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Abstract 

We show how to find a small loop cutset in a Bayesian network. Finding such a loop cutset 
is the first :itep in the method of conditioning for inference. Our algorithm for finding a loop 
cutset, called MGA, finds a loop cutset which is guaranteed in the worst case to contain less 
than twice the number of variables contained in a minimum loop cutset. The algorithm is based 
on a reduction to the weighted vertex feedback set problem and a 2-approximation of the latter 
problem. The complexity of MGA is 0( m + n log n) where m and n are the number of edges 
and vertices respectively. A greedy algorithm, called GA, for the weighted vertex feedback set 
problem is ialso analyzed and bounds on its performance are given. We test MGA on randomly 
generated graphs and find that the average ratio between the number of instances associated with 
the algorithm’s output and the number of instances associated with an optimum solution is far 
better than the worst-case bound. 

1. Introduction 

Most inference algorithms for the computation of a posterior probability in general 

Bayesian networks have two conceptual phases. One phase handles operations on the 
graphical structure itself and the other performs probabilistic computations. For example, 
the clique tree algorithm requires us to first find a “good” clique tree and then perform 

*Originally submitted as a Research Note. This research was supported by the fund for the promotion of 

research at the Technion. 
* Corresponding author. E-mail: dang@cs.technion.ac.il. 

’ E-mail: anyuta@cs.technion.ac.il. 

0004-3702/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 

SSDIOOO4-3702(95)00004-6 



168 A. Becker; D. Geiger/Arhjicial Intelligence 83 (1996) 167-188 

probabilistic computations on the clique tree [ 171, Pearl’s method of conditioning re- 
quires us first to find a “good” loop cutset and then perform a calculation for each loop 
cutset [ 19,201. Finally, Shachter’s algorithm requires us to find a “good” sequence of 
transformations and then, for each transformation, to compute some conditional proba- 
bility tables [21]. 

In the three algorithms just mentioned the first phase is to find a good discrete 
structure, namely, a clique tree, a cutset, or a sequence of transformations. The goodness 
of the structure depends on a chosen parameter that, if selected appropriately, reduces the 
probabilistic computations done in the second phase. Finding a structure that optimizes 
the selected parameter is usually NP-hard and thus heuristic methods are applied to find 

a reasonable structure. Most methods in the past had no guarantee of performance and 
performed very badly when presented with an appropriate example. For example, the 
greedy algorithms of [23,24] for the method of conditioning may in the worst case 
perform as bad as a factor of n/2 where n is the number of variables in a Bayesian 
network (as shown in [23] >. That is to say, the size of the loop cutset found by these 
algorithms can include as many as n/2 variables instead of just 2-a disastrous outcome. 
Similar situations occur with other inference algorithms. 

However, recently, among other results, Bar-Yehuda et al. [ l] have developed an 
algorithm that finds a loop cutset that is guaranteed in the worst case to contain less 
than 4 times the number of variables contained in a minimum loop cutset. This guarantee 
is given only when the number of values of every variable in the network is the same. 
Note that this result means that the number of instances associated with a loop cutset F 
found by their algorithm (e.g., rlFl if the number of values of every variable is r) is no 

more than the number of instances associated with a minimum loop cutset raised to the 
forth power. Note also that the problem of finding a minimum loop cutset was shown 

to be NP-hard in [ 241. 
We offer a new algorithm for finding a loop cutset, called MGA, that finds a loop 

cutset which is guaranteed in the worst case to contain less than twice the number 
of variables contained in a minimum loop cutset. That is, the number of instances 
associated with a loop cutset found by our algorithm is no more than the number 

of instances associated with a minimum loop cutset raised to the second power. The 
complexity of MGA is 0( VJ + nlog n) where m and n are the number of edges and 

vertices respectively. * Unlike [ 11, our result holds even when the number of values 
changes from one variable to another. Like [ 11, our solution is based on a reduction 
to the weighted vertex feedback set problem, defined in the next section. We should 
emphasize that all these performance guarantees are for the worst case. 

In Section 4 we test MGA on randomly generated graphs and find that the average 
ratio between the number of instances associated with the algorithms’ output and the 
number of instances associated with an optimum solution is far better than the worst-case 
bound. 

From a theoretical point of view, Bar-Yehuda et al. [l] note that as the number of 
variables grows to infinity the worst-case ratio between the size of a loop cutset found 
by any polynomial algorithm and the size of a minimum loop cutset cannot be less than 

* Throughout, log x stands for log, x. 
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two unless a similar result is obtained for the weighted vertex cover problem (WVC). 3 
Consequently, we conjecture that no polynomial algorithm for the loop cutset problem 
performs better in the worst case than the algorithm presented in this paper as graphs 
grow to infinity in size. 

We shlould note that another application of MGA is in the area of constraint satis- 
faction [ #6,7]. Dechter and Pearl use a vertex feedback set in order to solve constraint 
satisfaction problems in such a way that the search complexity depends on the size of 
the vertex feedback set utilized by their algorithm. 

The rest of the paper is organized as follows. In Section 2 we outline the method of 

conditioning, explain the related loop cutset problem and describe the reduction from 
the loop cutset problem to the weighted vertex feedback set problem (WVFS) ; Section 2 
summarizes previous works. In Section 3 we provide two new approximation algorithms 
for the WVFS problem which is by itself an NP-complete problem [ 9, pp. 191-1921. 
Finally, in Section 4 we present experiments that test the average performance of our 
algorithms. 

2. The loop cutset problem 

Pearl’s method of conditioning is one of the known inference methods for Bayesian 
networks. A short overview of the method of conditioning and definitions of Bayesian 
networks are needed. The reader is referred to [20,25] for more details. 

Let P(ut,. . . , u, ) be a probability distribution where each Ui draws values from a 
finite set called the domain of Ui. A directed graph D with no directed cycles is called 
a Bayesian network of P if there is a l-l mapping between (~1,. . . , u,} and vertices 
in D, such that ui is associated with vertex i and P can be written as follows: 

P(u,,... ,U,) =fiPCUi 1 uil9...9uij(;,)v 

i=l 

(1) 

where il. . . . , i,i(i) are the source vertices of the incoming edges to vertex i in D. 

