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ABSTRACT

Motivation: Genetic linkage analysis is a useful statistical
tool for mapping disease genes and for associating func-
tionality of genes with their location on the chromosome.
There is a need for a program that computes multipoint
likelihood on general pedigrees with many markers that
also deals with two-locus disease models.

Results: In this paper we present algorithms for perform-
ing exact multipoint likelihood calculations on general pedi-
grees with a large number of highly polymorphic markers,
taking into account a variety of disease models. We have
implemented these algorithms in a new computer program
called sUPERLINK which outperforms leading linkage soft-
ware with regards to functionality, speed, memory require-
ments and extensibility.

Availability: SUPERLINK is available at http://bioinfo.cs.
technion.ac.il/superlink

Contact: fmaayan@cs.technion.ac.il;
dang@cs.technion.ac.il

Keywords: Bayesian networks; Fastlink; Genehunter; link-
age analysis; Vitesse.

INTRODUCTION

Multipoint linkage analysis has become an integral part
of mapping disease genes and constructing genetic maps.
Currently, there are two main approaches to computing
pedigree likelihood exactly: Elston—Stewart (Elston and
Stewart, 1971) and Lander—Green (Kruglyak et al., 1995,
1996; Lander et al., 1987). Both algorithms are variants
of variable elimination methods that depend on different
strategies to finding an elimination order (e.g., Dechter,
1998). The Elston—Stewart algorithm proceeds by ‘peel-
ing’ one nuclear family at a time. The Lander—Green algo-
rithm, which is based on a hidden Markov model (HMM),
proceeds by ‘peeling’ one locus at a time.

The complexity of the Lander—Green algorithm is
linear in the number of loci, but exponential in the
number of non-founders in the pedigree (non-founders
are individuals whose parents are in the pedigree). On
the other hand, the complexity of the Elston—Stewart
algorithm is linear in the number of individuals (for

sufficiently simple pedigrees) and exponential in the
number of loci. It is clear that each of these approaches
is more suitable for a different class of linkage problems.
The Elston—Stewart algorithm can handle large pedigrees
with a few markers more efficiently, whereas the Lander—
Green approach is better equipped for dealing with small
to medium-sized pedigrees and a large number of markers.
Over the years the computational boundaries of both
algorithms have been extended. However, using only one
of these algorithms still limits the class of problems that
can be handled effectively.

In SUPERLINK we used the framework of Bayesian net-
works as the internal representation of linkage analysis
problems. Using this representation allows us to give a
unified treatment to the entire spectrum between these ap-
proaches and to handle a wide variety of linkage analysis
problems. The choice of elimination order is made auto-
matically according to the linkage problem at hand. This
paper presents several algorithms that have been integrated
in SUPERLINK to support efficient multipoint likelihood
calculations on general pedigrees with a large number of
highly polymorphic markers. We present experimental re-
sults for these algorithms on a variety of semi-artificial
data sets and demonstrate the superior performance of SU-
PERLINK versus the performance of existing linkage soft-
ware, FASTLINK (Cottingham et al., 1993; Schiffer et al.,
1994; Becker et al., 1998), GENEHUNTER (Kruglyak et
al., 1996) and VITESSE (O’connell and Weeks, 1995).

The paper is organized as follows. First we survey basic
genetic terminology, elaborate on definitions and methods
related to Bayesian networks, and explicate the represen-
tation of pedigrees as Bayesian networks. Then, we de-
scribe the main algorithmic principles behind SUPERLINK,
highlight some special features of SUPERLINK, and report
experimental results. Finally, we explain the differences
between SUPERLINK and other leading linkage programs
and outline future work.

BACKGROUND
Basic genetic terminology
Genes are the basic unit of genetic information. Each gene
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resides at a different place, or locus, on the chromosome.
Except for the sex chromosomes, there are two genes at
every locus and these constitute the individual’s genotype
at that locus. Genotypes are not always observable. The
expression of a genotype is termed a phenotype.

In the transmission of genes from parents to children,
each parent contributes one allele from his genotype. The
sequence of alleles at different genes that are received
by an individual from one parent is called a haplotype.
We say that a recombination occurred between two genes
if the haplotype of an individual contains two alleles
that resided in different haplotypes in the individual’s
parent. The measure that is used for estimating whether
a recombination occurred is called the recombination
fraction and is denoted by 6. The goal of linkage analysis
is to estimate O between a disease gene and known
loci on the chromosome. This measure translates to an
approximate tentative physical location of a disease gene
on a chromosome. For more details we refer the reader to
Terwilliger and Ott (1994); Lange (1997).

