
Artificial Intelligence 83 (1996) 167-188

Artificial
Intelligence

Optimization of Pearl’s method of conditioning and
greedy-like approximation algorithms
for the vertex feedback set problem*

Ann Becker ‘, Dan Geiger *
Computer Science Department, Technion, Haifa 32000, Israel

Received March 1994; revised January 1995

Abstract

We show how to find a small loop cutset in a Bayesian network. Finding such a loop cutset
is the first :itep in the method of conditioning for inference. Our algorithm for finding a loop
cutset, called MGA, finds a loop cutset which is guaranteed in the worst case to contain less
than twice the number of variables contained in a minimum loop cutset. The algorithm is based
on a reduction to the weighted vertex feedback set problem and a 2-approximation of the latter
problem. The complexity of MGA is 0(m + n log n) where m and n are the number of edges
and vertices respectively. A greedy algorithm, called GA, for the weighted vertex feedback set
problem is ialso analyzed and bounds on its performance are given. We test MGA on randomly
generated graphs and find that the average ratio between the number of instances associated with
the algorithm’s output and the number of instances associated with an optimum solution is far
better than the worst-case bound.

1. Introduction

Most inference algorithms for the computation of a posterior probability in general

Bayesian networks have two conceptual phases. One phase handles operations on the
graphical structure itself and the other performs probabilistic computations. For example,
the clique tree algorithm requires us to first find a “good” clique tree and then perform

*Originally submitted as a Research Note. This research was supported by the fund for the promotion of

research at the Technion.
* Corresponding author. E-mail: dang@cs.technion.ac.il.

’ E-mail: anyuta@cs.technion.ac.il.

0004-3702/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved

SSDIOOO4-3702(95)00004-6

168 A. Becker; D. Geiger/Arhjicial Intelligence 83 (1996) 167-188

probabilistic computations on the clique tree [171, Pearl’s method of conditioning re-
quires us first to find a “good” loop cutset and then perform a calculation for each loop
cutset [19,201. Finally, Shachter’s algorithm requires us to find a “good” sequence of
transformations and then, for each transformation, to compute some conditional proba-
bility tables [21].

In the three algorithms just mentioned the first phase is to find a good discrete
structure, namely, a clique tree, a cutset, or a sequence of transformations. The goodness
of the structure depends on a chosen parameter that, if selected appropriately, reduces the
probabilistic computations done in the second phase. Finding a structure that optimizes
the selected parameter is usually NP-hard and thus heuristic methods are applied to find

a reasonable structure. Most methods in the past had no guarantee of performance and
performed very badly when presented with an appropriate example. For example, the
greedy algorithms of [23,24] for the method of conditioning may in the worst case
perform as bad as a factor of n/2 where n is the number of variables in a Bayesian
network (as shown in [23] >. That is to say, the size of the loop cutset found by these
algorithms can include as many as n/2 variables instead of just 2-a disastrous outcome.
Similar situations occur with other inference algorithms.

However, recently, among other results, Bar-Yehuda et al. [l] have developed an
algorithm that finds a loop cutset that is guaranteed in the worst case to contain less
than 4 times the number of variables contained in a minimum loop cutset. This guarantee
is given only when the number of values of every variable in the network is the same.
Note that this result means that the number of instances associated with a loop cutset F
found by their algorithm (e.g., rlFl if the number of values of every variable is r) is no

more than the number of instances associated with a minimum loop cutset raised to the
forth power. Note also that the problem of finding a minimum loop cutset was shown

to be NP-hard in [241.
We offer a new algorithm for finding a loop cutset, called MGA, that finds a loop

cutset which is guaranteed in the worst case to contain less than twice the number
of variables contained in a minimum loop cutset. That is, the number of instances
associated with a loop cutset found by our algorithm is no more than the number

of instances associated with a minimum loop cutset raised to the second power. The
complexity of MGA is 0(VJ + nlog n) where m and n are the number of edges and

vertices respectively. * Unlike [11, our result holds even when the number of values
changes from one variable to another. Like [11, our solution is based on a reduction
to the weighted vertex feedback set problem, defined in the next section. We should
emphasize that all these performance guarantees are for the worst case.

In Section 4 we test MGA on randomly generated graphs and find that the average
ratio between the number of instances associated with the algorithms’ output and the
number of instances associated with an optimum solution is far better than the worst-case
bound.

From a theoretical point of view, Bar-Yehuda et al. [l] note that as the number of
variables grows to infinity the worst-case ratio between the size of a loop cutset found
by any polynomial algorithm and the size of a minimum loop cutset cannot be less than

* Throughout, log x stands for log, x.

A. Beckel; D. Geiger/Artijicial Intelligence 83 (1996) 167-188 169

two unless a similar result is obtained for the weighted vertex cover problem (WVC). 3
Consequently, we conjecture that no polynomial algorithm for the loop cutset problem
performs better in the worst case than the algorithm presented in this paper as graphs
grow to infinity in size.

We shlould note that another application of MGA is in the area of constraint satis-
faction [#6,7]. Dechter and Pearl use a vertex feedback set in order to solve constraint
satisfaction problems in such a way that the search complexity depends on the size of
the vertex feedback set utilized by their algorithm.

The rest of the paper is organized as follows. In Section 2 we outline the method of

conditioning, explain the related loop cutset problem and describe the reduction from
the loop cutset problem to the weighted vertex feedback set problem (WVFS) ; Section 2
summarizes previous works. In Section 3 we provide two new approximation algorithms
for the WVFS problem which is by itself an NP-complete problem [9, pp. 191-1921.
Finally, in Section 4 we present experiments that test the average performance of our
algorithms.

2. The loop cutset problem

Pearl’s method of conditioning is one of the known inference methods for Bayesian
networks. A short overview of the method of conditioning and definitions of Bayesian
networks are needed. The reader is referred to [20,25] for more details.

Let P(ut,. . . , u,) be a probability distribution where each Ui draws values from a
finite set called the domain of Ui. A directed graph D with no directed cycles is called
a Bayesian network of P if there is a l-l mapping between (~1,. . . , u,} and vertices
in D, such that ui is associated with vertex i and P can be written as follows:

P(u,,... ,U,) =fiPCUi 1 uil9...9uij(;,)v

i=l

(1)

where il. . . . , i,i(i) are the source vertices of the incoming edges to vertex i in D.

