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Abstract

Pedigree loops pose a di�cult computational challenge in genetic linkage analysis. The
most popular linkage analysis package, linkage, uses an algorithm that converts a looped
pedigree into a loopless pedigree, which is traversed many times. The conversion is con-
trolled by user-selection of individuals to act as loop breakers. The selection of loop breakers
has signi�cant impact on the running time of the subsequent linkage analysis. We have
automated the process of selecting loop breakers, implemented a hybrid algorithm for it
in the fastlink version of linkage, and tested it on many real pedigrees with excellent
performance. We point out that there is no need to break each loop by a distinct individual
because, with minor modi�cation to the algorithms in linkage/fastlink, a single individ-
ual that participates in multiple marriages can serve as a loop breaker for several loops. Our
algorithm for �nding loop breakers, called LoopBreaker, is a combination of: (1) a new
algorithm that is guaranteed to be optimal on the special case of pedigrees with no multiple
marriages and (2) an adaptation of a known algorithm for breaking loops in general graphs.
The contribution of this work is the adaptation of abstract methods from computer science
to a challenging problem in genetics.
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1 Introduction

Pedigree loops pose a di�cult computational challenge in genetic linkage analysis. In this
paper we address a combinatorial optimization problem, which we call the loop breaker

selection (LBS) problem that arises for looped pedigrees in the most popular genetic linkage
analysis software package, linkage [1, 2, 3]. We implemented our solution in fastlink [4, 5],
a faster version of linkage. We illustrate with real examples that our solution to the LBS
problem translates to faster computation times.

Our algorithm for �nding loop breakers is a combination of: (1) a new algorithm that is
guaranteed to be optimal on the special case of pedigrees with no multiple marriages and
(2) an adaptation of a known algorithm for breaking loops in general graphs. We also point
out that there is no need to break each loop by a distinct individual because, with minor
modi�cation to the algorithms in linkage/fastlink, a single individual that participates
in multiple marriages can serve as a loop breaker for several loops. This idea is adapted from
arti�cial intelligence [6].

Kong [7] pointed out in 1991 that the evaluation of the basic Elston-Stewart maximum
likelihood linkage analysis formula is a special case of a problem known in statistics and arti�-
cial intelligence as \probabilistic inference in Bayesian networks". Kong applied mathemati-
cal and software tools developed for the probabilistic inference problem to derive approximate
likelihood algorithms for pedigrees where the Elston-Stewart [8, 9] method is computation-
ally infeasible. We use the relationship between linkage analysis and probabilistic inference
to improve an existing implementation of the Elston-Stewart method.

Our work transcends three broad areas: combinatorial optimization, probabilistic infer-
ence, and genetics. The next two sections present the needed background information to
enable the presentation of our results in proper detail. The remainder of the paper consists
of a short methods section describing our implementation, a section describing our new al-
gorithm, a results section describing our the performance of our algorithm on real data, and
a discussion section.

2 Background

The essential input to a genetic linkage analysis computation is a pedigree. To illustrate
some de�nitions, we will use a pedigree containing a �rst-cousin marriage with 3 o�spring
(Figure 1). The pedigree in Figure 1 is drawn according to the conventions advocated
by the Pedigree Standardization Task Force [10]. For algorithmic purposes we prefer the
marriage graph representation of pedigrees promoted by Lange and Elston [9] and Cannings,
Thompson, and Skolnick [11]. Amarriage graph drawing of the �rst-cousin-marriage pedigree
is shown in Figure 2.