Bayesian networks

Consider a directed acyclic graph G, namely, a directed
graph with no directed cycles, such that each vertex v
corresponds to a variable X, and is associated with a
probability distribution P(X, = x, | Pay = pay) where
Pa, are the variables corresponding to vertices that have
edges leading into v. Further, define the joint probability
distribution for X, ..., X, via

P(x1,...,x) = [ [ P(xy | pay) (1)
v=1

The directed acyclic graph together with the joint
probability distribution is called a Bayesian network
(Pearl, 1988; Lauritzen, 1996).

Note that in the above definition, and throughout this
paper, we use capital letters for variable names and
lowercase letters to denote specific values taken by those
variables. Sets of variables are denoted by boldface capital
letters, and assignments of values to the variables in these
sets are denoted by boldface lower case letters. We also
use P(x) as a short hand notation for P(X = x).

We define the inference problem as follows. The input
is a Bayesian network along with a subset of vertices E.
The output is the probability table P(E = e) for a given
disjoint subset of variables E C {X1, ..., X,,}. Evaluating
the pedigree likelihood in linkage analysis is a special case
of the above inference problem.

Suppose that X, ..., X are the variables not in E, then
using Equation (1),

Pr(e):Z...ZPr(xl, o)Xk, €)
Xk

X1

= .Y [Pt | pay).
X1 Xk i

This inference problem can be abstracted into the
problem of evaluating expressions of the form

=) ... [Tnrw 2
X1 Xe ol

Each f; is a factor (or a table) that contains an entry for
each value of Y] C {X, ..., Xx}. Two ways to compute
this expression are: variable elimination and conditioning.

In variable elimination we eliminate one variable at a
time, by summing over all the possible values for the vari-
able, until the expression does not contain any summa-
tions. For example, assume that we want to eliminate Xy
from the expression. This is done in several steps. First,
we rearrange the order of summation so that the sum over
Xk 1is the innermost. Then, we move all the terms f;(Yy)
where X ¢ Y] outside the summation over Xy. Suppose
that the factors f1, ... f;; remain in the scope of the sum-
mation over Xy. A new factor f(Y) which is a product of
these k factors, defined over Y = U;’;l Y, is constructed:

fO0) =[] 0. 3)
j=1

In the last step, we marginalize Xj; out of f(Y) by
summing over all possible values of X;. We obtain a new
factor f'(Y’'), where Y =Y — {X;}:

S YY) =" FY). )
Xk

Note that with these steps we have rewritten &£ of
Equation (2) as

E=) ..y o [T A.

Xk—1 I>m

The resulting expression has the same general form of
Equation (2). Therefore, other variables can now be
eliminated by repeating the same sequence of steps.

The complexity of variable elimination is dominated
by the largest factor created during the computation
(Equation (3)), and it depends on the order of elimination.
The problem of finding an optimal elimination order is
important in many applications and is known to be NP-
complete (Arnborg, 1985; Arnborg et al., 1987).

The second approach to compute £ in Equation (2) is to
perform the calculation using conditioning. We compute
& by considering expressions of the form

Eq =Y Yy [,
X2 Xk
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where f;* is f; restricted to the case where X| = x; and
Y, =Y — {X;}. Note that

E=) &,
X1

The motivation for this approach is that computing
&y, is easier than computing &£, since it involves one
less summation and some of the factors are smaller. The
complexity of this procedure depends on the number
of possible joint assignments to the variables that we
condition on. This approach is called global conditioning
in Shachter et al. (1994).

The advantage of conditioning over variable elimination
is the lower memory overhead. Once the probability of
the evidence for a particular assignment to the variables
that we condition on has been computed, only a single
number needs to be stored. The main disadvantage of this
approach is that in different evaluations of &£, identical
subexpressions are often recomputed several times.

Bayesian networks for linkage analysis

Bayesian networks allow us to represent pedigrees in a de-
tailed manner. They also enable us to encode appropriate
independence assumptions. A pedigree, which is the input
to a genetic linkage problem, defines a joint distribution
over the genotypes and phenotypes of the individuals rep-
resented in the pedigree.

We use the following types of random variables, as
suggested in (Friedman et al., 2000), for representing a
pedigree:

e Genetic Loci. We number by 1,2,... the loci of
interest in the genetic analysis. For each individual
i and locus j, we define random variables G; j,,
Gi,jm whose values are the specific alleles of locus
j in individual i’s paternal and maternal haplotypes,
respectively. That is, G; j, was inherited from i’s
father, and G;_ j,, was inherited from i’s mother.

e Phenotypes. For each individual i and phenotype j,
we define a random variable P; ; that denotes the value
of the phenotype for individual i.

e Selector variables. Similar to Lander and Green’s
approach, we use auxiliary variables that denote the
inheritance pattern in the pedigree. We denote by
Si,jp and S; j,, the selection made by the meiosis that
resulted in i’s genetic makeup at locus j. Formally, if
a denotes i’s father, then

ifS; ;p =0

) Gajp
Gl’jp o { if Si,jp =1

Ga,jm

Gi, jm is defined in a similar way.