Suppose now that some variables {ut, . . . , q} among (~1,. . . , u,} are assigned spe-
cific values {yt , . . . , UI} respectively. The updating problem is to compute the probability

P(u;Iul=zq ,..., u~=tq) fori=l,..., It.
The concept of d-separation, defined below, is crucial for finding solutions to the

updating problem. A trail in a Bayesian network is a subgraph whose underlying graph
is a simple path. A vertex b is called a sink with respect to a trail t if there exist two
consecutive edges a --+ b and b +-- c on t. A trail t is active by a set of vertices Z if (1)
every sink with respect to t either is in Z or has a descendant in Z and (2) every other
vertex along t is outside Z. Otherwise, the trail is said to be blocked (d-separated) by
Z.

Verma and Pearl [261 proved that if D is a Bayesian network of P(~1, . . . , u,) and
all trails between a vertex in {rl, . . . , r[} and a vertex in {st , . . . , sk} are blocked by

7 The WV C problem is to find a set of vertices that contains an endpoint of every edge in a given undirected

graph and which has a minimum weight among all such sets.

170 A. Beckec D. Geiger/Art$icial Intelligence 83 (1996) 167-188

{tt , . . . , t,,!}, then the corresponding sets of variables {uT,, . . . ,u,.,} and {u,, , . . . , u,~}
are independent conditioned on {u,, , . . . , u,“,}. Furthermore, Geiger and Pearl [lo]
proved a converse to this theorem. Both results are presented and extended in [111.

Using the close relationship between blocked trails and conditional independence,
Kim and Pearl [161 developed an algorithm UPDATE-TREE that solves the updating
problem on Bayesian networks in which every two vertices are connected with at most
one trail. These networks are called singly-connected. Pearl then solved the updating
problem on multiply-connected Bayesian networks by selecting a set of vertices called

a loop cutset such that once the corresponding variables are instantiated the remaining

network is singly-connected [191. More precisely, the algorithm can be described as
follows:

First, a set of vertices S is selected such that any two vertices in the network are
connected with at most one active trail by S U Z, where Z is any subset of vertices.
Then, UPDATE-TREE is applied once for each combination of value assignments to
the variables corresponding to S, and, finally, the results are combined. This algorithm
is called the method of conditioning and its complexity grows exponentially with the
size of S. The set S is called a loop cutset. Note that when the domain size of the
variables varies, then UPDATE-TREE is called a number of times equal to the product of

the domain sizes of the variables whose corresponding vertices participate in the loop
cutset. If we take the logarithm of the domain size (number of values) as the weight of
a vertex, then finding a loop cutset such that the sum of its vertices weights is minimum
optimizes Pearl’s updating algorithm in the case where the domain sizes may vary.

We now give an alternative definition for a loop cutset S and then provide an approx-
imation algorithm for finding it. This definition is borrowed from [11. The under-Eying

graph G of a directed graph D is the undirected graph formed by ignoring the directions
of the edges in D. A cycle in G is a path whose two terminal vertices coincide. A loop

in D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink with
respect to a loop r if the two edges adjacent to v in r are directed into v. Every loop
must contain at least one vertex that is not a sink with respect to that loop. Each vertex
that is not a sink with respect to a loop r is called an allowed vertex with respect to

r. A loop cutset of a directed graph D is a set of vertices that contains at least one
allowed vertex with respect to each loop in D. The weight of a set of vertices X is

denoted by w(X) and is equal to xtrCx w(v) where w(x) = log(1x1) and 1x1 is the size
of the domain associated with vertex x. A minimum loop cutset of a weighted directed
graph D is a loop cutset F* of D for which w(F*) is minimum over all loop cutsets
of G. The loop cutset problem is defined as finding a minimum loop cutset of a given
weighted directed graph D.

The approach we take is to reduce the weighted loop cutset problem to the weighted
vertex feedback set problem, as done by [11. We now define the weighted vertex
feedback set problem and then the reduction.

Let G = (YE) be an undirected graph, and let w : V + R+ be a weight function
on the vertices of G. A vertex feedback set of G is a subset of vertices F C V such
that each cycle in G passes through at least one vertex in F. In other words, a vertex
feedback set F is a set of vertices of G such that by removing F from G, along with all
the edges incident with F, we obtain a set of trees (i.e., a forest). The weight of a set

A. Be&c D. Geiger/Artijicial Intelligence 83 (1996) 167-188 171

of vertices X is denoted (as before) by w(X) and is equal to CL,_ w(u). A minimum
vertex feedback set of a weighted graph G with a weight function w is a vertex feedback
set F* of G for which w(F*) is minimum over all vertex feedback sets of G. The
weighted vertex feedback set problem (WVFS) is defined as finding a minimum vertex
feedback set of a given weighted graph G having a weight function w.

In the next section we offer an algorithm, called MGA, for approximately solving the
weighted vertex feedback set problem. The algorithm is guaranteed to output a weighted
vertex feedback set whose weight is less than twice the minimum weight.

The reduction is as follows. Given a weighted directed graph (D, w) (e.g., a Bayesian

network), we define the splitting weighted undirected graph D, with a weight function
w,~ as from [11. Split each vertex u in D into two vertices uin and u,,i in D, such that

all incoming edges to u in D become undirected incident edges with Uin in D,, and
all outgoing edges from u in D become undirected incident edges with u,,i in D,. In

addition, connect uin and uout in D, by an undirected edge. Now set w, (Uin) = 0;) and
w,~ (uO,i) = w(u) . For a set of vertices X in Ds, we define $(X) as the set obtained by
replacing each vertex uin or UoUt in X by the respective vertex u in D from which these
vertices originated.

Our algorithm can now be easily stated.

Algorithm LC.
Input: A Bayesian network D.

Output: A loop cutset of D.
(1) Construct the splitting graph D, with weight function w,;

(2) Apply MGA on (D,, w,) to obtain a vertex feedback set F;
(3) Output e(F).

It is immediately seen that if MGA outputs a vertex feedback set F whose weight
is no more than twice the weight of a minimum vertex feedback set of D,, then @(F)
is a loop cutset of D with weight no more than twice the weight of a minimum loop
cutset of D. This observation holds because there is an obvious one-to-one and onto
correspondence between loops in D and cycles in D, and because MGA never chooses
a vertex that has an infinite weight.

3. Algorithms for the WVFS problem

Recall that the weighted vertex feedback set problem is defined as finding a minimum
vertex fe’edback set of a given weighted graph G.

3.1. The greedy algorithm

We fimt analyze the simplest of all approximation algorithms for the weighted vertex
feedback set problem-the greedy algorithm. This algorithm is especially interesting
because Iof its simplicity. Assume we are given a weighted undirected graph G with a
weight function w. The algorithm starts with G after removing all vertices with degree

172 A. BeckeK D. Geiger/Artificial Intelligence 83 (1996) 167-188

0 or 1 and repeatedly chooses to insert a vertex u into the constructed vertex feedback
set if the ratio between u’s weight w(u) and u’s degree d(u) in the current graph is
minimal across all vertices in the current graph. When u is selected, it is removed from
the current graph and then all vertices with degree 0 or 1 are repeatedly removed as
well. This step is repeated until the graph is exhausted.

