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Abstract 

The Shortest Maximal Cycle Basis (SMCB) problem is that of finding a cycle basis B of a given graph G such that 
the length of the longest cycle included in B is the smallest among all bases of G. We show that any cycle basis B’ of 
G such that the sum of the lengths of the cycles included in B’ is the smallest among all cycle bases of G constitutes 
a solution to the SMCB problem. Finding a basis with the latter property requires at most O(m3n) steps using 
Horton’s algorithm where m is the number of edges and n is the number of vertices. 
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1. Introduction 

The Shortest Cycle Basis (SCB) problem is 
that of finding a cycle basis B of a given graph G 
with the property that the sum of the lengths of 
the cycles included in B is the smallest among all 
bases of G. This problem and some variations of 
it were dealt in several articles (e.g., [2,3,6,7,9, 
10,12]). The latest reference is Horton’s work 
which establishes a polynomial algorithm having a 
time complexity of 0(m3n) where m is the num- 
ber of edges and n is the number of vertices in G 
[5]. Horton states that his algorithm is the first 
polynomial algorithm that actually solves this 
problem and gives citations that contain counter- 
examples to the attempts made prior to his. 
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The Shortest Maximal Cycle Basis (SMCB) 
problem is that of finding a cycle basis B of a 
given graph G with the property that the length 
of the longest cycle included in B is the smallest 

among all bases of G. We show that any basis 
that constitutes a solution to the SCB problem is 
also a solution to the SMCB problem. This corre- 
spondence between the two problems is shown to 
hold in any vector space over GF,, not necessar- 
ily those induced by cycles of a graph. Conse- 
quently, Horton’s polynomial algorithm for the 
SCB problem (for graphs) solves the SMCB prob- 
lem as well. 

As far as we know, the SMCB problem has not 
been raised in the past. Our interest in this 
problem comes from a possible application as a 
preprocessing step in a Bayesian inference algo- 
rithm [8]. This inference algorithm heuristically 
generates a clique-tree of a directed acyclic graph 
(dag) before some probability computations are 



56 D.M. Chickering et al. / Information Processing Letters 54 (1995) 55-58 

done. In this algorithm, if we limit the size of the 
largest cycle in a cycle basis of the underlying 
undirected graph of the dag, then the size of the 
largest clique in the clique-tree generated is often 
small which consequently reduces the probabilis- 
tic computations. However, the relationship found 
between the size of the largest clique and the size 
of the largest cycle in the cycle basis is heuristic 
with no theoretical support. 

Proposition 2. Let {vl,. . . , v,J be a basis of a 
vector space Y” over GF, and let {ul,. .., uJ be 
another basis of M. Then, there exists a permuta- 
tion 13 of {l,..., k) such that for i = 1,. . . , k each 
uocij can be written as the sum of vi and a linear 
combination of (vl,. . . , vJ\{vJ. 

Proof. Let A4 = (mi,j) be the non-singular matrix 
that maps the first basis to the second one and let 
4 denote a permutation of 11,. . . , k). Since M is 
non-singular its determinant C+m,,6(,jm,,,(,j 

2. Definitions and basic properties 

By a graph G = (V(G), E(G)) we mean an 
undirected graph with no self-loops or parallel 
edges where L’(G) is the set of vertices and E(G) 
is the set of edges. A connected subgraph C is 
called a simple cycle if each vertex is incident to 
two edges in C. A subgraph C is called a cycle if 
each vertex has an even degree in C. Note that a 
cycle need not be a connected subgraph and that 
a simple cycle is a cycle. Each cycle C can be 
written as a vector of length I E(G) I having 1 in 
each location that corresponds to an edge in 
E(C) and having 0 otherwise. The sum C, @ C, 
of two cycles C, and C, is the subgraph induced 
by the edges 

7***7 mk,6(kj (sum taken mod 2) must contain at 
least one addend in which all factors are non-zero. 
Let 6 be a permutation that corresponds to any 
such addend. 8 satisfies the condition of this 
proposition. q 

3. Main result 

Define the length of a vector v over GF,, 
denoted by I v I, to be the number of l’s that it 
contains. The shortest basis of a vector space is a 
basis B in which the sum of the lengths of all 
vectors in B is minimized. Consider the following 
exponential greedy algorithm for finding the 
shortest basis of a vector space over GF,. 

Algorithm FINDBASIS 

Equivalently, the vector corresponding to C, @ C, 
is the sum mod 2 of the vectors corresponding to 
C, and C,. The set of vectors corresponding to 
all cycles of a graph form a linear vector space 
over GF,. (GF, is the field with constants (0, 1) 
and addition taken mod 2.) We will call this lin- 
ear vector space the cycle space and a basis for 
this vector space will be called a cycle basis. The 
dimension of the cycle space is I E(G) I - I V(G) I 
plus the number of connected components of G 
[Ill. 