A marriage graph is an example of a graph. A graph consists of two sets, vertices and
edges. A vertex can represent any object; in our usage vertices represent individuals and
marriages. An edge is a pair v;w of vertices. In undirected graphs the edge pairs are
unordered and an edge is drawn v �� w. In directed graphs the edge pairs are ordered and
an edge from v to w is drawn v ! w. Two vertices are neighbors if there exists an edge
between them.
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Figure 1: A �rst-cousin marriage with three o�spring

1

4

11

2

3
3j4

5 6

7

9 10

8

1j2

7j8

5j6

Figure 2: Marriage graph for �rst cousin marriage pedigree
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Figure 3: First-cousin marriage with loop broken by cloning

We determine a marriage graph from a pedigree as follows. The vertex set consists of
two disjoint sets I and M where I is the set of individuals and M is the set of marriages.
The edge set consists of two types of edges; An edge m! i from each marriage vertex m to
each individual i who is an o�spring of m and an edge j ! m whenever individual j is one
of the spouses in marriage m (See Figure 2). We use xjy to denote the marriage vertex of
the individuals x and y. The vertical bar in this notation separates the two participants in
a marriage vertex as it is used to separate phase in phase-known genotypes.

A loop in a pedigree occurs precisely when the marriage graph has a cycle, if one ignores
the directions on the edges. A cycle in an undirected graph is a sequence of vertices v1; : : : vk
such there are no duplicate vertices, except v1 = vk and each pair of consecutive vertices
vi; vi+1 has an edge vi �� vi+1 between them. For the loop in the pedigree of Figure 1,
the corresponding cycle in Figure 2 is: 1j2; 4; 3j4; 7; 7j8; 8; 5j6; 5; 1j2, where we ignore the
directions on the edges. Cannings, Thompson, and Skolnick [11] distinguished marriage
loops and inbreeding loops, but this distinction is neither important for our purposes, nor
clear when a pedigree has multiple overlapping loops.

A path in a graph is a sequence of distinct vertices v1; : : : vk such that each pair of
consecutive vertices vi; vi+1 has an edge vi �� vi+1 between them. A directed path in a
directed graph, is a path in which the edges all point in the forward direction. A graph is
connected if there is a path between every two vertices. All marriage graphs are connected.
A connected, undirected graph with no cycles is called a tree.

The essential goal of linkage analysis is to estimate the recombination fraction, �, based
on genotype (and phenotype) information about the pedigree. linkage and other linkage
analysis software packages use maximum likelihood methods, so they must compute the
pedigree likelihood for di�erent candidate values of �. To do the computation in LINKAGE,
one individual r is chosen as the root. Let P n r denote the set of all individuals in the
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pedigree except r. The program computes: L(P j�) = �gProb(r has genotype g j �; P nr): In
words, the likelihood of the pedigree conditional on � is the sum over all genotypes g, of the
conditional probability that r has genotype g conditioned on � and the information about
the other individuals in the pedigree. Elston and Stewart [8] were the �rst to observe that
in loopless pedigrees with one pair of founders this computation can be done e�ciently by
traversing the pedigree from bottom to top. Ott [12] extended the Elston-Stewart algorithm
to all loopless pedigrees. Lange and Elston [9] further extended the Elston-Stewart algorithm
to looped pedigrees by de�ning an operation we call cloning. Intuitively cloning means
making two copies of an individual and forcing the two copies to have the same genotype. In
terms of the marriage graph, an individual vertex i may be cloned if i has an incoming edge
(i's parents are in the pedigree) and i has an outgoing edge (i has a child in the pedigree).
To clone i, add an individual vertex i0 and replace each edge of the form i ! m with an
edge i0 ! m. Marriage vertices cannot be cloned. Figure 3, shows the marriage graph in
Figure 2, after person 7 has been cloned. Notice that by cloning individual 7, the cycle in
the marriage graph (and hence the loop in the pedigree) is broken. For this reason we call
the cloned individuals loop breakers.

Lange and Elston pointed out that after cloning individuals the following algorithm can
be used to compute the likelihood.