This algorithm and parts of its analysis are influenced by the work of Chvatal (1979)
who analyzed the greedy algorithm for the weighted set cover problem (WSC) and

by Lovasz (1975) and Johnson (1974) who analyzed the unweighted version of this
problem.

Algorithn GA.
Input: A weighted undirected graph G(Y E, w) .
Output: A vertex feedback set F.

F+- 0; it 1;
Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent edges
from E and insert the resulting graph into Gi.
While G; is not the empty graph do

(1) Pick a vertex u; for which W(Ui)/d(Vi) is minimum in Gi;
(2) F + F u {Q};

(3) V + V\ {Ui};

(4) iti+l;

(5) Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent
edges from E and insert the resulting graph into Gi.

end

In the rest of this section we prove that the performance ratio of GA is bounded
by 210gd + 1 where d = max,,Ev d(u) is the degree of the graph. Recall that the
performance ratio of an approximation algorithm is the worst-case ratio between the
weight of the algorithm’s output and the weight of an optimal solution. In Section 4,
we show experimentally that a slight variant of this algorithm when combined with the
reduction algorithm LC convincingly outperforms the algorithms given by [23,241.

Note that the vertices in F (the output of GA) are denoted by {ut , ~2,. . . , ut} where

the u; are indexed in the order in which they are inserted into F by GA and where
t = 1 F(. Let di(u) denote the degree of vertex u in Gi-the graph generated in iteration
i of GA-and let x be the set of vertices of Gi. An edge is covered by the algorithm if
forsomei=l,..., t, one of its endpoints is ui and the edge exists in Gi. Note that the
set of vertex feedback sets of G and Gt is the same and that the degree of every vertex
in Gt is smaller or equal to the degree of that vertex in G.

Let c; = w(Ui)/di(ui) and let C(e) = ci be the edge weight of an edge e removed
at iteration i. Note that for every j < i we have W(Uj) /dj (Uj) < W(Ui) /d,i(Vi) because
vertices are selected in increasing order of these ratios. Also note that for j < i,

d,i (0;) 3 d;(Vi) since the algorithm never adds edges. Thus,

c,j E W(U,i)/dj(U,i) < w(Ui)/di(ui) E ci, (2)

for 1 < j < i < 1 FI, as originally claimed by [31 in the context of the WSC problem.

A. Becker; D. Geiger/Art@ial Intelligence 83 (1996) 167-188 173

To analyze the performance ratio we use a lemma that bounds the number of edges
in G; covered by the algorithm until its termination. We need the following definitions.
Let d*(u) be the number of edges whose one endpoint is u and the other is a vertex
in X. A linkpoint is a vertex that has degree 2 and a brunchpoint is a vertex that has a
degree larger than 2. (A self-loop adds 2 to the degree of a vertex.)

Lemma 1. Let F={ul,... , u,} be a vertex feedback set produced by GA for a graph
G, 6 = {Li, . . . , u,}, and F* be any vertex feedback set of G. Also let FF = F* fl V;:
where E is the set of vertices of Gi-the graph produced in iteration i of GA. Then,

Proof. Let Fy = F” r~ Q. We will prove two inequalities. First,

C(a!i(~) -2) + 21FF[6 2 C di(u)
I>EIS L+F;*

and then

(4)

(5)

According to our notations,

~(di(4 - 2) = c <dF; (0) - 2) + c +(u) + c (4(u) - 2).
VEV, PEF,: LIEF,? UEF;*

Furthermore, the graph induced by F: is a forest and since the number of edges in a
forest is smaller than the number of vertices, we have ‘&F; d?l (u) /2 < IF;/. Thus

C,,,F; (dF; (u) - 2) < 0. Consequently,

x(d;(u) - 2) + 214*1 < c dF;(u) + c 4(u) 6 2 c di(u).
PEl! VET,* u E F; UEFi*

The proof of Eq. (5) is constructive. We repeatedly apply the following procedure
on G; selecting in each step a vertex u,i E Fi and showing that there are terms in the

right-hand side (RHS) of Eq. (5) that can contribute dj (uj) to the RHS and have not
been used for any other u E Fi. Set H = Gi and for k = i, . . . , t do as follows:

Pick the vertex uk. If uk is a linkpoint in H then follow the two paths p1 and p2 in
H emanating from Ok until the first branchpoint on each side is found. There are three
cases to consider. Either two distinct branchpoints bl and b2 are found, one branchpoint
bl (in which case p1 and p2 define a cycle) or none (if the cycle is isolated). In the
first case the two edges on p1 and p2 whose endpoints are bl and b2, respectively, are
associated with the terms dk(bl) - 2 > 0 and dk(b2) - 2 > 0 in the RHS and so, since
for every vertex u in Gk, dk(u) < di(u), each of these terms can contribute 1 to the

174 A. BeckeK D. Geiger/Artificial Intelligence 83 (1996) 167-188

sum Ct.EV (di(U) - 2). In the second case, similarly, the two edges on pi and p2 whose
endpoints is bt are associated with the term &(bt) - 2 > 0 and so, if dk (bl) > 3, this
term can contribute 2 to the sum CUEC: (di(u) - 2). If dk (bl) = 3 we continue to follow
the third path from 61 (i.e., not pt or ~2) until another branchpoint b2 is found and
the last edge on that path is associated with dk(b2) - 2 which can contribute the extra
missing 1 to the RHS. Finally, if no branchpoint is found, then on the cycle in which uk
resides there must exist a vertex from FF that resides on no other cycles of H (hence

the term 21 FT\ in the RHS). Now, if Uk is a branchpoint, then the term dk(uk) - 2

appears in both sides of the inequality. In this case, sequentially remove dk(Uk) - 2 of
the dk(Uk) edges adjacent to uk such that after each removal the vertices with degree
0 or 1 are removed from H as well. Thus, uk remains a linkpoint in which case the
procedure for a linkpoint is applied. Finally, remove uk, and repeatedly remove all the
vertices with degree 0 or 1 from H. Repeat until Fi is exhausted. 0

Note that the above proof does not use the weight function of G and thus the stated

inequality holds even when in step (1) of GA’s main loop the vertex ui is selected
arbitrarily regardless of its current degree or weight. We will use this observation in the

next section.
Let F* be a minimum weight feedback set of G(YE, w) and let B* = V \ F*.

Denote Fp = F* II K and FF = F* n K. Lemma 1 holds for every vertex feedback
set F* and therefore, in particular, when F* has minimum weight. We now show that

w(F) < (210gd + 1) . w(F*).