Suppose now that some variables {ut, . . . , q} among (~1,. . . , u,} are assigned spe- 
cific values {yt , . . . , UI} respectively. The updating problem is to compute the probability 

P(u;Iul=zq ,..., u~=tq) fori=l,..., It. 
The concept of d-separation, defined below, is crucial for finding solutions to the 

updating problem. A trail in a Bayesian network is a subgraph whose underlying graph 
is a simple path. A vertex b is called a sink with respect to a trail t if there exist two 
consecutive edges a --+ b and b +-- c on t. A trail t is active by a set of vertices Z if ( 1) 
every sink with respect to t either is in Z or has a descendant in Z and (2) every other 
vertex along t is outside Z. Otherwise, the trail is said to be blocked (d-separated) by 
Z. 

Verma and Pearl [ 261 proved that if D is a Bayesian network of P( ~1, . . . , u,) and 
all trails between a vertex in {rl, . . . , r[} and a vertex in {st , . . . , sk} are blocked by 

7 The WV C problem is to find a set of vertices that contains an endpoint of every edge in a given undirected 

graph and which has a minimum weight among all such sets. 
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{tt , . . . , t,,!}, then the corresponding sets of variables {uT,, . . . ,u,.,} and {u,, , . . . , u,~} 
are independent conditioned on {u,, , . . . , u,“,}. Furthermore, Geiger and Pearl [ lo] 
proved a converse to this theorem. Both results are presented and extended in [ 111. 

Using the close relationship between blocked trails and conditional independence, 
Kim and Pearl [ 161 developed an algorithm UPDATE-TREE that solves the updating 
problem on Bayesian networks in which every two vertices are connected with at most 
one trail. These networks are called singly-connected. Pearl then solved the updating 
problem on multiply-connected Bayesian networks by selecting a set of vertices called 

a loop cutset such that once the corresponding variables are instantiated the remaining 

network is singly-connected [ 191. More precisely, the algorithm can be described as 
follows: 

First, a set of vertices S is selected such that any two vertices in the network are 
connected with at most one active trail by S U Z, where Z is any subset of vertices. 
Then, UPDATE-TREE is applied once for each combination of value assignments to 
the variables corresponding to S, and, finally, the results are combined. This algorithm 
is called the method of conditioning and its complexity grows exponentially with the 
size of S. The set S is called a loop cutset. Note that when the domain size of the 
variables varies, then UPDATE-TREE is called a number of times equal to the product of 

the domain sizes of the variables whose corresponding vertices participate in the loop 
cutset. If we take the logarithm of the domain size (number of values) as the weight of 
a vertex, then finding a loop cutset such that the sum of its vertices weights is minimum 
optimizes Pearl’s updating algorithm in the case where the domain sizes may vary. 

We now give an alternative definition for a loop cutset S and then provide an approx- 
imation algorithm for finding it. This definition is borrowed from [ 11. The under-Eying 

graph G of a directed graph D is the undirected graph formed by ignoring the directions 
of the edges in D. A cycle in G is a path whose two terminal vertices coincide. A loop 

in D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink with 
respect to a loop r if the two edges adjacent to v in r are directed into v. Every loop 
must contain at least one vertex that is not a sink with respect to that loop. Each vertex 
that is not a sink with respect to a loop r is called an allowed vertex with respect to 

r. A loop cutset of a directed graph D is a set of vertices that contains at least one 
allowed vertex with respect to each loop in D. The weight of a set of vertices X is 

denoted by w(X) and is equal to xtrCx w(v) where w(x) = log( 1x1) and 1x1 is the size 
of the domain associated with vertex x. A minimum loop cutset of a weighted directed 
graph D is a loop cutset F* of D for which w( F*) is minimum over all loop cutsets 
of G. The loop cutset problem is defined as finding a minimum loop cutset of a given 
weighted directed graph D. 

The approach we take is to reduce the weighted loop cutset problem to the weighted 
vertex feedback set problem, as done by [ 11. We now define the weighted vertex 
feedback set problem and then the reduction. 

Let G = (YE) be an undirected graph, and let w : V + R+ be a weight function 
on the vertices of G. A vertex feedback set of G is a subset of vertices F C V such 
that each cycle in G passes through at least one vertex in F. In other words, a vertex 
feedback set F is a set of vertices of G such that by removing F from G, along with all 
the edges incident with F, we obtain a set of trees (i.e., a forest). The weight of a set 
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of vertices X is denoted (as before) by w(X) and is equal to CL,_ w(u). A minimum 
vertex feedback set of a weighted graph G with a weight function w is a vertex feedback 
set F* of G for which w(F*) is minimum over all vertex feedback sets of G. The 
weighted vertex feedback set problem (WVFS) is defined as finding a minimum vertex 
feedback set of a given weighted graph G having a weight function w. 

In the next section we offer an algorithm, called MGA, for approximately solving the 
weighted vertex feedback set problem. The algorithm is guaranteed to output a weighted 
vertex feedback set whose weight is less than twice the minimum weight. 

The reduction is as follows. Given a weighted directed graph (D, w) (e.g., a Bayesian 

network), we define the splitting weighted undirected graph D, with a weight function 
w,~ as from [ 11. Split each vertex u in D into two vertices uin and u,,i in D, such that 

all incoming edges to u in D become undirected incident edges with Uin in D,, and 
all outgoing edges from u in D become undirected incident edges with u,,i in D,. In 

addition, connect uin and uout in D, by an undirected edge. Now set w, (Uin) = 0;) and 
w,~ ( uO,i) = w(u) . For a set of vertices X in Ds, we define $(X) as the set obtained by 
replacing each vertex uin or UoUt in X by the respective vertex u in D from which these 
vertices originated. 

Our algorithm can now be easily stated. 

Algorithm LC. 
Input: A Bayesian network D. 

Output: A loop cutset of D. 
( 1) Construct the splitting graph D, with weight function w,; 

(2) Apply MGA on (D,, w,) to obtain a vertex feedback set F; 
(3) Output e(F). 