Input: A set of loop breakers fb1; : : : ; btg, a set of loop breakers clones fb0

1; : : : ; b
0

tg:
a set of possible genotypes of loop breakers fG1; : : : ; Gtg:

Output: The likelihood

like 0
For each vector [g1; : : : ; gt] 2 G1 � � � � �Gt

1. Compute the likelihood of the loopless pedigree conditional
on bi and b0

i having the same genotype gi, for i = 1; : : : t:
2. Sum the conditional likelihood into like.

return like

Let G = G1 � � � � � Gt. Linkage analysis computations can be slow when the Cartesian
product set G of possible loop breaker genotypes is large. Let jGij and jGj denote the sizes of
Gi and G respectively. The loop breaker selection (LBS) problem is to �nd a set of individuals
to clone so as to minimize jGj =

Q
i jGij, or equivalently, to minimize log jGj = �i log jGij.

The loop breaker selection problem applies to implementations of the Elston-Stewart
algorithm in all versions of linkage/fastlink. Other algorithms for traversal of looped
pedigrees, also called peeling, were proposed and implemented by Cannings, Thompson, and
Skolnick [11], and by Lange and Boehnke [13]. A related algorithm for peeling a looped graph
was considered in a more abstract, non-genetic setting by Lauritzen and Spiegelhalter [14].
That setting is described in the next section. Subsequent papers [15, 16, 17] develop opti-
mization algorithms for �nding a good peeling order for the Lauritzen-Spiegelhalter method.
These algorithms have not yet been applied to genetic linkage analysis.

Users of linkage/fastlinkmust currently solve instances of the LBS problemmanually
or with the assistance of a preprocessor program called loops [18] which identi�es loops in a
given pedigree. loops analyzes a pedigree and reports a set of loops (if any) that it contains.
According to [19], pp. 93{96, the suggested usage of loops is:
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1. Run loops on the current pedigree.

2. If loops reported at least one loop, choose an individual p in one loop to clone.

3. If p is selected in step 2, clone p and all previously selected loop breakers.

These steps are repeated until loops does not �nd any more loops. The procedure is not
di�cult to use to get a valid loop breaker set. Using this procedure guarantees a solution
to LBS that is minimal in the sense that no loop breakers can be omitted. The procedure
does not guarantee a solution to LBS that is minimum in the number of loop breakers.
Furthermore, there is no explicit guidance on how to choose the loop and the loop breaker
p at step 2, so that jGj is minimized.

3 Background from other �elds

The statistics and arti�cial intelligence literature (e.g., [14, 20]), treat the following problem
in which loop breaker selection arises as a subproblem. The input is a directed graph with
no directed cycles such that each vertex v corresponds to a random variable xv and such
that

P (x1; : : : ; xn) =
Y

v

P (xvjXA(v))

where XA(v) are the random variables corresponding to the vertices fa : a! v is an edgeg.
The output is the probability P (Y = yjZ = z) for any given disjoint subsets of variables
Y;Z � fx1; : : : ; xng. This problem is called the inference problem; it includes evaluating
the pedigree likelihood in linkage analysis as a special case. The inference problem is more
general since the random variables can be discrete, Gaussian, combination thereof, or other
types, and there could be any structure to the graph as long as it has no directed cycles. The
graph together with the probability distribution is called a Bayesian network. The inference
problem has application in domains where a probability distribution serves as a model, such
as economics, sociology, arti�cial intelligence, error correcting codes, and other �elds.

Kim and Pearl [21] developed a method to solve the inference problem for Bayesian
networks without loops and Pearl [22], unaware of [8, 9], extended it to Bayesian networks
with loops (see also [6]). Pearl's method includes a multi-copy extension of the Lange-Elston
cloning operation. Suppose that individual i to be cloned has outgoing edges i ! m1; i !
m2; : : : ; i! mk. Then it is possible to clone i with k new copies m1; : : :mk. Making more
than 2 copies does not change the applicability of the Lange-Elston algorithm that iterates
over G nor does it change the size of G. The generalized loop breaker selection problem is
to �nd a set of individuals to clone and the number of copies of each so as to minimize the
product

Q
i jGij or equivalently the sum

P
i log jGij.