Input: A basis vl,. . . , vk of a vector space 7; 
Output: A shortest basis of 7; 

Until no changes occur; 
For i = 1 to k do; 

We use the following basic properties of vector 
spaces. 

vi+vi$a(v, )...) Vi&I, vi+1 )...) VJ 
where a(v, ,..., vi-I, vi+1 ,..., v,> is a lin- 
ear combination of ( vl, . . . , v,J \ {vi} chosen 
such that the updated vector vi will have 
the smallest possible length; 

end; 
end; 
Output&. . .) v/J; 

Proposition 1. Let B be a basis of a vector space The algorithm always terminates because in 
T. If any vector v in B is replaced by the sum of v each step the sum of the lengths of the vectors 
and a linear combination of the vectors in B\(v), VI,. . ., vk is reduced by at least one. The algo- 
then the resulting set of vectors is a basis of V. rithm always outputs a basis because, due to 
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Proposition 1, after each step {ur, . . . , u,J remains 
a basis of Y. Furthermore, when the algorithm 
stops no ui can be improved by adding to it a 
linear combination of the other k - 1 vectors. We 
now argue that the algorithm always outputs a 
shortest basis. Let u,, . . . , uk be a shortest basis 
of V and v r,. . . , vk be the basis FINDBASK gen- 
erates. Then, by Proposition 2, there exists a 
permutation 0 of {l,. . ., kj such that each u,(~) 
equals 

vi@a(v, )..., vi-r,ui+i ,..., Vk). 

Consequently, for each i, I vi I =G I uecij I because 
otherwise FINDBASIS would have performed an 
additional iteration. However, equality must hold 
for all i because ur,. . .,uk is a shortest basis. 
Thus, FINDBASIS always terminates and outputs a 
shortest basis. In fact, we can prove that FIND- 
BASIS modifies each vector only once at the first 
iteration of the external loop; however, the proof 
of this observation is not needed herein and is 
thus omitted. 

This discussion implies the following property 
of every shortest basis. 

Theorem 3. Let {ul,. . .,u,} and {v,, . . . , vk) each 
be a shortest basis of a vector space 7 over GF, 
having lengths lull < luzl < ... G 1~~1, and 
lull Q Iv*I Q --- < I vk I, respectively. Then, for 
i=l ,..., k, luil = IviI. 

Proof. Apply FINDBASIS to the basis {ui,. . . , vJ. 
We first argue that FINDBASIS will not make any 
changes to the given basis. Assume it does. Con- 
sider the set {vr,..., ~~1 just after some ui has 
been changed. The resulting new set of vectors is 
a basis whose length is shorter than the given 
basis which contradicts the minimality of the given 
basis. We have shown previously that the out- 
come of FINDBASIS satisfies I vi I G I uecij I for i = 
1 7.*.7 k where 0 is a permutation on (1,. . . , k). 
Since ur,. . . , uk is a shortest basis, equality must 
hold for all i. q 

It is worth noting that a shortest basis of a 
vector space of GF, contains as its smallest ele- 
ment a vector of 7’ whose length is minimum 

across all vectors of 7. The existence of a poly- 
nomial algorithm for finding a vector whose length 
is minimal in a given vector space over GF, is a 
major open question in coding theory [l]. 

Let L(B) denote the length of the longest 
vector in a basis B. A basis of ‘?Y with minimum 
longest vector is a basis B such that L(B) is 
minimized over all bases of 7. 

Theorem 4. Let B be a shortest basis of a vector 
space W over GF, and let B’ be a basis of %” with 
minimum longest vector. Then, L(B) = L(B’). 

Proof. Let B = {q, _. . , uk} and B’ = {wl,. . . , wk}. 
Apply FINDBASIS to B’ and suppose the algo- 
rithm outputs B” = {v,, . . . , vk}. The algorithm 
never increases the length of an updated vector. 
Thus L(B”) G L(B’). Since FINDBASIS generates 
a shortest basis, by Theorem 3, LCB”) = L(B). 
Hence, L(B) G L(B’). Since B’ is a basis with 
minimum longest vector, equality is implied. q 

Consequently, every algorithm that finds a 
shortest basis also finds a basis with minimum 
longest vector. Furthermore, in the case of cycle 
spaces, finding the shortest (cycle) basis requires 
only polynomial number of steps using Horton’s 
algorithm. The algorithm can be roughly de- 
scribed as follows. First, for each pair of a vertex 
x and an edge (a, b) find a shortest path p(a, x> 
between a and x and a shortest path p(b, x) 
between b and X. Then form a cycle using 
p(a, x), p(b, xl and (a, b) unless p(a, x) and 
p(b, x) share any vertex other than x. In the 
latter case the degenerated cycle is ignored. Con- 
sequently, the number of cycles generated, r, is 
bounded by mn where m is the number of edges 
and n is the number of nodes. Finally a greedy 
algorithm is used which selects in each step the 
shortest cycle among the r cycles generated in 
the previous phase such that the newly selected 
cycle is independent of the previously selected 
ones. The last step is implemented by applying 
Gaussian elimination to a O-l matrix whose rows 
are the vectors corresponding to the r cycles 
generated in the first phase of the algorithm. 

Theorem 4 shows that this algorithm also solves 
the SMCB problem. 
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