- is maximal, that is, for all sets 
X'X" and Y' Y" partitioning X and Y, respectively, the statement 
I(X', Y'IZX"Y") is in E+. (In this proof AB stands for A U B.) At the end of 
the proof we relax this assumption. 

Let each attribute in U be associated with a binary domain {0, 1). Denote all 
attributes in X by x1, x2, ... , xl, those in Y by Y1, Y2,. . ., ym and those in Z 
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by z1, Z2, ... , Zk. The probability model (dc, P9) is defined as follows: 

(1/2, if all attributes in X u Y are assigned 0, 
Pa(X, Y, Z) = [l f(zi) 1/2, if all attributes in X u Y are assigned 1, 

ziLZ 10, otherwise, 

where f(zi) = 1/2. 
This probability model does not satisfy oa because PJ(X = 0, Y = 1, Z = 0) 

is 0, while P(X = 0, Z = 0) and P(,(Y= 1, Z = 0) are not. 
It remains to show that every saturated statement in E+ holds for (do, P9, 

or equivalently that every saturated statement either holds for (da, Pr) or does 
not belong to E +. Any saturated statement y can be written as 
I(X1YlZ1, X3Y3Z3 X2Y2Z2), where X = XlX2X3, Y = Y1Y2Y3 and Z = Z1Z2Z3 
and the Xi's, Yi's and Zi's are all disjoint. If X2Y2 =A 0, then y holds for 
(dc, P9) because every instance of X1Y1Z1 and of X3Y3Z3 that is consistent 
with the values of X2Y2 has the same probability of occurring, namely, 
1/21zll l/21Z31. If X1Y1 = 0, then, again, y holds for (dc, P9) because Z1 is 
marginally and conditionally independent of any other set of attributes of P,. 
(Symmetrically when X3Y3 = 0.) Otherwise, y is of the form 
I(X1Y,Z1, X3Y3Z31Z2), where X1Y1 = 0 and X3Y3 =A 0. We continue by con- 
tradiction and show that in this case y does not belong to I'. 

Assume, by contradiction, that the statement I(X1Y1Z1, X3Y3Z3IZ2) is in 
E+. Then I(X1Yl, X3Y3 IZ) is in E,+ as well because it can be derived by weak 
union and symmetry. To reach a contradiction, we show that the latter 
statement implies that oa must be in E +, contradicting our selection of cr. The 
proof uses weak contraction and symmetry to derive I(X1X3, Y1Y31Z) (i.e., a) 
from I(X1Y1, X3Y3IZ) by "joining" the X's and the Y's. The following is a 
derivation of a. 

First, I(X1, YlIZX3Y3) is in Y. because I(X, YIZ) is maximal. Due to weak 
contraction, 

I(XIY17 X3Y314) I(X1, Y1IZX3Y3) v* I(X1, Y1X3Y3IZ), 

we conclude that I(X1, YX31Z) E E+. Due to symmetry, we conclude 
I(YX3, X1IZ) E ' as well. I(X3, YIZX1) E E+ because a is maximal. There- 
fore, by symmetry, I(Y, X3IZXd) is also in E+. Using weak contraction, we 
obtain 

I(YX3, X114) I(Y, X3IZXJ) I*(Y, XlX31Z)- 
Thus I(Y, XIZ) E E+, and, by symmetry, I(X, YIZ) E E+, a contradiction. 
(Note that if some sets out of Xl, X3, Y, and Y3 are empty, the derivation just 
described remains valid.) 

If a = I(X, YIZ) is not maximal, then either I(X \ {x}, YIZ u {x}) t i' for 
some x E X or I(X, Y \ {y)IZ u {y}) 0 E+ for some y EI Y. Without loss of 
generality assume the first statement is not in E+. If this statement is 
maximal, denote it a'. Otherwise, repeat the process of augmenting Z with 
additional elements from X and Y. When this process can no longer continue, 
we denote the resulting statement a,' = I(R, SIT). Clearly, ar' is maximal; it is 
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not in + and for all sets R'R" and S'S" partitioning S and T, respectively, 
the statement I(R', S'ITR"S") is in X.+. 