W(F) =&w(Ui) =kCi.di(Ui)

i=l i=l

= Cl kdi(ui) +k(ci-ci-l)kdj(uj).

i=l i=2 .j=i

Since ci > CL-1 and due to Eq. (3), we get

W(F) <~CI C dl(u) +C2(ci-ci-1) C di(u)
L’EF; i=2 UEF;*

f f-1

=C2ci C di(U) -C2ci C di+l(u).

i=l ~1 E F;* i=l UEF:,,

(6)

(7)

Thus,

+ f t-1

W(F) <22Ci C di(u> +C2Ci C di(U) -C2ci C di+l(U)
i=l uEFi*\F,;, i=l UEF:,, i=l UEF,;,

C di(u) +ci C (d(u) - di+l(u)) +c, C d,(u) .
‘GF;*\“;;, “EF,;, > VEF,’ 1

A. Becker; D. Geiger/Art@cial Intelligence 83 (1996) 167-188 175

However, since the last sum on the right-hand side merely counts the edge weights
according to the iteration they are assigned a weight, we get,

w(F) 6 2 c c C(e), (8)
UEF’ <ET1 (U)

where I’, I(U) denotes the set of edges in Gt for which at least one endpoint is u.
We now show that for every u E F*,

w(u) [H(d(u)) - l/2] > C C(e),
&I-I (0)

(9)

where H(m) = Cy!, l/ i, using the following argument which is similar to the one used

in [3].
Let s be the largest superscript such that d,(u) > 0. Consequently,

C C(e) = C(di(u) - di+l(u)) * (W(Ui)/di(Ui))

&I‘1 (ISI i=l

6 W(u) CC&(u) -di+l(u))/di(u)v
i=l

where the inequality is due to Q. (2). Furthermore, it can be shown by induction that

whenever nr and n2 are positive integers satisfying n2 < nt. Thus, and since d,(u) > 2,

s-1

c C(e) Q w(u) x[H(ddu)) - H(di+l(u))l +H(Uu)) - l/2 .
.“Gf,(l~) i=l

Since the right-hand side is equal to w(u) [H(dl (u)) - l/2], Eq. (9) follows. Com-

bining Eqs. (8) and (9) yields,

w(F;I < 2 c [H(d(u)) - l/2] . w(u) $ [2H(d) - l] .w(F*).
uEF*

Thus.

Theorem 2. The pelformance ratio of GA is bounded by 2H(d) - 1.

Notably, since H(d) < log d -t 1 (for d > 1) , the performance ratio of GA is bounded

by 210gd + 1.
We now describe a sequence of graphs for which GA achieves a performance ratio

2H(d) - 2. Consequently, the upper bound given by Theorem 2 is rather tight.
Let B(~5, R, E’) be a complete bipartite graph where R = (~1, . . . , ur} and where L

also cons&s of r vertices. We slightly modify B(L, R, E’) as follows to obtain a graph

176 A. Becker, D. Geiger/ArtQicial Intelligence 83 (1996) 167-188

R

Fig. I. The graph G for r = 3.

G. We add a new vertex a which is connected to each vertex in L with an edge and we
add a new vertex b which is connected to each vertex in R with an edge. Furthermore,
each edge (1, Ui) between a vertex 1 in L and a vertex Ui in R is replaced with a chain
of two edges and a new middle vertex whose weight is 2/ (i + 1) . The set of these
middle vertices is denoted by 2. The weight of every vertex in L is 1 and the weight
of all other vertices in G is infinitely large. Fig. 1 shows G for r = 3.

Consider the behavior of GA on G. Suppose the algorithm chooses the vertices in Z
for the vertex feedback set according to increasing order of weight-to-degree ratios. The
weight of this vertex feedback set is 2r(H(d) - 1) where d = r + 1 is the degree of G.
However, L itself is a minimum vertex feedback set of G having a weight r. It follows
that the performance ratio achieved by GA for these graphs is 2H(d) - 2.

It may seem that GA can be improved if in each step the algorithm will remove every
vertex that does not reside anymore on a cycle in the current graph rather than remove
only those vertices that have degrees 0 or 1. However, even for this slightly modified
algorithm, which we shall call GA’, the conclusions given by Theorem 2 and the above
example still hold, namely, the worst-case performance can hardly be affected by this
change. In fact, there are examples in which GA is superior and examples where GA’
is superior. However, on the average, GA’ performs slightly better than GA.

Finally we note that the output F of GA need not be a minimal vertex feedback set of
G, that is, there may exist a vertex u in F such that F \ {u} is still a vertex feedback set
of G. If we had removed such redundant vertices from F, is we will in the next section,
this modification would not by itself have improved the (worst-case) performance ratio

A. Becker: D. Geiger/Artificial Intelligence 83 (1996) 167-188 177

of GA below 2H(d) - 2 because the output Z of GA for the above example is in fact a
minimal vertex feedback set that achieves the stated performance ratio. This discussion
applies to’ GA’ as well.

3.2. The modijed greedy algorithm

We now present a modified greedy algorithm, called MGA, whose performance ratio
is bounded by the constant 2. The changes we introduce into GA are quite minor and
so it is interesting that such a vast improvement in the performance ratio is obtained. A
similar phenomenon is reported in the context of the weighted vertex cover problem [41.

MGA has two phases. In the first phase MGA repeatedly chooses to insert a vertex
u into the constructed vertex feedback set if the ratio between U’S weight w(v) and u’s
degree di:u) in the current graph is minimal across all vertices in the current graph.
When u is selected, it is removed from the current graph and then all vertices with
degree 0 Ior 1 are repeatedly removed as well. For every edge removed in this process, a
weight of w(u)/d(u) is subtracted from its endpoint vertices. These steps are repeated
until the graph is exhausted. The only difference between this phase and the plain
greedy algorithm is the revision of some weights in each step instead of just revising
the current degrees. The second phase removes redundant vertices from the constructed

vertex feedback set.