It is immediately seen that if MGA outputs a vertex feedback set F whose weight 
is no more than twice the weight of a minimum vertex feedback set of D,, then @(F) 
is a loop cutset of D with weight no more than twice the weight of a minimum loop 
cutset of D. This observation holds because there is an obvious one-to-one and onto 
correspondence between loops in D and cycles in D, and because MGA never chooses 
a vertex that has an infinite weight. 

3. Algorithms for the WVFS problem 

Recall that the weighted vertex feedback set problem is defined as finding a minimum 
vertex fe’edback set of a given weighted graph G. 

3.1. The greedy algorithm 

We fimt analyze the simplest of all approximation algorithms for the weighted vertex 
feedback set problem-the greedy algorithm. This algorithm is especially interesting 
because Iof its simplicity. Assume we are given a weighted undirected graph G with a 
weight function w. The algorithm starts with G after removing all vertices with degree 
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0 or 1 and repeatedly chooses to insert a vertex u into the constructed vertex feedback 
set if the ratio between u’s weight w(u) and u’s degree d(u) in the current graph is 
minimal across all vertices in the current graph. When u is selected, it is removed from 
the current graph and then all vertices with degree 0 or 1 are repeatedly removed as 
well. This step is repeated until the graph is exhausted. 

This algorithm and parts of its analysis are influenced by the work of Chvatal (1979) 
who analyzed the greedy algorithm for the weighted set cover problem (WSC) and 

by Lovasz ( 1975) and Johnson ( 1974) who analyzed the unweighted version of this 
problem. 

Algorithn GA. 
Input: A weighted undirected graph G( Y E, w) . 
Output: A vertex feedback set F. 

F+- 0; it 1; 
Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent edges 
from E and insert the resulting graph into Gi. 
While G; is not the empty graph do 

( 1) Pick a vertex u; for which W(Ui)/d( Vi) is minimum in Gi; 
(2) F + F u {Q}; 

(3) V + V\ {Ui}; 

(4) iti+l; 

(5) Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent 
edges from E and insert the resulting graph into Gi. 

end 

In the rest of this section we prove that the performance ratio of GA is bounded 
by 210gd + 1 where d = max,,Ev d(u) is the degree of the graph. Recall that the 
performance ratio of an approximation algorithm is the worst-case ratio between the 
weight of the algorithm’s output and the weight of an optimal solution. In Section 4, 
we show experimentally that a slight variant of this algorithm when combined with the 
reduction algorithm LC convincingly outperforms the algorithms given by [ 23,241. 

Note that the vertices in F (the output of GA) are denoted by {ut , ~2,. . . , ut} where 

the u; are indexed in the order in which they are inserted into F by GA and where 
t = 1 F(. Let di( u) denote the degree of vertex u in Gi-the graph generated in iteration 
i of GA-and let x be the set of vertices of Gi. An edge is covered by the algorithm if 
forsomei=l,..., t, one of its endpoints is ui and the edge exists in Gi. Note that the 
set of vertex feedback sets of G and Gt is the same and that the degree of every vertex 
in Gt is smaller or equal to the degree of that vertex in G. 

Let c; = w(Ui)/di(ui) and let C(e) = ci be the edge weight of an edge e removed 
at iteration i. Note that for every j < i we have W( Uj) /dj (Uj) < W( Ui) /d,i( Vi) because 
vertices are selected in increasing order of these ratios. Also note that for j < i, 

d,i (0;) 3 d;( Vi) since the algorithm never adds edges. Thus, 

c,j E W(U,i)/dj(U,i) < w(Ui)/di(ui) E ci, (2) 

for 1 < j < i < 1 FI, as originally claimed by [ 31 in the context of the WSC problem. 
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To analyze the performance ratio we use a lemma that bounds the number of edges 
in G; covered by the algorithm until its termination. We need the following definitions. 
Let d*(u) be the number of edges whose one endpoint is u and the other is a vertex 
in X. A linkpoint is a vertex that has degree 2 and a brunchpoint is a vertex that has a 
degree larger than 2. (A self-loop adds 2 to the degree of a vertex.) 

Lemma 1. Let F={ul,... , u,} be a vertex feedback set produced by GA for a graph 
G, 6 = {Li, . . . , u,}, and F* be any vertex feedback set of G. Also let FF = F* fl V;: 
where E is the set of vertices of Gi-the graph produced in iteration i of GA. Then, 

Proof. Let Fy = F” r~ Q. We will prove two inequalities. First, 

C(a!i(~) -2) + 21FF[ 6 2 C di(u) 
I>EIS L+F;* 

and then 

(4) 

(5) 

According to our notations, 

~(di(4 - 2) = c <dF; (0) - 2) + c +(u) + c (4(u) - 2). 
VEV, PEF,: LIEF,? UEF;* 

Furthermore, the graph induced by F: is a forest and since the number of edges in a 
forest is smaller than the number of vertices, we have ‘&F; d?l (u) /2 < IF;/. Thus 

C,,,F; (dF; (u) - 2) < 0. Consequently, 

x(d;(u) - 2) + 214*1 < c dF;(u) + c 4(u) 6 2 c di(u). 
PEl! VET,* u E F; UEFi* 

The proof of Eq. (5) is constructive. We repeatedly apply the following procedure 
on G; selecting in each step a vertex u,i E Fi and showing that there are terms in the 

right-hand side (RHS) of Eq. (5) that can contribute dj (uj) to the RHS and have not 
been used for any other u E Fi. Set H = Gi and for k = i, . . . , t do as follows: 