Pearl's cloning has a very practical and speci�c application for marriage graphs. When
the individual i to be cloned participates in multiple marriages one can make multiple clone
copies of i, one per marriage. It is clear that this was not observed by the developers of
linkage because the constant 2 is hard-coded (i.e., not represented symbolically) for the
number of possible copies of an individual in many places in the software. We have modi�ed
fastlink to allow multi-copy cloning, and we illustrate in the results section how bene�cial
it is for speed.
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In Bayesian networks each vertex v can be selected as a loop breaker but if v is selected
it does not break loops formed by traversing a path a ! v  b, where both edges point
into v (because once the value of v is known, a and b become dependent and a virtual edge
connects them). The theory explaining this constraint is developed in [6] and it is based
on a graph-theoretic criterion called d-separation that fully characterizes which vertices are
conditionally independent of others [23]. This criterion is used to justify any solution to the
inference problem because any solution must use the properties of conditional independence
in order to be e�cient. For marriage graphs the selection of loop breakers is conceptually
easier because marriage vertices cannot be selected and therefore, the a! v  b condition
does not constrain the loop breaker selection. Consequently, in marriage graphs the direction
of the edges can be ignored for the purpose of �nding loop breakers (but not for the purpose
of likelihood computations).

For Bayesian networks, Suermont and Cooper [24] showed that the LBS problem belongs
to a class of intractable problems that computer scientists call NP-complete. This means
that it is highly unlikely that there is an algorithm to solve the problem optimally whose
computation time grows as a polynomial in the number of vertices. A similar result holds for
undirected graphs as well. For undirected graphs �nding a set of vertices whose removal (or,
equivalently, cloning) creates a graph with no cycles is known in combinatorial optimization
as the \feedback vertex set problem," and it was one of the �rst problems shown to be
NP-complete in the seminal work by Karp [25].

Based on Karp's NP-completeness result, computer scientists sought an algorithm that
has a computation time polynomial in the size of the input graph H and adheres to the
following property:

If Ĝ is the minimum-size set of genotype vectors for loop breakers of graph H and
G is set of genotype vectors found by the loop breaker selection algorithm, then
one is guaranteed that log jGj � c� log jĜj, where c > 1 is some error constant.

Such an algorithm is called a constant approximation algorithm. The �rst constant approxi-
mation algorithm for loop breaker selection is given in [26] (which appeared in a conference
version in early 1994). The error constant is 4, and the algorithm assures this constant only if
the sizes of jGij; i = 1 : : : t are all equal. A constant approximation algorithm that works also
when the sizes of jGij; i = 1 : : : t are not necessarily equal is described in [27]. A full analysis
of this algorithm, which achieves an error constant of 2, is given in [28]. A similar algorithm
is also given in [29]. The cited error constants are determined by a worst-case analysis; in
practice these algorithms usually �nd closer to optimal solutions, especially when there are
few loops. We use the simplest greedy algorithm analyzed in [28] as part of our hybrid loop
breaking algorithm.

4 Methods

Our loop breaker selection algorithm is implemented by modifying fastlink 3.0p [30].
It is implemented almost entirely as a subroutine called from the preprocessor program
unknown, with a few modi�cations elsewhere, primarily for the case of multiple marriages.
This program organization implies that the pedigree is input with a set of loop breakers

8



selected by the user, perhaps with the assistance of the loops [18] program. If our algorithm
can �nd a better set of loop breakers, the intermediate representation of the pedigree �le
(pedfile.dat and ipedfile.dat) is modi�ed accordingly. Our method could free the user
completely from the burden of selecting a loop breaker set, but this deviates from entrenched
patterns of usage for the linkage package. fastlink is available by anonymous ftp at
fastlink.nih.gov in the subdirectory pub/fastlink.