Algorithm MGA.
Input: .4 weighted undirected graph G(Y E, w) .
Output: A vertex feedback set F.
F’+qb; i+ 1;
Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent edges
from E’ and insert the resulting graph into Gi.
While G; is not the empty graph do

(1) Pick a vertex ui for which w(Ui)/d(Ui) is minimum in Gi;
(2) F’ + F’ U {Ui};

(3) V + V \ {Ui};

(4) C = w(ui)/d(ui);
(5) i+--i+l;
(6) Repeatedly remove all vertices with degree 0 or 1 from V and their adjacent

edges from E and insert the resulting graph into Gi.
For every edge e = (~1, ~42) removed in this process do

C(e) +- C
w(w) + w(w) - C(e)
w(u2) + 4~2) - C(e).

end
F +- F”
For i =: IF’1 to 1 do {Phase 2)

If every cycle in G that intersects with {ui} also intersects with F \ {Ui} then,
F + F \ {Q}.

endfor
end

178 A. Beckel; D. Geiger/Art$cial Intelligence 83 (1996) 167-188

Clearly F’ computed at the first phase of MGA is a vertex feedback set of G and F
created from F’ by removing all redundant vertices is a minimal vertex feedback set of
G, that is, if a vertex is removed from F, then F ceases to be a vertex feedback set
of G. Furthermore, as a result of removing redundant vertices the inequality given by
Eq. (3), proven to hold for GA, becomes

c 4(o) < 2 c 4(o), (10)
PEF, GFi*

where fi = F n v, FF = F* n x and v are the vertices in Gi. The proof of this inequality
is postponed to Section 3.3. From the description of the algorithm we have for every

vertex u in Gt,

(11)

and if u E F, equality must hold. By analogy with the previous section, Eqs. (10) and
(11)) which replace Eqs. (3) and (9>, suggest that the bound on the performance ratio
drops from 2 log d + 1 for GA to 2 for MGA, as shown next.

Theorem 3. Algorithm MGA always outputs a vertex feedback set whose weight is no

more than twice the weight of a minimum vertex feedback set.

Proof. As in Section 3.1, F* denotes a minimum vertex feedback set of G(YE, w) and
p* = V \ F*. Recall that the vertices in the constructed set F’ are {q,u2, . . . , ut} where
ui are indexed in the order in which they are inserted into F’ by MGA and t = IF’I.
Also, wi(u) and di(U) denote the weight and degree, respectively, of vertex u in Gi-the
graph generated in iteration i of step (5) of MGA-and V;: denotes the set of vertices

of G;.
AS in the previous subsection for every j < i we have wj (Uj) /dj (Uj) < wj (Ui) /dj(ui)

and also w,i(Ui) /d,i(ui) 6 wi(Ui)/di(vi) due to the way that the current weights and
degrees are updated in the algorithm. Thus,

C,j E w,i(U,i)/dj(Uj) 6 wi(Ui)/di(Ui) z Ci, (12)

for 1 < j < i 6 IF’I.
We also have

i-l

(13)
&l’l (I’,) j=l

because the right-hand side simply groups edges according to the iteration in which they
are assigned a weight.

Let ai = 1 if ui E F and LYE = 0 if ui $! F. That is, LYE is 1 if ui is not removed from F’

in the second phase of MGA and 0 otherwise. We now prove that w(F) < 2. w(F*).

W(F) =kai.w(ui) = Eli C C(e).
i=l i=l eErl(u;)

A. Becker; D. Geiger/Artificial Intelligence 83 (1996) 167-188 179

Now, due to Eq. (13),

w(F) =kai’ Ci*di(Ui) +fJCj'(dj(Ui) -dj+](Ui)) .

i=l
[

j=l 1
Hence,

W(F) =ClCcui'dl(Ui)+C(Ci-Ci-_l)CLYI.'di(Uj).
i=l i=2 j=i

Furthermore,

klYj’di(U,j) =Cdi(U).

.j=i PEF,

(14)

Now, since ci 3 ci-1 and due to Qs. (10) and (14), we get,

w(F) <2Cl C dl(u) +C2(Ci-Ci-l) C 4(u).

1lEF; i=2 LlEF,*

This equation is identical to Eq. (7). Consequently, as in the derivation of IQ. (8)) we

get,

(15)

Now, Fgs. (11) and (15) yield the claimed inequality, w(F) < 2x,,,, W(U) =

2w(F*). 0

Interestingly, if the second phase is removed from MGA (making MGA even closer
to GA), then the performance ratio becomes 4 rather than 2. To prove this claim we

use the inequality

.j=i ~1 E F;*

which holds for the first phase of MGA due to the proof of Lemma 1 because the only
difference between this phase of MGA and GA is the way the weights are altered, a
fact not used in the proof of this inequality. The other inequality is

g(di(u,j) -dj(uj)) < gd,(uj)v

.j=i j=i

which holds because the number of edges adjacent to F’ which are removed but not
covered by the first phase of MGA is smaller than the total number of edges covered
by the algorithm. Consequently, we have

180 A. Becke,: D. Geiger/Artificial Intelligence 83 (1996) 167-188

Fig. 2. The graph H.

(16)

Now, by using Eq. (16) instead of Eq. (10) in the proof of Theorem 3, the bound on

the performance ratio is shown to be 4.
We now show that 4 is a tight bound for the MGA algorithm without the second

phase. Consider the graph H given in Fig. 2. Suppose that the algorithm first selects
vertices BI , B2, . . . , Bn-2, then it selects A, and finally it selects C. The weight of this
vertex feedback set is 4n - 2. However C itself is a vertex feedback set. Thus, the
performance ratio achieved by this algorithm is (4n - 2) / (12 + 2) and when n -+ co the
ratio approaches 4.

Consequently, the vast improvement in the worst-case performance of MGA compared
to GA stems from changing the vertices’ weights in each step rather than from removing
redundant vertices.

The complexity of the first phase of MGA is 0(]E(+ 1 VI log IV/) using a Fibonacci
heap (e.g., [81) because finding and deleting a vertex with minimum ratio w(u) /d(u)
from the heap is done IV1 times at the cost of 0(log IVl) and decreasing a weight from
a vertex in the heap is done [El times at an amortized cost of 0(1).

A naive implementation of the second phase can be described as follows. For i = IPI
to 1 do: remove F \ {oi} and its adjacent edges from G, if the resulting graph contains
no cycle, then Ui is removed from F (because every cycle in G that intersects with {ui}
also intersects with F \ {ui}). Th e complexity of this implementation is 0(IEl IVl). To
implement the second phase more efficiently we observe the following two propositions:

Proposition 4. If every cycle in Gi that intersects with { ui} also intersects with F \ { Ui},
then every cycle in G that intersects with {Ui} also intersects with F \ {Ui}.

A. Becker: D. Geiger/Art@cial Intelligence 83 (1996) 167-188 181

Proposition 4 holds because every cycle in G that is not a cycle in Gi intersects with
F \ {vi}. This proposition implies that in order to decide whether to remove Ui from F
it suffices to check all cycles in Gi rather than all cycles in G.

Proposition 5. Let B be any minimal vertex feedback set of the graph Gi+l. If B is a
vertex feedback set of Gi, then B is a minimal vertex feedback set of Gi. If B is not a
vertex fee,dback set of Gi, then B U {Ui} is a minimal vertex feedback set of Gi.