The above notation has to be slightly modified in the
case of sex-linked loci.

Each local probability table in the Bayesian network is
of one of the following forms:

o Transmission models:
Pr(Gi jplGa,jps Ga,jm» Si,jp)s Pr(Gi jm|Gb, jp,
Gp,jm> Si,jm), where a and b are i’s parents in the
pedigree.

o Penetrance models: Pr(P; ;|G; jp, Gi jm)

o Recombination models:
Pr(Si1p) = Pr(Si1m) = 0.5, Pr(S; jplSi j—1p,0j-1)
and Pr(S; jm|Si, j—1m,0;—1), where ;1 is the known
or unknown recombination fraction between locus j —
1 and locus j.

o General population allele probabilities: Pr(G; ;p),
Pr(G;, jm), when i is a founder.

The likelihood Pr(e | 0) of the pedigree data is the
product of all the local probability tables of the Bayesian
network, marginalized over all the variables of the network
that are not assigned a value by e.

For an example of a fragment of a network that
describes parents-child interaction in a simple 3-loci
analysis, consider Figure 1. The dashed boxes contain
all variables that describe a single individual’s genotype
or phenotype. In this model it is assumed that loci are
mapped in the order 1, 2, and 3. Figure 1 also shows the
penetrance model for this simple 3-loci analysis. In this
example we assume that each phenotype variable depends
on the genotype at a single locus. This is reflected by the
fact that only edges from the two haplotypes of a single
locus point into each phenotype variable.

ALGORITHMS IN SUPERLINK

In SUPERLINK we represent linkage analysis problems
using Bayesian networks, as just described. Using this
representation allows us to give a unified treatment
to the two extreme approaches to calculating pedigree
likelihood exactly, the Elston—Stewart approach and the
Lander—Green approach, and to the full spectrum of
combinations of these approaches. Whenever feasible, we
use variable elimination alone to calculate the likelihood
of the pedigree data. Otherwise, our algorithm combines
variable elimination with conditioning to achieve the
best time-space tradeoff given the memory available for
the linkage analysis problem. The choice of variable
elimination order is made automatically according to the
parameters of the specific linkage problem.

Some of the crucial features of our program are the
preprocessing steps performed on the Bayesian network
that often result in a substantial reduction in the time and
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Fig. 1. A fragment of a Bayesian network representation of the
transmission model and the penetrance model in a 3-loci analysis.
Adapted from (Friedman et al., 2000).

memory requirements. Preprocessing includes trimming
redundant variables, merging some of the variables and
reducing the range of values that are valid for each variable
given the data.

Another crucial feature is the compact representation
of multilocus genotype information and the efficient
representation of probability tables.

Genotype representation

There are several possible approaches to storing multilo-
cus genotype information. One possible method, adapted
by FASTLINK, is to allocate for each person a matrix of
size N(N + 1)/2 to represent all the possible multilocus
genotypes (where N is the product of the number of alle-
les in all loci), and to keep track of valid genotypes dur-
ing the likelihood calculations. Another approach, used
by VITESSE, is to store single-locus genotype lists and
build valid multilocus genotypes when needed. A third ap-
proach, implemented in SUPERLINK, is to store separate
single-locus allele lists for the two haplotypes, one list for
the maternal haplotype and one for the paternal haplotype,
and to assemble valid single-locus and multilocus geno-
types when necessary. This representation follows from
the choice of variables in the Bayesian network.

These three approaches have very different memory
requirements. For example, five five-allelic loci would
require storage of 4884375 multilocus genotypes (N =
3125), or 75 single-locus genotypes (15 for each locus)
and only at most 50 single-locus allele entries (5 entries
per haplotype list per locus). We use the words ‘at
most’ since SUPERLINK stores only valid alleles for
each single-locus-haplotype (given the data), therefore
reducing significantly the size of the single-locus allele
lists and the time needed for the calculations.

Fig. 2. An example for a possible downward update.

Value and allele exclusion

SUPERLINK performs a preprocessing phase that reduces
the range of values that are valid for each variable of
the Bayesian network given the data. This phase yields
major savings in time and memory requirements of the
likelihood calculations.

This phase is divided into two steps. The first step
is performed directly on the graph representation of
the pedigree, before transforming it into a Bayesian
network, whereas the second step is performed on the
local probability tables that annotate the nodes of the
constructed Bayesian network.