Pick the vertex uk. If uk is a linkpoint in H then follow the two paths p1 and p2 in 
H emanating from Ok until the first branchpoint on each side is found. There are three 
cases to consider. Either two distinct branchpoints bl and b2 are found, one branchpoint 
bl (in which case p1 and p2 define a cycle) or none (if the cycle is isolated). In the 
first case the two edges on p1 and p2 whose endpoints are bl and b2, respectively, are 
associated with the terms dk( bl) - 2 > 0 and dk( b2) - 2 > 0 in the RHS and so, since 
for every vertex u in Gk, dk( u) < di(u), each of these terms can contribute 1 to the 
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sum Ct.EV (di( U) - 2). In the second case, similarly, the two edges on pi and p2 whose 
endpoints is bt are associated with the term &( bt ) - 2 > 0 and so, if dk (bl ) > 3, this 
term can contribute 2 to the sum CUEC: (di( u) - 2). If dk (bl ) = 3 we continue to follow 
the third path from 61 (i.e., not pt or ~2) until another branchpoint b2 is found and 
the last edge on that path is associated with dk( b2) - 2 which can contribute the extra 
missing 1 to the RHS. Finally, if no branchpoint is found, then on the cycle in which uk 
resides there must exist a vertex from FF that resides on no other cycles of H (hence 

the term 21 FT\ in the RHS). Now, if Uk is a branchpoint, then the term dk( uk) - 2 

appears in both sides of the inequality. In this case, sequentially remove dk(Uk) - 2 of 
the dk(Uk) edges adjacent to uk such that after each removal the vertices with degree 
0 or 1 are removed from H as well. Thus, uk remains a linkpoint in which case the 
procedure for a linkpoint is applied. Finally, remove uk, and repeatedly remove all the 
vertices with degree 0 or 1 from H. Repeat until Fi is exhausted. 0 

Note that the above proof does not use the weight function of G and thus the stated 

inequality holds even when in step (1) of GA’s main loop the vertex ui is selected 
arbitrarily regardless of its current degree or weight. We will use this observation in the 

next section. 
Let F* be a minimum weight feedback set of G( YE, w) and let B* = V \ F*. 

Denote Fp = F* II K and FF = F* n K. Lemma 1 holds for every vertex feedback 
set F* and therefore, in particular, when F* has minimum weight. We now show that 

w(F) < (210gd + 1) . w(F*). 

W(F) =&w(Ui) =kCi.di(Ui) 

i=l i=l 

= Cl kdi(ui) +k(ci-ci-l)kdj(uj). 

i=l i=2 .j=i 

Since ci > CL-1 and due to Eq. (3), we get 

W(F) <~CI C dl(u) +C2(ci-ci-1) C di(u) 
L’EF; i=2 UEF;* 

f f-1 

=C2ci C di(U) -C2ci C di+l(u). 

i=l ~1 E F;* i=l UEF:,, 

(6) 

(7) 

Thus, 

+ f t-1 

W(F) <22Ci C di(u> +C2Ci C di(U) -C2ci C di+l(U) 
i=l uEFi*\F,;, i=l UEF:,, i=l UEF,;, 

C di(u) +ci C (d(u) - di+l(u)) +c, C d,(u) . 
‘GF;*\“;;, “EF,;, > VEF,’ 1 
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However, since the last sum on the right-hand side merely counts the edge weights 
according to the iteration they are assigned a weight, we get, 

w(F) 6 2 c c C(e), (8) 
UEF’ <ET1 (U) 

where I’, I(U) denotes the set of edges in Gt for which at least one endpoint is u. 
We now show that for every u E F*, 

w(u) [H(d(u)) - l/2] > C C(e), 
&I-I (0) 

(9) 

where H(m) = Cy!, l/ i, using the following argument which is similar to the one used 

in [3]. 
Let s be the largest superscript such that d,(u) > 0. Consequently, 

C C(e) = C(di(u) - di+l(u)) * (W(Ui)/di(Ui)) 

&I‘1 (ISI i=l 

6 W(u) CC&(u) -di+l(u))/di(u)v 
i=l 

where the inequality is due to Q. (2). Furthermore, it can be shown by induction that 

whenever nr and n2 are positive integers satisfying n2 < nt. Thus, and since d,(u) > 2, 

s-1 

c C(e) Q w(u) x[H(ddu)) - H(di+l(u))l +H(Uu)) - l/2 . 
.“Gf,(l~) i=l 

Since the right-hand side is equal to w(u) [ H(dl (u)) - l/2], Eq. (9) follows. Com- 

bining Eqs. (8) and (9) yields, 

w(F;I < 2 c [H(d(u)) - l/2] . w(u) $ [2H(d) - l] .w(F*). 
uEF* 

Thus. 

Theorem 2. The pelformance ratio of GA is bounded by 2H(d) - 1. 

Notably, since H(d) < log d -t 1 (for d > 1) , the performance ratio of GA is bounded 

by 210gd + 1. 
We now describe a sequence of graphs for which GA achieves a performance ratio 

2H(d) - 2. Consequently, the upper bound given by Theorem 2 is rather tight. 
Let B( ~5, R, E’) be a complete bipartite graph where R = (~1, . . . , ur} and where L 

also cons&s of r vertices. We slightly modify B( L, R, E’) as follows to obtain a graph 
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R 

Fig. I. The graph G for r = 3. 

G. We add a new vertex a which is connected to each vertex in L with an edge and we 
add a new vertex b which is connected to each vertex in R with an edge. Furthermore, 
each edge (1, Ui) between a vertex 1 in L and a vertex Ui in R is replaced with a chain 
of two edges and a new middle vertex whose weight is 2/ (i + 1) . The set of these 
middle vertices is denoted by 2. The weight of every vertex in L is 1 and the weight 
of all other vertices in G is infinitely large. Fig. 1 shows G for r = 3. 

Consider the behavior of GA on G. Suppose the algorithm chooses the vertices in Z 
for the vertex feedback set according to increasing order of weight-to-degree ratios. The 
weight of this vertex feedback set is 2r( H(d) - 1) where d = r + 1 is the degree of G. 
However, L itself is a minimum vertex feedback set of G having a weight r. It follows 
that the performance ratio achieved by GA for these graphs is 2H(d) - 2. 

It may seem that GA can be improved if in each step the algorithm will remove every 
vertex that does not reside anymore on a cycle in the current graph rather than remove 
only those vertices that have degrees 0 or 1. However, even for this slightly modified 
algorithm, which we shall call GA’, the conclusions given by Theorem 2 and the above 
example still hold, namely, the worst-case performance can hardly be affected by this 
change. In fact, there are examples in which GA is superior and examples where GA’ 
is superior. However, on the average, GA’ performs slightly better than GA. 