We compared fastlink, version 3.0p to the new version on some data sets with looped
pedigrees. All the runs were done using ILINK. We use a three-locus run (disease plus two
markers) in each case, except ALZ, where the data set has only one marker locus. The timing
experiments were run on an unloaded Sun SPARCStation 20 computer with 128 Mbytes of
RAM. This machine runs the operating system SunOS, version 5.5, which is also known
as Solaris, version 2.5, and is an implementation of UNIX. To compile all versions of the
programs we used the gcc compiler, version 2.7.2 using the -O 
ag for optimization. The
times reported in the next section are the sum of the user and system times given by the
time command. In those cases where the new algorithm �nds a better set of loop breakers
we also report estimates of the di�erence in the number of loop breaker vectors (i.e., jGj).

5 New Algorithm

Our main contributions are the development of a fast algorithm for the loop breaking selec-
tion problem using generalized cloning, and a demonstration, on real data, of a signi�cant
improvement in running time of linkage computations. As a subroutine of our algorithm, we
developed another LBS algorithm, termed SpanningTree, which is guaranteed to produce
an optimal loop breaker set whenever the input pedigree has no multiple marriages. In this
section we �rst describe the spanning tree algorithm, then we describe our main LBS al-
gorithm for general pedigrees, LoopBreaker, and, �nally, we conclude with experimental
results.

Marriage graphs have the property that every path alternates between a vertex from I,
representing an individual, and a vertex from M , representing a marriage. Whenever every
individual is married at most once, each vertex i in I has at most two neighboring vertices
m1 and m2 representing the marriage that brought i about and the one marriage that i may
participate in. We can now apply the following three transformations. First, every path of
the form m1 ! i! m2 is replaced with an edge m1 �� m2. Second, every individual i that
is not married is removed from the marriage graph along with the edge m1! i. Third, every
founder i is removed from the marriage graph along with the edge i ! m2. The resulting
undirected graph is denoted by H 0. The vertex set of H 0 is M and every edge represents an
individual. We now set the weight w(e) of each edge e in H 0 to be log jGij|the logarithm
of the number of genotypes of the corresponding individual.

Solving the LBS problem is equivalent to removing a set of edges whose sum of weights is
minimum from the undirected graph H 0 such that we remain with a tree. This is an instance
of the well studied maximumspanning tree problem in combinatorial optimization appearing
in virtually every text book on graph algorithms (e.g., [31]). One simple algorithmic solution
is as follows. Start with an empty graph T and repeat the following three steps: Select an
edge e in H 0 with maximum weight w(e). If e does not create a cycle in T , add it to T .
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Remove e from H 0. This algorithm was shown by Kruskal [32] to produce a tree T such
that the sum of the edge weights in T is maximum. Consequently, the sum of weights of
the edges left out is minimum. The edges left out in building T from the derived graph H 0

correspond to the individuals selected to be loop breakers in the marriage graph H.
The conversion of the marriage graph H to a graph H 0 is needed only for the purpose

of demonstrating via Kruskal's famous result that the joint genotype vector size of the
loop breakers set found by this algorithm is indeed minimum. Our algorithm can be easily
described in terms of the marriage graph H itself without the transformation to the graph
H 0, using the notation H[V ]. The notation assumes that V is a subset of the vertices of H.
The graph H[V ] is the undirected graph whose vertex set is V and whose edge set consists
of all edges in H that connect two vertices in V . Our algorithm is as follows.

ALGORITHM SpanningTree

Input: A marriage graph H with a marriage vertex set M ,

an individual vertex set I, and a genotype vector size jGij for each i 2 I.
Output: A loop breaker set F of minimum joint genotype vector size.