The first step is performed on the graph representation of
the pedigree. The nodes of this graph represent the people
in the pedigree and the edges represent parental relations.
This step is based on the well-known observation that the
possible genotypes of an individual can be inferred from
the genotypes of one’s relatives (e.g., Lange and Goradia,
1987).

For example, if we know that some individual (a male)
has the genotype / | 2 in some locus then his child can
only have allele 1 or 2 in the paternal haplotype of this
locus. The family in Figure 2 is drawn according to the
convention that females are represented by circles and
males are represented by squares in pedigree sketches. In
this case a downward update is performed, the child is
updated according to the parent.

Another possible update is an upward update, in which
the parent is updated according to the children. For
example, let us observe the family in Figure 3. The mother
(2) is an homozygote for allele 1. Hence, both children
(3 and 4) got allele 1 from their mother. Therefore, the
father (1) must have transmitted allele 3 to his daughter
(3) and allele 4 to his son (4), hence his genotype is
3 | 4. These updates work in a local manner, by examining
invalid parents-children joint assignments. However, each
update is then propagated through the pedigree graph and
therefore results in a global update.

When some information on the genotypes of an indi-
vidual’s grandparents is available, it sometimes becomes
possible to rule out one of the two values of the relevant
selector variable of the individual. In such a case, the vari-
able reduces to a constant. We refer to such an update as a
selector update.
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Fig. 3. An example for a possible upward update.
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Fig. 4. An example for a possible selector update.

An example for a selector update is shown in Figure 4.
Here, the algorithm infers that individual 5 received allele
3 from his mother (3). It also infers that this allele resided
in the paternal haplotype of individual 3, since only her
mother (2) could have transmitted allele 4 to her and this
leaves allele 3 to have been transmitted from the father
(1). From this the algorithm rules out the value 1 of the
maternal selector variable of person 5 for this locus.

In the second step of value elimination the algorithm
uses the fact that if all entries of some probability table
that correspond to a specific value of one of its variables
equal zero, then this value of the variable is invalid. For
example, if Pr(x, y, z) = O for all values y, z of ¥, Z then
the value x is not valid for the variable X.

This preprocessing phase often has a large impact on the
computation time: instead of summing over all possible
values for each variable, we only sum over the valid values
and thus attain a reduction in the number of operations.
The size of the tables that need to be stored is also reduced
significantly. This reduction is realized due to the compact
and flexible representation of probability tables used by
our algorithm.

Variable trimming

Variables that correspond to leaves in the Bayesian net-
work for which no data exists (i.e., all their values are
valid) can be trimmed without altering the likelihood com-
putation. After trimming such variables, other variables
become leaves and they could potentially be trimmed. The
algorithm continues in this fashion until no further nodes
can be trimmed.

An example for a possible trimming is when the
affection status of an individual is unknown. In such a
case, the relevant phenotype variable can be trimmed.
Other variables that can be trimmed automatically, or,
equivalently, not be included in the network, are selector
variables of founders. These selector variables are omitted
due to lack of information about founders’ phase in a
pedigree.

This trimming process speeds up the calculations and
lowers storage requirements. It often results in a substan-
tial reduction in the number of variables that SUPERLINK
needs to sum over.

Merging variables

A pedigree contains no information about founder phase
and consequently two genotypes which differ only by
phase will have the same probability and can therefore
be united when performing the calculations. Therefore,
we can unite the two genetic-loci variables that describe
the genotype of a founder for a specific loci into one
variable (as suggested in Kruglyak er al, 1996). The
possible values for this united variable are all the valid
value combinations of the two original variables.

Due to the fact that we cannot determine the phase in
founders’ genotypes, we also cannot identify recombina-
tion events in their children. Therefore, the selector vari-
ables of their children are redundant. We simply calculate
the probability that the child would have a certain geno-
type given the genotype of his parent, without any consid-
eration of recombination events.

This step reduces both time and memory requirements
of the computations.

Time-space tradeoff

As mentioned before, there are two extreme approaches to
computing the likelihood of a Bayesian network exactly,
conditioning and variable elimination. If the data being
analysed is simple enough, then it might be processed
using variable elimination alone. Unfortunately, this is
often not the case and memory limitations might be
exceeded this way. SUPERLINK combines the two methods
to achieve the best time-space tradeoff given the memory
available for the linkage analysis problem. This approach
is discussed in (Dechter, 1996). The crucial point of the
algorithm is that conditioning is performed only after
some steps of variable elimination, when the memory
requirements are about to exceed the limitations. Such
conditioning often applies only to parts of the Bayesian
network. Thus, computations in other unrelated parts of
the network are not repeated unnecessarily. The selection
of variables to condition on often simplifies the Bayesian
network sufficiently for processing with the available
memory.
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Variable elimination order