Finally we note that the output F of GA need not be a minimal vertex feedback set of 
G, that is, there may exist a vertex u in F such that F \ {u} is still a vertex feedback set 
of G. If we had removed such redundant vertices from F, is we will in the next section, 
this modification would not by itself have improved the (worst-case) performance ratio 
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of GA below 2H(d) - 2 because the output Z of GA for the above example is in fact a 
minimal vertex feedback set that achieves the stated performance ratio. This discussion 
applies to’ GA’ as well. 

3.2. The modijed greedy algorithm 

We now present a modified greedy algorithm, called MGA, whose performance ratio 
is bounded by the constant 2. The changes we introduce into GA are quite minor and 
so it is interesting that such a vast improvement in the performance ratio is obtained. A 
similar phenomenon is reported in the context of the weighted vertex cover problem [ 41. 

MGA has two phases. In the first phase MGA repeatedly chooses to insert a vertex 
u into the constructed vertex feedback set if the ratio between U’S weight w(v) and u’s 
degree di:u) in the current graph is minimal across all vertices in the current graph. 
When u is selected, it is removed from the current graph and then all vertices with 
degree 0 Ior 1 are repeatedly removed as well. For every edge removed in this process, a 
weight of w(u)/d(u) is subtracted from its endpoint vertices. These steps are repeated 
until the graph is exhausted. The only difference between this phase and the plain 
greedy algorithm is the revision of some weights in each step instead of just revising 
the current degrees. The second phase removes redundant vertices from the constructed 

vertex feedback set. 

Algorithm MGA. 
Input: .4 weighted undirected graph G( Y E, w) . 
Output: A vertex feedback set F. 
F’+qb; i+ 1; 
Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent edges 
from E’ and insert the resulting graph into Gi. 
While G; is not the empty graph do 

(1) Pick a vertex ui for which w(Ui)/d(Ui) is minimum in Gi; 
(2) F’ + F’ U {Ui}; 

(3) V + V \ {Ui}; 

(4) C = w(ui)/d(ui); 
(5) i+--i+l; 
(6) Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent 

edges from E and insert the resulting graph into Gi. 
For every edge e = (~1, ~42) removed in this process do 

C(e) +- C 
w(w) + w(w) - C(e) 
w(u2) + 4~2) - C(e). 

end 
F +- F” 
For i =: IF’1 to 1 do {Phase 2) 

If every cycle in G that intersects with {ui} also intersects with F \ {Ui} then, 
F + F \ {Q}. 

endfor 
end 
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Clearly F’ computed at the first phase of MGA is a vertex feedback set of G and F 
created from F’ by removing all redundant vertices is a minimal vertex feedback set of 
G, that is, if a vertex is removed from F, then F ceases to be a vertex feedback set 
of G. Furthermore, as a result of removing redundant vertices the inequality given by 
Eq. (3), proven to hold for GA, becomes 

c 4(o) < 2 c 4(o), (10) 
PEF, GFi* 

where fi = F n v, FF = F* n x and v are the vertices in Gi. The proof of this inequality 
is postponed to Section 3.3. From the description of the algorithm we have for every 

vertex u in Gt, 

(11) 

and if u E F, equality must hold. By analogy with the previous section, Eqs. (10) and 
( 11)) which replace Eqs. (3) and (9>, suggest that the bound on the performance ratio 
drops from 2 log d + 1 for GA to 2 for MGA, as shown next. 

Theorem 3. Algorithm MGA always outputs a vertex feedback set whose weight is no 

more than twice the weight of a minimum vertex feedback set. 

Proof. As in Section 3.1, F* denotes a minimum vertex feedback set of G( YE, w) and 
p* = V \ F*. Recall that the vertices in the constructed set F’ are {q,u2, . . . , ut} where 
ui are indexed in the order in which they are inserted into F’ by MGA and t = IF’I. 
Also, wi(u) and di(U) denote the weight and degree, respectively, of vertex u in Gi-the 
graph generated in iteration i of step (5) of MGA-and V;: denotes the set of vertices 

of G;. 
AS in the previous subsection for every j < i we have wj (Uj) /dj (Uj) < wj (Ui) /dj( ui) 

and also w,i( Ui) /d,i( ui) 6 wi( Ui)/di( vi) due to the way that the current weights and 
degrees are updated in the algorithm. Thus, 

C,j E w,i(U,i)/dj(Uj) 6 wi(Ui)/di(Ui) z Ci, (12) 

for 1 < j < i 6 IF’I. 
We also have 

i-l 

(13) 
&l’l (I’,) j=l 

because the right-hand side simply groups edges according to the iteration in which they 
are assigned a weight. 

Let ai = 1 if ui E F and LYE = 0 if ui $! F. That is, LYE is 1 if ui is not removed from F’ 

in the second phase of MGA and 0 otherwise. We now prove that w(F) < 2. w( F*). 

W(F) =kai.w(ui) = Eli C C(e). 
i=l i=l eErl(u;) 
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Now, due to Eq. (13), 

w(F) =kai’ Ci*di(Ui) +fJCj'(dj(Ui) -dj+](Ui)) . 

i=l 
[ 

j=l 1 
Hence, 

W(F) =ClCcui'dl(Ui)+C(Ci-Ci-_l)CLYI.'di(Uj). 
i=l i=2 j=i 

Furthermore, 

klYj’di(U,j) =Cdi(U). 

.j=i PEF, 

(14) 

Now, since ci 3 ci-1 and due to Qs. (10) and (14), we get, 

w(F) <2Cl C dl(u) +C2(Ci-Ci-l) C 4(u). 

1lEF; i=2 LlEF,* 

This equation is identical to Eq. (7). Consequently, as in the derivation of IQ. (8)) we 

get, 

(15) 

Now, Fgs. (11) and (15) yield the claimed inequality, w(F) < 2x,,,, W(U) = 

2w(F*). 0 

Interestingly, if the second phase is removed from MGA (making MGA even closer 
to GA), then the performance ratio becomes 4 rather than 2. To prove this claim we 

use the inequality 

.j=i ~1 E F;* 

which holds for the first phase of MGA due to the proof of Lemma 1 because the only 
difference between this phase of MGA and GA is the way the weights are altered, a 
fact not used in the proof of this inequality. The other inequality is 

g(di(u,j) -dj(uj)) < gd,(uj)v 

.j=i j=i 

which holds because the number of edges adjacent to F’ which are removed but not 
covered by the first phase of MGA is smaller than the total number of edges covered 
by the algorithm. Consequently, we have 



180 A. Becke,: D. Geiger/Artificial Intelligence 83 (1996) 167-188 

Fig. 2. The graph H. 