Proposition 5 holds because the only cycles contained in Gi which are not contained
in Gi+t are cycles that pass through Ui. SO, B U {ui} is a vertex feedback set of Gi. Thus,
if B is a vertex feedback set of Gi, then B is minimal lest B were not minimal in Gi+t.
And if B is not a vertex feedback set, then B U {Ui} is minimal because no vertex in B
can be eliminated lest B were not minimal in Gi+t.

Note that a cycle in Gi intersects with F’ \ {Ui} iff it intersects with F/ \ {ui} (where
F’ is the vertex feedback set found in the first phase of MGA) . The algorithm thus starts
with Ff = F’ rl V, which is a minimal vertex feedback set of Gt and continues backwards
with F;, i = t, . . . , 1. In order to find a minimal vertex feedback set 4 s F’ n K of Gi,
assuming we already found such minimal vertex feedback sets Fk of Gk, k = i+ 1, . . . , t,
using Proposition 5, it remains to determine whether Fi+l is a vertex feedback set of Gi.
If it is, then it is minimal (so Ui is removed from F’), and if it is not then Fi = Fi+l U{ui}
is a minimal vertex feedback set. To facilitate the test, we construct a graph Hi induced
from G; by v \ (fi+t U {Vi}). This graph is a forest and ui resides on some cycle in Gi
on which no vertex from Fi+l resides if and only if Ui has two neighbors in the same
connected component of Hi,

We construct the graphs Hi, i = t, . . . , 1, efficiently as follows. The graph H, consists
of the vertices V, \{u,} and the edges adjacent to these vertices. To construct Hi when we
have already constructed Hi+1 and the minimal vertex feedback set &+I, we sequentially
add to Hi+, the set of vertices 4 \ (K+t U {ui}) and their adjacent edges. Now, if ui
does not have two neighbors in the same tree of Hi, then we add ui to Hi. (If ui has
two neighbors in the same tree, then Ui E Fi and therefore, by our definition of Hi, ui
is not included in Hi nor in Hi-l,. . . , HI.) We use a simple version of the union-find
algorithm. First we call IV1 times the MAKE-SET operation creating a collection C of
singleton sets-one for each vertex u in V. When we add a vertex u and its adjacent

edges to Hi we unify the sets {u} with the set lJueri(u) FIND(u) where Ti(u) are
the neighbors of u in Gi and FIND(u) is the set in C that contains u. Consequently,
C maintains the connected components of Hi. Finally, in order to check if Ui has two
neighbors in the same tree of Hi we check if any of the two neighbors of Ui are in
the same set in C. We need to do at most IV1 union operations at an amortized cost
of O(log IVl). When we check whether ui resides on some cycle we need 0([El) find
operations at the cost of 0(1) [5, p. 44.51. Therefore, the complexity of the second

phase of MGA is also just O(IEl + IV/ log [VI).

3.3. A theorem about minimal vertex feedback sets

In this section we prove a theorem that relates the number of edges adjacent to any
minimal weighted vertex feedback set to the number of edges adjacent to any minimum

182 A. Becker; D. Geiger/Art@ial Intelligence 83 (1996) 167-188

weighted vertex feedback set. This theorem proves Eq. (10) which has been used in the
analysis of the modified greedy algorithm. ”

Let G be a weighted graph for which every vertex has a degree strictly greater than 1,
F be a minimal vertex feedback set of G and F* be an arbitrary vertex feedback set of
G (possibly a minimum weight vertex feedback set). Let d(v) be the degree of vertex
o and dx (u) be the number of edges whose one endpoint is u and the other is in a set
of vertices X.

Theorem 6. Let G, F and F* be defined as above. Then,

Cd(u) < 2 c d(u).
I‘EF PEF’

Note that fi in Eq. (10) is a minimal vertex feedback set of Gi and therefore
Theorem 6 proves Eq. (10). Also note that this theorem does not imply nor is implied

by Lemma 1 albeit their similarities.
To prove this theorem we divide CvEF d(u) into the sum 21FI + CIrEF(d(u) - 2)

and provide an upper bound for each term.

Lemma 7. Let G, F and F* be defined as above. Then,

21FI < Cd(u) - 21Fn-*I +2lFn F*l.

IlET
(17)

Proof. First note that for every set of vertices B in G,

cd(u) - 21FflF*I = x d(u) + c d(u) - 2IPf9* nB1

1.Q oEFnB uEF\B

-2l(FfIn*) \ BI. (18)

However, the degree of every vertex in G satisfies d(v) 2 2 and therefore c”,=~,~ d(u)

3 21(FrlF*) \ BI. Consequently,

Cd(v) - 2(FnFl 2 c d(u) -2lFnF* n BI. (19)
VEF lG%B

Thus, and since IF n F*J 2 IF n F* fl BI and dB(u) < d(u), to prove the lemma it

suffices to show that

2)F(< c d~(U)-2~~n~*l-lB~+2~F~F*nB~,

&rlB

or equivalently,

(20)

21FI < c (dB(U> - 2) + 2jF* n BI
dnB

(21)

A. Becker. D. Geiger/Artificial Intelligence 83 (1996) 167-188 183

holds for some set of vertices B. We now define a set B for which this inequality can
be proven. Since F is minimal, each vertex in F can be associated with a cycle in G
that contains no other vertices of F. We define a graph H that consists of the union of
these cycles-one cycle per each vertex. Note that every vertex in F is a linkpoint in

H, i.e., a vertex with degree 2. Let B be the set of vertices of H.
The proof of Eq. (21) is constructive. We repeatedly apply the following procedure

on H sel’ecting in each step a vertex u E F and showing that there are terms in the
right-hand side (RHS) of EQ. (21) that can contribute 2 to the RHS and have not been
used for any other u E F.

Pick a vertex u E F and follow the two paths p1 and p2 in H emanating from u
(which is. a linkpoint) until the first branchpoint on each side is found. There are three
cases to consider. Either two distinct branchpoints bl and b2 are found, one branchpoint
bl (in which case p1 and p2 define a cycle) or none (if the cycle is isolated). In the first
case the two edges on p] and p2 whose endpoints are bl E F and b2 E F, respectively,

are assocllated with the terms dB (bl) - 2 > 0 and dg (b2) - 2 > 0 in the RHS and so
each of these terms can contribute 1 to the sum xuE~nB(d~(u) - 2). In the second

case, similarly, the two edges on p1 and p2 whose endpoint is b, E F are associated
with the c.erm ds (bl) - 2 > 0 and so, if ds (bl) > 3, this term can contribute 2 to the
sum Cr,E~nB (ds (u) - 2). If dB (61) = 3 we continue to follow the third path from bl
(i.e., not p1 or ~2) until another branchpoint b2 E F is found and the last edge on that
path is associated with dB (b2) - 2 which can contribute the extra missing 1 to the RHS.
Finally, if no branchpoint is found, then on the isolated cycle on which u resides there
exists a vertex from F* that resides on no other cycles of H. Thus, the third case could
not occur more than IF* II BI times. Now remove the paths pl and p2 from H obtaining
a graph in which still each vertex in F resides on a cycle that contains no other vertices

of F. Continue the process until F is exhausted. 0

Lemma II Let G, F and F* be dejined as above. Then,

x(d(v) -2) 6 c dF*(u) + c (d(u) -2) - c (+(o) - 2).
VEF L’EFG’ &FnF* - -*

oEFnF

Proof. First note that

x(0) - 2) = c &*(U) + c (d(u) - 2)
ICF 0EFf-S oEFnF*

+ c (dr(u) - 2).