The order of variable elimination is critical. It greatly
affects both time and memory requirements. The ordering
is determined automatically according to the parameters
of the specific linkage problem: the size of the pedigree,
the number of loci, and the number of valid alleles at
each locus. For small pedigrees with a large number of
markers, the algorithm chooses a peeling order, based
on the Lander—Green approach, that proceeds locus after
locus. For large pedigrees with a few markers, the
algorithm chooses an Elston—Stewart style elimination
which peels one nuclear family at a time. Other linkage
problems are handled by finding a good elimination order.
Often the program chooses an elimination order that is a
combination of these two extreme choices of ordering.

If the input of SUPERLINK is a small pedigree and
many loci, the elimination is performed locus by locus,
starting from one end of the genetic map and working in
linear order towards the other end. That is, first all the
phenotype and genetic loci variables that represent the
locus on one end of the map are eliminated. Then all the
selector variables that relate to this locus are eliminated.
Then we continue to the next locus on the map, and so
on. This heuristic defines groups of variables and an order
in which to eliminate these groups. A greedy heuristic is
used to determine the elimination order of the variables in
each group.

If the input is an arbitrary sized pedigree and an arbitrary
number of loci, SUPERLINK uses a greedy heuristic to
determine the elimination order. The greedy heuristic
being used assigns each variable an elimination cost
and chooses to eliminate the variable with the smallest
cost. The costs of the variables are updated dynamically,
whenever necessary. The elimination cost of variable v is
denoted by EC (v) and is computed as follows:

e If the elimination of variable v would result in a
function whose variables are already contained in an
existing function, the cost of the variable is zero.
By eliminating such a variable, we only reduce the
memory requirements and therefore it is desirable to
give such a variable the lowest possible cost.

e Otherwise, the cost of variable v is the size of the
probability table of the function that would result from
eliminating it. More formally, if F(v) is the set of
functions that use variable v, then the size of the
probability table that would result from eliminating it
is:

EC) = [] Ivax)|.

XeN(v)

where N (v) = (U cr) Arg(f)) — (v} and Arg(f)
is the set of variables over which the function f is
defined.

The variable chosen to be eliminated is:

argmin EC (v).
v

An intuitive explanation of this choice of heuristic is that
table size constitutes a good measure for the complexity
of eliminating a certain variable.

Finding the above minimum can be time consuming.
Therefore, if the table that would result from eliminating
a particular variable is below a certain threshold, then the
search for the minimum is discontinued and this variable
is eliminated.

Order for conditioning

As stated above, SUPERLINK combines variable elim-
ination with conditioning. In the previous section we
discussed how the variables to be eliminated are chosen.
However, if the elimination of the chosen variable (which
is the best variable found for elimination) would result in
a function of size greater than a certain threshold, then the
memory limitations might be exceeded. In such a case,
a variable to condition on is selected. A greedy heuristic
is used to choose a variable which fulfils the following
condition:
arg mglx n(w)ECv),

where EC(v) is the elimination cost of v and n(v) is the
number of functions that use v.

Representation of tables

Our algorithm defines all probability tables in a flexible
size that depends on valid values for each variable. Each
probability table, referred herein simply as a function,
is represented by a one-dimensional array of double-
precision numbers. In addition we store, the size of the
probability table, the number of variables in the table and
an array of pointers to the variables. For each variable, the
number of valid values for it is also stored. The size of
a probability table is the product of the number of valid
values of each of its variables. We use a special indexing
method that allows to quickly calculate the index of the
array that corresponds to a certain set of values of the
function’s variables and also to determine the values of
the function’s variables that correspond to a certain entry
of the array.

Each function also has a global scaling factor s. For
an entry T (vi,v2,...,v,) of a probability table with
the value pr(vy,vo,...,v,), the value of the function
corresponding to this entry is expressed via:

[y, v,

This method of storing tables is required in order to
avoid underflow from occurring during the computations
and to maintain accuracy. These problems arise because
intermediate results are often very small numbers.

., Up) = pr(v1, V2, ..., Uy) €XP(s).
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FEATURES OF SUPERLINK

SUPERLINK allows for analysis of autosomal as well as
sex-linked traits and also allows for analysis with two bi-
allelic disease loci. The description as a Bayesian network
and the automatic optimization of computations yields a
solid ground for efficient extensions.

Sex-linked traits

SUPERLINK allows for analysis of sex-linked traits,
i.e., traits that are controlled by loci that reside on the
X-chromosome. Such traits exhibit a different inheritance
pattern from autosomal traits. Males have one X chro-
mosome and one Y chromosome, while females have
two X chromosomes. Therefore, in the case of sex-linked
traits, recombination events can only be observed in the
transmission from the mother, whereas in the case of
autosomal traits they can be observed in the transmission
from both parents.