(16) 

Now, by using Eq. (16) instead of Eq. (10) in the proof of Theorem 3, the bound on 

the performance ratio is shown to be 4. 
We now show that 4 is a tight bound for the MGA algorithm without the second 

phase. Consider the graph H given in Fig. 2. Suppose that the algorithm first selects 
vertices BI , B2, . . . , Bn-2, then it selects A, and finally it selects C. The weight of this 
vertex feedback set is 4n - 2. However C itself is a vertex feedback set. Thus, the 
performance ratio achieved by this algorithm is (4n - 2) / (12 + 2) and when n -+ co the 
ratio approaches 4. 

Consequently, the vast improvement in the worst-case performance of MGA compared 
to GA stems from changing the vertices’ weights in each step rather than from removing 
redundant vertices. 

The complexity of the first phase of MGA is 0( ]E( + 1 VI log IV/) using a Fibonacci 
heap (e.g., [ 81) because finding and deleting a vertex with minimum ratio w(u) /d( u) 
from the heap is done IV1 times at the cost of 0( log IVl) and decreasing a weight from 
a vertex in the heap is done [El times at an amortized cost of 0( 1). 

A naive implementation of the second phase can be described as follows. For i = IPI 
to 1 do: remove F \ {oi} and its adjacent edges from G, if the resulting graph contains 
no cycle, then Ui is removed from F (because every cycle in G that intersects with {ui} 
also intersects with F \ {ui}). Th e complexity of this implementation is 0( IEl IVl). To 
implement the second phase more efficiently we observe the following two propositions: 

Proposition 4. If every cycle in Gi that intersects with { ui} also intersects with F \ { Ui}, 
then every cycle in G that intersects with {Ui} also intersects with F \ {Ui}. 



A. Becker: D. Geiger/Art@cial Intelligence 83 (1996) 167-188 181 

Proposition 4 holds because every cycle in G that is not a cycle in Gi intersects with 
F \ {vi}. This proposition implies that in order to decide whether to remove Ui from F 
it suffices to check all cycles in Gi rather than all cycles in G. 

Proposition 5. Let B be any minimal vertex feedback set of the graph Gi+l. If B is a 
vertex feedback set of Gi, then B is a minimal vertex feedback set of Gi. If B is not a 
vertex fee,dback set of Gi, then B U {Ui} is a minimal vertex feedback set of Gi. 

Proposition 5 holds because the only cycles contained in Gi which are not contained 
in Gi+t are cycles that pass through Ui. SO, B U {ui} is a vertex feedback set of Gi. Thus, 
if B is a vertex feedback set of Gi, then B is minimal lest B were not minimal in Gi+t. 
And if B is not a vertex feedback set, then B U {Ui} is minimal because no vertex in B 
can be eliminated lest B were not minimal in Gi+t. 

Note that a cycle in Gi intersects with F’ \ {Ui} iff it intersects with F/ \ {ui} (where 
F’ is the vertex feedback set found in the first phase of MGA) . The algorithm thus starts 
with Ff = F’ rl V, which is a minimal vertex feedback set of Gt and continues backwards 
with F;, i = t, . . . , 1. In order to find a minimal vertex feedback set 4 s F’ n K of Gi, 
assuming we already found such minimal vertex feedback sets Fk of Gk, k = i+ 1, . . . , t, 
using Proposition 5, it remains to determine whether Fi+l is a vertex feedback set of Gi. 
If it is, then it is minimal (so Ui is removed from F’), and if it is not then Fi = Fi+l U{ui} 
is a minimal vertex feedback set. To facilitate the test, we construct a graph Hi induced 
from G; by v \ (fi+t U {Vi}). This graph is a forest and ui resides on some cycle in Gi 
on which no vertex from Fi+l resides if and only if Ui has two neighbors in the same 
connected component of Hi, 

We construct the graphs Hi, i = t, . . . , 1, efficiently as follows. The graph H, consists 
of the vertices V, \{u,} and the edges adjacent to these vertices. To construct Hi when we 
have already constructed Hi+1 and the minimal vertex feedback set &+I, we sequentially 
add to Hi+, the set of vertices 4 \ ( K+t U {ui} ) and their adjacent edges. Now, if ui 
does not have two neighbors in the same tree of Hi, then we add ui to Hi. (If ui has 
two neighbors in the same tree, then Ui E Fi and therefore, by our definition of Hi, ui 
is not included in Hi nor in Hi-l,. . . , HI.) We use a simple version of the union-find 
algorithm. First we call IV1 times the MAKE-SET operation creating a collection C of 
singleton sets-one for each vertex u in V. When we add a vertex u and its adjacent 

edges to Hi we unify the sets {u} with the set lJueri(u) FIND(u) where Ti(u) are 
the neighbors of u in Gi and FIND(u) is the set in C that contains u. Consequently, 
C maintains the connected components of Hi. Finally, in order to check if Ui has two 
neighbors in the same tree of Hi we check if any of the two neighbors of Ui are in 
the same set in C. We need to do at most IV1 union operations at an amortized cost 
of O(log IVl). When we check whether ui resides on some cycle we need 0( [El) find 
operations at the cost of 0( 1) [5, p. 44.51. Therefore, the complexity of the second 

phase of MGA is also just O( IEl + IV/ log [VI). 

3.3. A theorem about minimal vertex feedback sets 

In this section we prove a theorem that relates the number of edges adjacent to any 
minimal weighted vertex feedback set to the number of edges adjacent to any minimum 
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weighted vertex feedback set. This theorem proves Eq. (10) which has been used in the 
analysis of the modified greedy algorithm. ” 

Let G be a weighted graph for which every vertex has a degree strictly greater than 1, 
F be a minimal vertex feedback set of G and F* be an arbitrary vertex feedback set of 
G (possibly a minimum weight vertex feedback set). Let d(v) be the degree of vertex 
o and dx (u) be the number of edges whose one endpoint is u and the other is in a set 
of vertices X. 