I@FrlF
(22)

We now claim that CocF,_,~* (dF(u)-2)+&+F(dp(u)-2) islessorequalthan

0 which concludes this proof. The graph induced by 7 is a forest and since the number
of edges in a forest is smaller than the number of vertices, we have, Co,__ dr (u) /2 <

)F* I. Thus CoEp (dr (u) - 2) < 0 which is equivalent to the stated claim. 0

Proof of Theorem 6. Using the bounds given by Lemmas 7 and 8 we have,

184 A. Becker: D. Geiger/Artificial Intelligence 83 (1996) 167-188

Cd(u) < c (d(u) -2) +21FnF*I - c (c+(u) -2)
IGF uEFnF* - -*

uEFnF

t,EF PEF~F* - -*
t!EFnF oE FclT d

Now,

Cd(U) - c +(U) = c d(U) + c dF*(U)

reF
- -*

&FnF %F*
- -*

uEFnF

and therefore,

cd(u) 6 c dF* (U) + c d(U) 6 2 c d(U),

PEF PET OEF’ uEF*

which concludes the proof of the theorem. fl

4. Experimental results

Below we denote by Al the algorithm described in [24] and by A2 the algorithm
described in [231. These algorithms find loop cutsets. We performed six experiments.

In the first two experiments we tested how the outputs of the four algorithms, Al, A2,
GA’ and MGA, compare to a minimum loop cutset. In two additional experiments we
checked how the algorithms’ outputs compare to each other when given larger graphs
for which a minimum loop cutset is hard to obtain. In these four experiments we have
chosen all variables to be binary. The final two experiments compare the performance of
these algorithms when the number of values of each vertex is randomly chosen between
2 and 6, 2 and 8, and between 2 and 10. Each instance of the six experiments is based
on 100 random graphs generated as described by [241.

In the first experiment each of the 100 graphs generated had 15 vertices and 25 edges.
MGA made only one mistake producing 6 vertices instead of the minimum of 5 vertices.
GA’ made 4 mistakes each by one vertex off. A2 made 7 mistakes one of which was two
vertices off the minimum and the other six mistakes were one vertex off. Al made 11
mistakes one of which was 2 vertices off and the other 10 mistakes were one vertex off.
The minimum loop cutsets were between 3 and 6 vertices. Note that the ratio between
the number of instances associated with a loop cutset found by MGA in this experiment
and the number of instances associated with a minimum loop cutset is 1 .Ol which is far
less than the theoretical ratios guaranteed by Theorem 3 for this experiment which lie
between 8 when the minimum loop cutset contains 3 binary variables and 64 when the
minimum loop cutset contains 6 binary variables.

In the second experiment we generated 100 networks each with 25 vertices and 25
edges and tested how the output of the four algorithms compare to a minimum loop

A. Beckec D. Geiger/Art$cial Intelligence 83 (1996) 167-188 185

IVI El 1 A2 GA’ Eq. 1 GA’ MGA Es.

25 25 0 I 99 0 4 96
25 50 I 8 91 0 8 92
2s 75 0 15 85 1 I 92
55 55 1 2 97 0 9 91
55 15 4 10 86 1 18 83
ss 105 2 17 81 6 21 83

8 53 539 8 67 525

cutset when the graphs have a small number of loops. This case is interesting because
the conditioning inference algorithm is most appropriate for these networks. MGA made
no mistakes while the other three algorithms made between 4 and 5 mistakes each by
one vertex (the minimum loop cutsets contained between 2 and 4 vertices).

Next wc tested larger graphs. The first portion of Table 1 compares between GA’

and A2 showing that GA’ performs better than A2 in 53 of the 61 graphs (87%) in
which the algorithms disagree (out of 600 graphs tested). Each line in the table is
based on 100 randomly generated graphs. The output columns show the number of
graphs for which the two algorithms had an output of the same size and the number
of graphs each algorithm performed better than the other. Thus even our simple greedy
algorithm GA’ performs better than A2. The reason for this is the reduction from the
loop cutset problem to the weighted vertex feedback set problem which allows the
algorithm to select vertices that have parents while A2 unjustifiably does not select
such vertices (unless they have no pair of parents residing on the same loop). Similar

empirical results and the same explanation applies to Al. The second portion of the
table shows that MGA performs better than GA’ in 67 of the 75 graphs (89%) in
which the algorithms disagreed. Comparing MGA and A2 in the same fashion (600

graphs) showed that MGA performed better than A2 in 109 of the 116 graphs in which
the algorithms disagreed. Similarly, MGA performed better than Al in 135 of the 137
graphs in which these algorithms disagreed.

Finally, we repeated some of the experiments except that now each vertex was as-
sociated with a random number of values (between 2 and 6, 2 and 8, and 2 and 10).
The results are summarized in Table 2. The two algorithms, Al and MGA, output loop
cutsets of the same size in 55% of the graphs and when the algorithms disagreed, then
in 8 1% of these graphs MGA performed better than Al. The ratio obtained between
the number of instances of the algorithms solution and a minimum solution was 1.22
for MGA and 1.44 for Al (using the 300 graphs in the table for which the number
of vertices is 15 and number of edges 25). Not surprisingly, the averaged number of
instances by which the two algorithms’ outputs differ, when the algorithms disagree,

grows as the graphs being tested become larger.
To repeat this experiment with A2 required us to make a small change in A2 because

it is not designed to run with vertices having different number of values. We adopted
the approach of Al which selects vertices (with at most one parent) according to their
degree and if there are several candidates the one with the least number of values is
selected for the loop cutset. Combining this idea with the A2 algorithm defines an

186 A. Becker: D. Geiger/Artificial Intelligence 83 (1996) 167-188

Table 2

IVI El Values Al MGA Eq.