For a maximal statement o-', we have shown how to construct a probability 
model (d,,, P,,) that satisfies E and does not satisfy oa'. Due to symmetry and 
weak union, which hold for all probability models, any probability model that 
does not satisfy o-', does not satisfy oa as well. In particular, (dc, Pa) does not 
satisfy of while satisfying E+, as required by the theorem. w1 

The probability model (ds, P) constructed previously has an additional 
property; each combination of values for X u Y u Z has either zero probabil- 
ity or a constant probability of l/21ZI+l. Thus the probability model (dv, P) 
can be viewed as a database, categorically distinguishing between possible and 
impossible value combinations. Consequently, the proof of Theorem 15 shows 
that the previously mentioned axioms are also complete for MVD statements 
of relational databases [Fagin (1978)]. Indeed, the only difference between our 
axioms and the ones governing MVD's is that the latter allow overlapping sets 
X, Y and Z in I(X, YIZ) whereas we do not [Beeri, Fagin and Howard (1977)]. 
This equivalence permits the employment of a polynomial implication algo- 
rithm devised for MVDs [Beeri (1980)] to determine whether a saturated 
statement is entailed by a set of saturated statements, just as the equivalence 
between graph separation and conditional independence (relative to 7+ ) 
provided us with an implication algorithm in the previous section. 

Malvestuto (1992) has independently observed this equivalence and used it 
to produce an indirect proof of Theorem 15 by showing that MVD and 
saturated independence statements must satisfy the same set of axioms. 

The complexity of the implication algorithm for saturated statements rela- 
tive to 9. [Beeri (1980)] differs from that needed relative to + the former 
requires 0(10 I* n2) operations to decide E t= o- for each o, while the latter 
requires only 0(n) operations, regardless of I X. These savings are achieved at 
the cost of investing 0(1 I - n2) steps in constructing a graphical representa- 
tion of the closure of E (relative to + but this cost is encountered only 
once. This difference in complexity can be significant since, in principle, III 
can be exponential in n. 

7. Marginal independence. This section summarizes two completeness 
results for statements of the form I(X, YI0) (marginal statements). 

THEOREM 16 (Completeness). Let E be a set of marginal statements, and 
let L+? be the closure of X with respect to axioms (12) through (15). Then for 
every marginal statement of = I(X, YI 0) not in I', there exists a binary 
probability model (dc, P,) that satisfies E.+ and does not satisfy o-. 

Marginal trivial independence: 

(12) I(X, 010). 



PROPERTIES OF CONDITIONAL INDEPENDENCE 2017 

Marginal symmetry: 

( 13) I( X, Yl0) *I( Y, Xl0) e 

Marginal decomposition: 

(14) I(X, Y u WI0) =I(X, YI0). 

Marginal mixing: 

(15) I(X, Yl0), I(X u Y, WI0) =*I(X, Y u WI0). 

The proof of Theorem 16 uses the same technique as that of Theorem 15. It 
can be found in Geiger, Paz and Pearl (1991), together with an 0(1I1 * n2) 
implication algorithm that is based on these axioms. The implication algorithm 
and the axiomatization hold relative to E4 and J. 

DEFINITION. A Gaussian model over a finite set of attributes U= 
.u.. . , uj} is a pair (d, P), where d is a domain mapping that maps each u1 
to (-o, +oo), and P: d(u1) x ... x d(u,) -> [0, 1] is a multivariate Gaussian 
probability distribution. (For the sake of brevity, we will not define multivari- 
ate Gaussian probability distributions.) The class of Gaussian models is de- 
noted by A. 

Gaussian models share stronger properties for marginal independence than 
the ones listed previously; in particular, it is well known that Gaussian models 
satisfy the following additional property: 

Marginal composition: 

(16) I(X, Yl0), I(X, Wl0) =*I(X, Y u Wl0). 

Theorem 17 shows that marginal composition is the only axiom that was 
" missing" relative to Gaussian models. 

THEOREM 17 (Completeness). Let E be a set of marginal statements, and 
let E+ be the closure with respect to marginal trivial independence, marginal 
symmetry, marginal decomposition and marginal composition. Then there 
exists a Gaussian model that satisfies all statements in E+ and none other. 

PROOF. Let U = u1, ... ., u n be the attributes of interest. Let P be a 
zero-mean multivariate normal distribution, with the following covariance 
matrix: 

F , (if 3 I(X, Yl0) E E s.t. u i E X, uj E Y, r = (pij) where pili=N {p otherwise, 

where p2 << 1. Simple algebra shows that this matrix is positive definite. 
We need to show that P satisfies E+ and no other marginal statement or, 

equivalently, that I(X, YI 0) E E if and only if I(X, YI 0) holds for P. This is 
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proven by the following chain of relationships: 

I(X, Y10) E I+ iff V ui E X, u 1E Y, I(ui, u1I0) E( E iff 
V ui E X, uj E Y, Pi=j = O iff V ui E X, uE Y, I(ui,u jl0) 
holds for P iff I(X, Y10) holds for P. 