Theorem 6. Let G, F and F* be defined as above. Then, 

Cd(u) < 2 c d(u). 
I‘EF PEF’ 

Note that fi in Eq. (10) is a minimal vertex feedback set of Gi and therefore 
Theorem 6 proves Eq. ( 10). Also note that this theorem does not imply nor is implied 

by Lemma 1 albeit their similarities. 
To prove this theorem we divide CvEF d(u) into the sum 21FI + CIrEF(d(u) - 2) 

and provide an upper bound for each term. 

Lemma 7. Let G, F and F* be defined as above. Then, 

21FI < Cd(u) - 21Fn-*I +2lFn F*l. 

IlET 
(17) 

Proof. First note that for every set of vertices B in G, 

cd(u) - 21FflF*I = x d(u) + c d(u) - 2IPf9* nB1 

1.Q oEFnB uEF\B 

-2l(FfIn*) \ BI. (18) 

However, the degree of every vertex in G satisfies d(v) 2 2 and therefore c”,=~,~ d(u) 

3 21(FrlF*) \ BI. Consequently, 

Cd(v) - 2(FnFl 2 c d(u) -2lFnF* n BI. (19) 
VEF lG%B 

Thus, and since IF n F*J 2 IF n F* fl BI and dB(u) < d(u), to prove the lemma it 

suffices to show that 

2)F( < c d~(U)-2~~n~*l-lB~+2~F~F*nB~, 

&rlB 

or equivalently, 

(20) 

21FI < c (dB(U> - 2) + 2jF* n BI 
dnB 

(21) 
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holds for some set of vertices B. We now define a set B for which this inequality can 
be proven. Since F is minimal, each vertex in F can be associated with a cycle in G 
that contains no other vertices of F. We define a graph H that consists of the union of 
these cycles-one cycle per each vertex. Note that every vertex in F is a linkpoint in 

H, i.e., a vertex with degree 2. Let B be the set of vertices of H. 
The proof of Eq. (21) is constructive. We repeatedly apply the following procedure 

on H sel’ecting in each step a vertex u E F and showing that there are terms in the 
right-hand side (RHS) of EQ. (21) that can contribute 2 to the RHS and have not been 
used for any other u E F. 

Pick a vertex u E F and follow the two paths p1 and p2 in H emanating from u 
(which is. a linkpoint) until the first branchpoint on each side is found. There are three 
cases to consider. Either two distinct branchpoints bl and b2 are found, one branchpoint 
bl (in which case p1 and p2 define a cycle) or none (if the cycle is isolated). In the first 
case the two edges on p] and p2 whose endpoints are bl E F and b2 E F, respectively, 

are assocllated with the terms dB (bl ) - 2 > 0 and dg (b2) - 2 > 0 in the RHS and so 
each of these terms can contribute 1 to the sum xuE~nB(d~( u) - 2). In the second 

case, similarly, the two edges on p1 and p2 whose endpoint is b, E F are associated 
with the c.erm ds (bl ) - 2 > 0 and so, if ds (bl ) > 3, this term can contribute 2 to the 
sum Cr,E~nB (ds (u) - 2). If dB (61) = 3 we continue to follow the third path from bl 
(i.e., not p1 or ~2) until another branchpoint b2 E F is found and the last edge on that 
path is associated with dB (b2) - 2 which can contribute the extra missing 1 to the RHS. 
Finally, if no branchpoint is found, then on the isolated cycle on which u resides there 
exists a vertex from F* that resides on no other cycles of H. Thus, the third case could 
not occur more than IF* II BI times. Now remove the paths pl and p2 from H obtaining 
a graph in which still each vertex in F resides on a cycle that contains no other vertices 

of F. Continue the process until F is exhausted. 0 

Lemma II Let G, F and F* be dejined as above. Then, 

x(d(v) -2) 6 c dF*(u) + c (d(u) -2) - c (+(o) - 2). 
VEF L’EFG’ &FnF* - -* 

oEFnF 

Proof. First note that 

x(0) - 2) = c &*(U) + c (d(u) - 2) 
ICF 0EFf-S oEFnF* 

+ c (dr(u) - 2). 

I@FrlF 
(22) 

We now claim that CocF,_,~* (dF(u)-2)+&+F(dp(u)-2) islessorequalthan 

0 which concludes this proof. The graph induced by 7 is a forest and since the number 
of edges in a forest is smaller than the number of vertices, we have, Co,__ dr (u) /2 < 

)F* I. Thus CoEp (dr (u) - 2) < 0 which is equivalent to the stated claim. 0 

Proof of Theorem 6. Using the bounds given by Lemmas 7 and 8 we have, 
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Cd(u) < c (d(u) -2) +21FnF*I - c (c+(u) -2) 
IGF uEFnF* - -* 

uEFnF 

t,EF PEF~F* - -* 
t!EFnF oE FclT d 

Now, 

Cd(U) - c +(U) = c d(U) + c dF*(U) 

reF 
- -* 

&FnF %F* 
- -* 

uEFnF 

and therefore, 

cd(u) 6 c dF* (U) + c d(U) 6 2 c d(U), 

PEF PET OEF’ uEF* 

which concludes the proof of the theorem. fl 

4. Experimental results 

Below we denote by Al the algorithm described in [24] and by A2 the algorithm 
described in [ 231. These algorithms find loop cutsets. We performed six experiments. 

In the first two experiments we tested how the outputs of the four algorithms, Al, A2, 
GA’ and MGA, compare to a minimum loop cutset. In two additional experiments we 
checked how the algorithms’ outputs compare to each other when given larger graphs 
for which a minimum loop cutset is hard to obtain. In these four experiments we have 
chosen all variables to be binary. The final two experiments compare the performance of 
these algorithms when the number of values of each vertex is randomly chosen between 
2 and 6, 2 and 8, and between 2 and 10. Each instance of the six experiments is based 
on 100 random graphs generated as described by [ 241. 