IS 25 2-6 1 17 82
15 25 2-8 2 17 81
15 25 2-10 2 19 79
55 105 2-6 13 58 29
55 105 2-8 17 51 32
55 105 2-10 15 55 30

50 217 333

algorithm we call the weighted A2 algorithm (WA2). The results obtained were that
MGA performed better than WA2 in 175 of the 224 graphs in which the algorithms
disagreed (out of 600). The ratio obtained between the number of instances of the
algorithms’ solution and a minimum solution was 1.22 for MGA and 1.33 for WA2.

5. Discussion

We have presented simple algorithms that given a Bayesian network output a loop
cutset whose instance size is less than twice the optimal size in a logarithmic scale (in
the worst case). Furthermore, we have experimentally shown that on the average our
algorithms perform much better than in the worst case. Consequently, before running
the probabilistic computation of the method of conditioning, we can evaluate with high
precision the optimal complexity of its running time. Furthermore the approximation

algorithms for the weighted vertex feedback set have applications in areas of computer
science other than AI.

The leading inference algorithm for Bayesian networks is the clique tree algorithm
[171 which has been further developed in [14,151. In fact, Shachter et al. [221 have
recently shown that the weight of the largest clique is bounded by the weight of the
union of the loop cutset and the largest parent set of a vertex in a Bayesian network,
implying that the clique tree algorithm is superior to the conditioning algorithm.

One possible change to the method of conditioning makes this inference methodology
quite useful in certain circumstances. Horvitz et al. [131 show how to rank the instances
of a loop cutset according to their prior probabilities assuming all variables in the cutset
are marginally independent. The conditioning algorithm can then be run according to
this ranking and the answer to a query be given as an interval that shrinks towards the
exact solution as more instances of the loop cutset are considered [12,131. So if the
maximal clique is too large to store (and therefore, according to [22], the loop cutset
is also often too large to handle), one can still perform approximate inferences using
the conditioning algorithm.

Remark

While this work was at its final stages of preparation we became aware of a different
method for the WVFS problem that achieves a performance ratio of 2 [2]. A quick

A. Becker D. Geiger/Art@%1 Intelligence 83 (1996) 167-188 187

examination of our own work in light of this information revealed that our method also
achieves a performance ratio of 2.

An early version of this paper was presented at the Tenth Uncertainty in Artificial
Intelligence Conference, Seattle, WA, July 1994.

References

1 I 1 R. Bar-Yehuda, D. Geiger, J. Naor and R. Roth, Approximation algorithms for the vertex feedback set

12
13
I4

15
16

problems with applicati&s to constraint satisfaction-and Bayesian inference, in: Proceedings 5th Annual

ACM-SIAM Symposium On Discrete Algorithms, Arlington, VI (1994).

F? Berman, Personal communication, Pennsylvania State University, University Park, PA (1994).

V. Chcatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979) 233-235.

K.L. Clarkson, A modification of the greedy algorithm for vertex cover, In5 Process. Lat. 16 (1983)

23-25.

T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, London, 1990).

R. Dechter, Enhancement schemes for constraint processing: backjumping, learning, and cutset

decomposition, Artif Intell. 41 (1990) 273-312.

I 7 I R. Dee hter and J. Pearl, The cycle cutset method for improving search performance in AI, in: Proceedings

Third .rfXE Conference on AI Applications, Orlando, FL (1987) 224-230.

181 M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, J. ACM 34 (1987) 596-615.

19 I M.R. Garey and D.S. Johnson, Computer.s and Intractability: A Guide to the Theory ofNP-Completeness

(Freeman, San Francisco, CA, 1979).

[IO] D. Geiger and J. Pearl, On the logic of causal models, in: R.D. Shachter, T.S. Levitt, L.N. Kanal and

J.F. Lemmer, eds., Proceedings cf Uncertainty in Artificial Intelligence 4 (North-Holland, New York,

1990) 3-14.

I I I I D. Geiger, T.S. Verma and J. Pearl, Identifying independence in Bayesian networks, Networks 20 (1990)

507-534.

I 12 I E.J. Horvitz, Computation and action under bounded resources, Ph.D. dissertation, Stanford University,

Stanford, CA (1990).

[I3 I E.J. Horvitz, H.J. Suermondt and G.H. Cooper, Bounded conditioning: flexible inference for decisions

under scarce resources, in: Proceedings 5th Conference on Uncertainty in Artijcial Intelligence, Windsor,

Ont. (1989) 182-193.

1 14 I F.V. Jensen, S.L. Lam&en and K.G. Olesen, Bayesian updating in causal probabilistic networks by local

computations, Comput. Stat. Quart. 4 (1990) 269-282.
I IS I F.V. Jensen, K.G. Olesen and SK. Andersen, An algebra of Bayesian belief universes for knowledge-

based systems, Networks 20 (1990) 637-659.

I I6 I H. Kim and J. Pearl, A computational model for combined causal and diagnostic reasoning in inference

systems, in: Proceedings IJCAI-83, Karlsruhe (Morgan Kaufmann, San Mateo, CA, 1983) 190-193.

I 17 1 S.L. L.auritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical structures and

their application to expert systems (with discussion), J. Roy. Stat. Sot. Ser. B 50 (1988) 157-224.

I I8 I R. Motwani, Lecture notes on approximation algorithms, Report STAN-CS-92-1435, Computer Science

Department, Stanford University, Stanford, CA (1992).

I 19 I J. Pearl, Fusion, propagation and structuring in belief networks, Artif Intell. 29 (1986) 241-288.

I20 I J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan

Kaufman”, San Mateo, CA, 1988).

[21 I R.D. :Shachter, Evaluating influence diagrams, Oper. Res. 34 (1986) 871-882.

I22 I R.D. ,Shachter, S.K. Andersen and P Szolovits, Global conditioning for probabilistic inference in belief

networks, in: Proceedings Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA (1994)
5 14-522.

L

I23 I J. Stillman, On heuristics for finding loop cutsets in multiply connected belief networks, in; Proceedings

Sixth Conference on (Incertainty in ArtiJicial Intelligence, Cambridge, MA (1990) 265-272.

188 A. Becker; D. Geiger/Artificial Intelligence 83 (1996) 167-188

I24 I H.J. Suermondt and G.E Cooper, Probabilistic inference in multiply connected belief networks using
loop cutsets, Int. J. Approx. Reasoning 4 (1990) 283-306.

I25 I H.J. Suermondt and G.E Cooper, Initialization for the method of conditioning in Bayesian belief
networks, Artif: Intell. 50 (1991) 83-94.

1261 T. Verma and J. Pearl, Causal networks: Semantics and expressiveness, in: R.D. Shachter, T.S. Levitt,
L.N. Kanal and J.E Lemmer, eds., Proceedings of Uncertainly in Art$icial Intelligence 4 (North-Holland,

New York, 1990) 69-76.