F  ;
While I 6= ; do

1. Pick a vertex i 2 I for which jGij is maximum
2. If H[M [ fig] is not a tree then M  M [ fig else F  F [ fig
3. I  I n fig

return F

When a pedigree contains multiple marriages the transformation from H to H 0 is no
longer justi�ed and a di�erent approach should be preferred. The idea is that one individual
that participates in multiple marriages can serve as a loop breaker to several loops and the
question is how to select loop breakers so that the joint genotype vector size of the loop
breaker set is as small as possible. There are two, possibly con
icting, selection criteria: We
should select an individual that participates in as manymarriages as possible that form loops,
and we should select individuals that have a small genotype vector size jGij. The algorithm
computes for each individual a cost f(i) that depends on both criteria and greedily chooses
an individual i with the smallest cost as a loop breaker. It then removes the individual i
from the marriage graph. If the resulting graph has no multiple marriages anymore, then
SpanningTree resolves the remaining problem optimally.

The function f uses a heuristic estimate of the number of loops in which i participates by
�rst removing from the marriage graph vertices that do not participate in any loop and then
checking the number of vertices that are neighbors of i in the remaining graph. This number
is denoted by d(i)| the degree of i. The function f is then de�ned by f(i) = log(jGij)=d(vi).
Low values of f(i) indicate that individual i breaks each loop at the cost of adding only a
small number of genotypes to the loop breakers set. The algorithm is as follows.
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ALGORITHM LoopBreaker

Input: A marriage graph H with a marriage vertex set M ,

an individual vertex set I, and a genotype vector size jGij for each i 2 I.
Output: A loop breaker set F having low joint genotype vector size.

F  ;
Repeatedly remove from H any vertex in I [M that has only one neighbor
If no individual is multiply married then return F [ SpanningTree(H)

While the graph H is not empty do
1. Pick an individual i for which log(jGij)=d(i) is minimum in H
2. F  F [ fig
3. I  I n fig
4. Repeatedly remove from H any vertex in I [M that has only one neighbor
If no individual is multiply married then return F [ SpanningTree(H)

return F

The loop breaker sets found by LoopBreaker are not guaranteed to be optimal but in
the data sets we have examined, the results seem optimal, due to the small number of loops
in human pedigrees,

There are some subtle technical changes we introduced to solve two implementation
problems. One problem is that linkage/fastlink requires the input pedigree to correspond
to a marriage graph that is a tree (cf. the discussion on the MD data set below). When a
pedigree has a loop breaker with k marriages, it may be the case that making k + 1 copies
disconnects the marriage graph. Therefore, we start with 2 copies and keep adding copies,
unless the marriage graph becomes disconnected.

A second problem in fastlink is to estimate the sizes of possible genotype sets jGij. For
this purpose we employ the user's initial selection for loop breakers and carry out fastlink's
built-in genotype inference algorithm in order to rule out impossible genotypes. This method
does not rule out all impossible genotypes, however, it provides su�ciently-accurate relative
estimates of jGij for di�erent candidate loop breakers.

6 Results

We illustrate the performance of the new version of fastlink using the following data sets,
each containing one looped pedigree. We also tested with a few other looped pedigrees
where the new software did not change the user's loop breaker selection. The running time
of LoopBreaker is too negligible to be e�ectively measured.

� BAD: data on a portion of the Old Order Amish pedigree 110 (OOA 110), with bipolar
a�ective disorder (BAD) from the laboratory of David R. Cox and Richard M. Myers
at the University of California at San Francisco [33]. This pedigree has 1 loop. The
assumed mode of inheritance is dominant with reduced penetrance.

� ALZ: Data on an Amish family with Alzheimer's disease from Margaret Pericak-Vance,
Jonathan Haines, and Marcy Speer [34]. The pedigree was sent to us with 4 loop
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Data Set Old N New N Old Time New Time Speedup
ALZ 15552 8256 67m 18m 3.7
BAD 8 3 154s 61s 2.5
JP 126 6 329s 16s 21
MD 3072 32 1297m 28m 46
RP01 1296 364 247m 41m 6.0

Table 1: Comparison of fastlink 3.0P and new code

breakers, but with our new code we discovered that this disconnected the pedigree.
Only 3 loop breakers are needed. The results in the table use 3 of the original loop
breakers to start. The assumed mode of inheritance is dominant.