In the first experiment each of the 100 graphs generated had 15 vertices and 25 edges. 
MGA made only one mistake producing 6 vertices instead of the minimum of 5 vertices. 
GA’ made 4 mistakes each by one vertex off. A2 made 7 mistakes one of which was two 
vertices off the minimum and the other six mistakes were one vertex off. Al made 11 
mistakes one of which was 2 vertices off and the other 10 mistakes were one vertex off. 
The minimum loop cutsets were between 3 and 6 vertices. Note that the ratio between 
the number of instances associated with a loop cutset found by MGA in this experiment 
and the number of instances associated with a minimum loop cutset is 1 .Ol which is far 
less than the theoretical ratios guaranteed by Theorem 3 for this experiment which lie 
between 8 when the minimum loop cutset contains 3 binary variables and 64 when the 
minimum loop cutset contains 6 binary variables. 

In the second experiment we generated 100 networks each with 25 vertices and 25 
edges and tested how the output of the four algorithms compare to a minimum loop 
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IVI El 1 A2 GA’ Eq. 1 GA’ MGA Es. 

25 25 0 I 99 0 4 96 
25 50 I 8 91 0 8 92 
2s 75 0 15 85 1 I 92 
55 55 1 2 97 0 9 91 
55 15 4 10 86 1 18 83 
ss 105 2 17 81 6 21 83 

8 53 539 8 67 525 

cutset when the graphs have a small number of loops. This case is interesting because 
the conditioning inference algorithm is most appropriate for these networks. MGA made 
no mistakes while the other three algorithms made between 4 and 5 mistakes each by 
one vertex (the minimum loop cutsets contained between 2 and 4 vertices). 

Next wc tested larger graphs. The first portion of Table 1 compares between GA’ 

and A2 showing that GA’ performs better than A2 in 53 of the 61 graphs (87%) in 
which the algorithms disagree (out of 600 graphs tested). Each line in the table is 
based on 100 randomly generated graphs. The output columns show the number of 
graphs for which the two algorithms had an output of the same size and the number 
of graphs each algorithm performed better than the other. Thus even our simple greedy 
algorithm GA’ performs better than A2. The reason for this is the reduction from the 
loop cutset problem to the weighted vertex feedback set problem which allows the 
algorithm to select vertices that have parents while A2 unjustifiably does not select 
such vertices (unless they have no pair of parents residing on the same loop). Similar 

empirical results and the same explanation applies to Al. The second portion of the 
table shows that MGA performs better than GA’ in 67 of the 75 graphs (89%) in 
which the algorithms disagreed. Comparing MGA and A2 in the same fashion (600 

graphs) showed that MGA performed better than A2 in 109 of the 116 graphs in which 
the algorithms disagreed. Similarly, MGA performed better than Al in 135 of the 137 
graphs in which these algorithms disagreed. 

Finally, we repeated some of the experiments except that now each vertex was as- 
sociated with a random number of values (between 2 and 6, 2 and 8, and 2 and 10). 
The results are summarized in Table 2. The two algorithms, Al and MGA, output loop 
cutsets of the same size in 55% of the graphs and when the algorithms disagreed, then 
in 8 1% of these graphs MGA performed better than Al. The ratio obtained between 
the number of instances of the algorithms solution and a minimum solution was 1.22 
for MGA and 1.44 for Al (using the 300 graphs in the table for which the number 
of vertices is 15 and number of edges 25). Not surprisingly, the averaged number of 
instances by which the two algorithms’ outputs differ, when the algorithms disagree, 

grows as the graphs being tested become larger. 
To repeat this experiment with A2 required us to make a small change in A2 because 

it is not designed to run with vertices having different number of values. We adopted 
the approach of Al which selects vertices (with at most one parent) according to their 
degree and if there are several candidates the one with the least number of values is 
selected for the loop cutset. Combining this idea with the A2 algorithm defines an 



186 A. Becker: D. Geiger/Artificial Intelligence 83 (1996) 167-188 

Table 2 

IVI El Values Al MGA Eq. 

IS 25 2-6 1 17 82 
15 25 2-8 2 17 81 
15 25 2-10 2 19 79 
55 105 2-6 13 58 29 
55 105 2-8 17 51 32 
55 105 2-10 15 55 30 

50 217 333 

algorithm we call the weighted A2 algorithm (WA2). The results obtained were that 
MGA performed better than WA2 in 175 of the 224 graphs in which the algorithms 
disagreed (out of 600). The ratio obtained between the number of instances of the 
algorithms’ solution and a minimum solution was 1.22 for MGA and 1.33 for WA2. 

5. Discussion 

We have presented simple algorithms that given a Bayesian network output a loop 
cutset whose instance size is less than twice the optimal size in a logarithmic scale (in 
the worst case). Furthermore, we have experimentally shown that on the average our 
algorithms perform much better than in the worst case. Consequently, before running 
the probabilistic computation of the method of conditioning, we can evaluate with high 
precision the optimal complexity of its running time. Furthermore the approximation 

algorithms for the weighted vertex feedback set have applications in areas of computer 
science other than AI. 

The leading inference algorithm for Bayesian networks is the clique tree algorithm 
[ 171 which has been further developed in [ 14,151. In fact, Shachter et al. [ 221 have 
recently shown that the weight of the largest clique is bounded by the weight of the 
union of the loop cutset and the largest parent set of a vertex in a Bayesian network, 
implying that the clique tree algorithm is superior to the conditioning algorithm. 

One possible change to the method of conditioning makes this inference methodology 
quite useful in certain circumstances. Horvitz et al. [ 131 show how to rank the instances 
of a loop cutset according to their prior probabilities assuming all variables in the cutset 
are marginally independent. The conditioning algorithm can then be run according to 
this ranking and the answer to a query be given as an interval that shrinks towards the 
exact solution as more instances of the loop cutset are considered [ 12,131. So if the 
maximal clique is too large to store (and therefore, according to [22], the loop cutset 
is also often too large to handle), one can still perform approximate inferences using 
the conditioning algorithm. 

Remark 

While this work was at its final stages of preparation we became aware of a different 
method for the WVFS problem that achieves a performance ratio of 2 [2]. A quick 
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examination of our own work in light of this information revealed that our method also 
achieves a performance ratio of 2. 

An early version of this paper was presented at the Tenth Uncertainty in Artificial 
Intelligence Conference, Seattle, WA, July 1994. 
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