Two-locus traits

SUPERLINK allows for a disease phenotype to be under
the control of two loci. Each of the disease loci has two
alleles: the disease allele and the normal allele. Thus,
there are 3 possible genotypes per locus and 9 possible
joint genotypes for the two loci. For each of these joint
genotypes the susceptibility of being affected has to be
provided.

This feature is not supported in FASTLINK and
VITESSE. The LINKAGE programs, which are the origin
of FASTLINK, have an extension, TLINKAGE (Lath-
rop and Ott, 1990; Risch, 1990; Schork et al., 1993)
which is slower than SUPERLINK. GENEHUNTER also
has an extension that allows for analysis of two-locus
traits, GENEHUNTER-TWOLOCUS (Strauch et al., 2000).
Its shortcoming is that it is not suitable for analysing
pedigrees of large size. Our program is currently the
only program suitable for analysis of two-locus traits,
autosomal or sex-linked, in fully general pedigrees.

Extensibility

Bayesian networks provide us with a convenient language
to describe and encode modelling assumptions about pedi-
grees. This language allows us to represent a wide range of
possible alternatives that can arise in linkage analysis. So
far, we implemented in SUPERLINK the option to analyse
sex-linked traits and two-locus disease. SUPERLINK can
be extended to efficiently handle multilocus disease mod-
els, to add environmental factors that affect disease onset,
and to model chiasmata interference in the context of gen-
eral pedigrees.

EXPERIMENTAL RESULTS

We have run several experiments to compare our pro-
gram, SUPERLINK V1.0, to some of the leading linkage

programs, FASTLINK V4.1, GENEHUNTER V2.1 and
VITESSE V1.0. The running environment on which all
experiments were performed was a Sun OS version 5.7
(sundu) with 2624 MB RAM.

Experiment A. In the first experiment (Table 1) we used
12 data sets with a medium-sized topology, elicited for a
coronary heart disease study (taken from Linkage User’s
guide) and artificially increasing complexity in terms of
the number of loci being analysed. This pedigree contains
no loops. As can be seen, the pedigree size exceeds the
size that can be handled by GENEHUNTER and only the
first few data sets can be run by FASTLINK and VITESSE
before memory requirements are exceeded. SUPERLINK
runs on all the data sets except for the last one on which
the computation will require over a 100 hours in order
to complete. Note also that for the data sets that run on
FASTLINK and VITESSE, the running times of SUPERLINK
are smaller.

Experiment B. In the second experiment (Table 2), we
used 12 artificial data sets with increasing complexity
in terms of the number of loci being analysed. In this
experiment, the topology used included loops. VITESSE
does not handle looped pedigrees and therefore cannot run
on these data sets. GENEHUNTER fails due to the size of
the pedigree, and FASTLINK cannot handle most data sets
due to memory requirements. Our program can run on all
the data sets.

Experiment C. In the third experiment (Table 3), we used
12 data sets with different topologies, different number of
loci and different pedigree sizes. Some of the topologies
contain loops and some do not. GENEHUNTER is currently
faster on small pedigrees if and only if multiple likelihood
computations (say, one between each pair of markers) are
requested by the user. In the discussion we explain how
SUPERLINK will be made faster also for this computation.

Experiment D. At the time of writing this paper we
were unable to run VITESSE V2.0 (O’Connell, 2001).
However, we ran data sets 1 and 5 in (O’Connell, 2001)
and the results are as follows. On data set 1, our algorithm
runs 4000 times faster than VITESSE V1.0 while VITESSE
v2.0 runs 1800 times faster. Note that this example was
constructed to show the advantage of VITESSE V2.0 over
its previous version while we used SUPERLINK without
any adjustments. Data set 5 runs over 3600 times faster
on VITESSE V1.0 compared to VITESSE Vv2.0. With
SUPERLINK, it runs three time faster than VITESSE V1.0,
again with no adjustments. VITESSE V2.0 does not accept
general pedigrees and is not designed to handle more
efficiently the data sets of experiments A, B and C.
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Table 1. Experiment A: The table shows run times (in seconds) of SUPERLINK, FASTLINK, VITESSE and GENEHUNTER for various data sets