The first and last equivalences hold due to marginal decomposition and 
composition, making any statement I(X, Y1 0) completely determined by state- 
ments on singletons. The second equivalence holds by the construction of F 
and the third equivalence is a property of normal distributions. [1 

The construction of the matrix F requires 0(11 * n2) steps, where n is the 
number of attributes appearing in statements of S. Testing whether a marginal 
statement I(X, YI 0) is entailed (relative to Gaussian models) by a set of 
marginal statements amounts to checking that pi j = 0 for every ui E X and 
uj E Y, which requires on the order of n2 steps. 

8. Nonaxiomatizability of conditional independence. The previous 
two sections provide finite sets of Horn axioms for marginal and saturated 
independence statements. These axiom sets remain fixed when the size of U 
increases because our proofs depend only on the finiteness of I UI but not on its 
actual size. Unfortunately, analogous results for independence statements 
(without restrictions) cannot be obtained. 

THEOREM 18 [Studeny (1992)]. There exists no finite set of Horn axioms for 
independence statements (relative to 4?) that is complete for every finite UI. 

Studeny proved the preceding theorem by presenting an infinite set of Horn 
axioms for conditional independence that is not implied by any finite set of 
such axioms. 

The nonexistence of a complete set of axioms does not exclude the possibil- 
ity of an efficient implication algorithm for conditional independence; Sagiv 
and Walecka (1982) provide an example of a class of sentences, called Z-EMVD, 
which admits an efficient polynomial implication algorithm but for which there 
exists no finite set of axioms. Nevertheless, we make the following conjecture. 

CONJECTURE 2. The task of determining whether an independence state- 
ment is entailed (in 9?) by a set of independence statements requires at least 
exponential time. 

Moreover, the preceding task might even be undecidable; that is, there 
might exist no algorithm for deciding entailment of conditional independence. 
For related problems, consult Fagin and Vardi (1986). 
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9. Qualitative independence. Similar to conditional independence, we 
can define a qualitative independence statement f(X, YIZ) by saying that 
A(x, YIZ) holds for P if 

P(X,Y,Z)>OandP(Z)>O iffP(X,Z)>OandP(Y,Z)>O, 

for every respective value of X, Y and Z. 
This definition is identical to that of EMVD in database theory and is also 

discussed by Shafer, Shenoy and Mellouli (1988). Theorems 5, 14 and 15 hold 
when I is replaced with I. For details consult Geiger (1990). 

10. Summary. Table 1 summarizes properties of classes of probability 
models versus classes of independence statements. A question mark means 
that the problem remains open as of the writing of this article. The symbol 4'V 
denotes the class of normal models and 97 probability models over binary 
variables. 

Some properties of Gaussian models are listed in Table 1 which have not 
been proven in this article. The axioms for saturated independence (relative to 
-IV) consist of trivial independence, symmetry, weak union and intersection 
[Geiger (1990)]. The fact that perfect Gaussian models do not exist for some 
sets of statements can be proven in the same way as in Corollary 8 (with the 
same E selected). The nonexistence of a finite set of Horn axioms can be 
proven in the same way as in Theorem 18. 

In addition, we have shown a strong relationship between graph separation 
and conditional independence. In particular, every undirected graph represents 
a consistent set of independence and dependence statements (Theorem 11), 
every axiom for conditional independence is also an axiom for graph separation 
(Theorem 10) and saturated separation and saturated independence (relative 

TABLE 1 
Properties of conditional independence 

Marginal Saturated Unrestricted 
Properties statements statements statements 

9? Complete finite axiomatization Yes Yes No 
Polynomial implication algorithm Yes Yes ? 
Perfect models Yes Yes Yes 

Y+ Complete finite axiomatization ? Yes ? 
Polynomial implication algorithm ? Yes ? 
Perfect models Yes Yes Yes 

XAV Complete finite axiomatization Yes Yes ? 
Polynomial implication algorithm Yes Yes ? 
Perfect models Yes Yes No 

X Complete finite axiomatization Yes Yes ? 
Polynomial implication algorithm Yes Yes ? 
Perfect models ? ? No 
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to 4+) share the same axiomatic structure (Theorems 13 and 14). Analogous 
correspondence exists between separation in directed acyclic graphs (d-sep- 
aration) and conditional independence. See Geiger and Pearl (1988) and 
Verma (1986) for details. 
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