� JP: data on a small family some of whose o�spring exhibit autosomal recessive juvenile
parkinsonism from Shoji Tsuji [35]. This is a small pedigree (number 547 in the cited
paper) with one loop created by a marriage of second cousins once removed. We use
the pedigree as sent to us by Dr. Tsuji.

� MD: data on a large family exhibiting two clinically distinct forms of muscular dystro-
phy from Ken Morgan, Tracey Weiler, Cheryl Greenberg, and Klaus Wrogemann [36].
The pedigree was presented to us with 7 loop breakers. There are 2 multiply married
individuals. The mode of inheritance is recessive.

� RP01: data on a large family, UCLA-RP01, with autosomal dominant retinitis pig-
mentosa (RP1) from the laboratory of Stephen P. Daiger. This pedigree has 2 loops
and 2 multiply married individuals. As shown in [37], this pedigree had to be split
into 3 pieces because computation on the whole family together was prohibitively long.
Here we leave the loops in.

More detailed descriptions of the data sets can be found in the papers cited for each one.
The results are shown in Table 1. We report a number N , which is the number of loop

breaker genotype vectors for which the likelihood is not provably 0, by any of the preliminary
checks in fastlink. The number N is not a perfect predictor of running time because the
preliminary checks for 0 likelihood are not exhaustive; the pedigree traversal time varies with
the loop breaker genotypes, and the average pedigree traversal time changes when the loop
breaker set changes.

The improvements on BAD and JP illustrate that even on 1-loop pedigrees, linkage
experts will not always choose the optimal loop breaker. The improvements on MD and
RP01 illustrate the case of multiple marriages in di�erent ways. The original MD used 7
loop breakers; by using multi-copy cloning, we can reduce the number to 5. Both the original
RP01 and the new RP01 use 2 loop breakers, but multi-copy cloning allows us to break a
loop in a di�erent place where jGij is smaller.

The improvements in ALZ are important even beyond the running time change. The
original ALZ pedigree was presented to us with 4 loop breakers. Using our algorithm we
discovered that the associated marriage graph is disconnected, and only 3 loop breakers
should be used. Using 4 loop breakers linkage/fastlink gives plausible, but wrong results.
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linkage/fastlinkhad a longstanding 
aw that some pedigrees with disconnected marriage
graphs would be tolerated without a crash or 0 likelihood; this 
aw is now �xed automatically
by using LoopBreaker.

7 Discussion

In this paper, we addressed the loop breaker selection (LBS) problem in genetic linkage
analysis and implemented practical solutions in fastlink. We presented an optimal algo-
rithm for pedigrees without multiple marriages and an approximation algorithm for general
pedigrees. The latter algorithm uses a generalized cloning operation that allows more than
2 copies of a multiply married individual. We illustrated that the new algorithm speeds up
the computations on real pedigrees.

Users of fastlink will no longer have to think carefully about where to break their
pedigree loops. For the sake of backwards compatibility to previous versions of link-
age/fastlink and syntactic compatibility with other programs, we require the user to
choose a loop breaker set. Choosing a valid loop breaker set is not di�ciult to do using the
loops program, as described in Section 2. What is di�cult for users to do, and what we
have automated is to choose a loop breaker set that leads to a fast running time of the link-
age analysis. We �xed the longstanding 
aw that linkage/fastlink might give plausible,
incorrect results when the user speci�ed too many loop breakers.

Our implementation is speci�c to fastlink, but the algorithms we described may be
applicable to other software packages. Most notably, vitesse [38] is currently the best
linkage analysis package for large simple pedigrees, but it does not currently accept complex
pedigrees. It seems possible to extend vitesse to complex pedigrees using the approach of
Lange and Elston [9], in which case our algorithms for the LBS problem would apply.

Our work follows in the spirit of some other papers such as [13, 7] that de�ned mathemat-
ically precise optimization problems based on existing linkage analysis software, presented
new algorithms for those problems, and demonstrated the practicality of these algorithms
with software implementations.
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