Data Sets iPeople ftLoci ftAlleles Loops Superlink Fastlink Vitesse Genehunter
EAO 57 2 4-5 NO 0.03 0.12 0.27 kK
EAl 57 5 4-5 NO 0.1 3.77 0.31 HAAE
EA2 57 6 4-5 NO 0.14 79.32 0.39 kK
EA3 57 7 4-5 NO 0.42 * 0.69 ok
EA4 57 8 4-5 NO 0.36 * 2.81 kit
EAS 57 10 4-5 NO 1.19 * 84.66 ok
EA6 57 12 4-5 NO 4.65 * * ok
EA7 57 14 4-5 NO 3.01 * * skt
EA8 57 18 4-5 NO 20.98 * * ok
EA9 57 37 4-5 NO 8510.15 * * kit
EAI10 57 38 4-5 NO 10446.27 * * ok
EAll 57 40 4-5 NO HHAHEK * * ok

Table 2. Experiment B: Run times for additional data sets

Data Sets iPeople fLoci fAlleles Loops Superlink Fastlink Vitesse Genehunter
EBO 100 5 5-10 YES 2.56 3933.7 ok ik
EBI1 100 6 5-10 YES 2.63 * ke st
EB2 100 10 5-10 YES 82.56 * ok ek
EB3 100 12 5-10 YES 437.55 * ke kit
EB4 100 13 5-10 YES 17.29 * ok o
EB5 100 14 5-10 YES 278.8 * ek ok
EB6 100 15 5-10 YES 935.86 * ok it
EB7 100 16 5-10 YES 902.8 * ok ok
EBS 100 17 5-10 YES 288.2 * ke sk
EB9 100 18 5-10 YES 113.96 * ok ek
EBI10 100 19 5-10 YES 2901.25 * sk skl
EB11 100 20 5-10 YES 143640.22 * ok ok

DISCUSSION to compute the likelihood of data assuming the disease

The model of Bayesian networks, with the variables de-
fined as described herein (due to Friedman et al., 2000),
enabled us to represent linkage problems in sufficiently
fine detail to allow efficient exact likelihood computations
for more complex pedigrees than was previously possible.
One reason for outperforming previous software is that
previous software was restricted to specific Bayesian net-
works (implicitly), and consequently was unable to utilize
an optimal, or close to optimal, order of computation. For
example, FASTLINK represents multilocus genotypes as
one variable which is equivalent to summing variables per-
son by person, VITESSE represents genotypes by pairs at
each locus, rather than locus by locus, and GENEHUNTER
represents inheritance vectors as a single variable with ex-
ponential number of values, rather than by individual se-
lector variables, each with two values. Such choices limit
the performance. These choices should all be made auto-
matically by the linkage software on a case-by-case suffi-
ciently fast input analysis.

There are several easy ways to further improve speed
which will be incorporated in the near future. When asked

locus can lie between any two consecutive markers, it is
often the case, for small pedigrees, that using the order
locus by locus, keeping some intermediate results, and
multiplying special probability tables more efficiently, as
done by GENEHUNTER, is the most efficient computation
route. These speedups are natural to incorporate into
SUPERLINK, and due to the selector variables that we
use, which replace inheritance vectors of GENEHUNTER,
the incorporation of these ideas will make SUPERLINK
also outperform GENEHUNTER for repeated likelihood
computations on small pedigrees, which is the criterion
that GENEHUNTER is designed to meet best.

ACKNOWLEDGEMENTS

We thank Alejandro Schiffer from NIH for several years
of continued help and support. We thank Nir Friedman
from the Hebrew University for many fruitful discussions
and for writing with the second author a research proposal
to support this work. This research was supported by the
Israel Science Foundation.

S$196



Exact genetic linkage computations for general pedigrees

Table 3. Experiment C: Run times for additional data sets

Data Sets iPeople ftLoci ftAlleles Loops Superlink Fastlink Vitesse Genehunter
ECO 100 6 2 YES 27.62 382.88 ok kK
EC1 100 7 2 NO 243 0.82 0.40 oAk
EC2 100 8 2 YES 0.56 12.59 ok ok
EC3 100 10 2 NO 16.36 ok 22.79 ok
EC4 100 15 5-10 NO 1.00 * * ok
ECS5 20 15 2 NO 44.1 * * ik
EC6 15 20 2 NO 35.32 * * Ak
EC7 15 22 2 NO 102.56 * * kK
EC8 150 8 5-7 YES 0.87 * ok Ak
EC9 150 10 5-7 YES 1.28 * ok kK

EC10 5 100 3-6 NO 0.06 o * 041 (+)
EC11 5 110 3-6 NO 0.08 ok * 0.45 (+)
Table 4. Definitions of symbols used in the tables:

Symbol Meaning

* Out-of-Memory

* Segmentation Fault or Bus Error

wE Not Applicable - VITTESE does not handle looped pedigrees.

ok Not Applicable - GENEHUNTER does not handle large pedigrees.

oAk Over 100 hours.

+ In GENEHUNTER, the lod-score is calculated several times, for different positions of the disease gene on the marker map. In the runs above,

the number of lod-score calculations equals the number of markers in the analysis (i.e, 99 for data sets EC10 and 109 for data sets EC11).
Hence, GENEHUNTER is currently faster for multiple likelihood calculations.
REFERENCES Kruglyak,L., Daly,M.J., Reeve-Daly,M.P. and Lander,E.S. (1996)

Arnborg,S. (1985) Efficient algorithms for combinatorial problems
on graphs with bounded decomposibility. BIT, 25, 2-23.

Arnborg,S., Corneil,D.G. and Proskurowski,A. (1987) Complexity
of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8,
277-284.

Becker,A., Geiger,D. and Schiffer,A.A. (1998) Automatic selection
of loop breakers for genetic linkage analysis. Hum. Hered., 48,
49-60.

Cottingham,Jr,R.W., Idury,R.M. and Schiffer,A.A. (1993) Faster
sequential genetic linkage computations. Am. J. Hum. Genet., 53,
252-263.

Dechter,R. (1996) Topological parameters for time-space tradeoff.
Proceedings of the Twelfth Conference on Uncertainty in Artifi-
cial Intelligence (UAI). pp. 220-227.

Dechter,R. (1998) Bucket elimination: a unifying framework
for probabilistic inference. In Jordan,M.I. (ed.), Learning in
Graphical Models. Kluwer Academic Press, pp. 75-104.

Elston,R.C. and Stewart,J. (1971) A general model for the analysis
of pedigree data. Hum. Hered., 21, 523-542.

Friedman,N., Geiger,D. and Lotner,N. (2000) Likelihood computa-
tion with value abstraction. Proceedings of the Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI).

Kruglyak,L., Daly,M.J. and Lander,E.S. (1995) Rapid multipoint
linkage analysis of reccessive traits in nuclear families including
homozygosity mapping. Am. J. Hum. Genet., 56, 519-527.

Parametric and nonparametric linkage analysis: a unified mul-
tipoint approach. Am. J. Hum. Genet., 58, 1347-1363.

Lander,E.S. and Green,P. (1987) Construction of multilocus genetic
maps in humans. Proc. Natl Acad. Sci. USA, 84, 2363-2367.

Lange.K. (1997) Mathematical and Statistical Methods for Ge-
netic Analysis. Springer, New York.

Lange K. and Goradia,T.M. (1987) An algorithm for automatic
genotype elimination. Am. J. Hum. Genet., 40, 250-256.

Lathrop,G.M. and Ott,J. (1990) Analysis of complex diseases under
oligogenic models and intrafamilial heterogeneity by the linkage
programs. Am. J. Hum. Genet., 47, A188.

Lauritzen,S.L. (1996) Graphical Models. Oxford University Press.

O’Connell,J.R. (2001) Rapid multipoint linkage analysis via inher-
itance vectors in the elston-stewart algorithm. Hum. Hered., 51,
226-240.

O’connell,J.R. and Weeks,D.E. (1995) The vittesse algorithm for
rapid exact multilocus linkage analysis via genotype set-recoding
and fuzzy inheritance. Nature Genet., 11, 402—408.

Pearl,J. (1988) Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, San Francisco, CA.

Risch,N. (1990) Linkage strategies for genetically complex traits.
i. multilocus models. Am. J. Hum. Genet., 46, 222-228.

Schiffer,A.A., Gupta,S.K., Shriram,K. and Cottingham,Jr,R.W.
(1994) Avoiding recomputation in linkage analysis. Hum.
Hered., 44, 225-237.

Schork,N.J., Boehnke,M., Terwilliger,J.D. and Ott,J. (1993) Two

$197



M.Fishelson and D.Geiger

trait locus linkage analysis: a powerful strategy for mapping and Baur,M.P. (2000) Parametric and nonparametric multipoint

complex genetic traits. Am. J. Hum. Genet., 53, 1127-1136. linkage analysis with imprinting and two-locus-trait models:
Shachter,R.D., Andersen,S.K. and Szolovits,P. (1994) Global condi- application to mite sensitization. Am. J. Hum. Genet., 66, 1945—

tioning for probabilistic inference in belief networks. Proceed- 1957.

ings of the Tenth Conference on Uncertainty in Artificial Intelli- Terwilliger,J.D. and OttJ. (1994) Handbook of Human Genetic

gence (UAI). pp. 514-522. Linkage. Johns Hopkins University Press, Baltimore, Maryland.

Strauch,K., Fimmers,R., Kurz,T., Deichmann,K.A., Wienker,T.F.

S$198



