
Int J Softw Tools Technol Transfer (2011) 13:247–261
DOI 10.1007/s10009-010-0160-z

HVC 2008

Automatic boosting of cross-product coverage using Bayesian
networks

Dorit Baras · Shai Fine · Laurent Fournier ·
Dan Geiger · Avi Ziv

Published online: 16 May 2010
© Springer-Verlag 2010

Abstract Closing the feedback loop from coverage data to
the stimuli generator is one of the main challenges in the ver-
ification process. Typically, verification engineers with deep
domain knowledge manually prepare a set of stimuli gener-
ation directives for that purpose. Bayesian networks based
CDG (coverage directed generation) systems have been suc-
cessfully used to assist the process by automatically closing
this feedback loop. However, constructing these CDG sys-
tems requires manual effort and a certain amount of domain
knowledge from a machine learning specialist. We propose
a new method that boosts coverage in the early stages of the
verification process with minimal effort, namely a fully auto-
matic construction of a CDG system that requires no domain
knowledge. Experimental results on a real-life cross-product
coverage model demonstrate the efficiency of the proposed
method.

Keywords Functional verification · Coverage · Coverage
directed generation · Bayesian networks

D. Baras (B) · S. Fine · L. Fournier · A. Ziv
IBM Research Laboratory in Haifa, Haifa, Israel
e-mail: doritb@il.ibm.com

S. Fine
e-mail: fshai@il.ibm.com

L. Fournier
e-mail: laurent@il.ibm.com

A. Ziv
e-mail: aziv@il.ibm.com

D. Geiger
Department of Computer Science, Technion, IIT, Haifa, Israel
e-mail: dang@cs.technion.ac.il

1 Introduction

Functional verification remains one of the main challenges
in the hardware design cycle [1]. In current industry practice,
dynamic verification is the leading technique for functional
verification. To cope with the ever increasing complexity of
modern designs, the verification process is highly automated.
It relies on sophisticated tools to replace the human engineer
in almost every aspect of operating the verification environ-
ment, such as generating stimuli for the design under verifi-
cation (DUV), and checking that the DUV behavior is correct
according to its specification [1].

Functional coverage is the main technique for checking
that the verification has been thorough [2]. Coverage can
help monitor the quality of verification and direct the ver-
ification team toward areas that have not been adequately
verified. The analysis of coverage information and the use of
this information to direct the stimuli generator toward uncov-
ered or lightly covered areas is one of the remaining human
bottlenecks in today’s verification environment. Therefore,
considerable effort is spent finding ways to automate the cov-
ering procedure; that is, to close the loop of coverage anal-
ysis and stimuli generation. Although in early stages of the
verification process, reaching 100% coverage is not the main
priority of the verification team, reaching a high level of cov-
erage as fast as possible is important because bugs found in
the early stages of the design require far less time and effort
to fix. Consequently, it would be helpful to boost coverage
in the early stages of verification with minimal effort from
the verification team. This requirement motivated the work
presented in this paper.

Data-driven coverage directed test generation (CDG) is a
technique to automate the feedback from coverage analysis
to stimuli generation. In data-driven CDG, the CDG system
discovers the relations between the directives that control the

123

248 D. Baras et al.

stimuli generation and the coverage events, based on obser-
vations of specific settings of the directives and the coverage
events to which they lead. Reports on several CDG systems
of this kind have been published in recent years, including
systems based on Bayesian networks [3,4], Markov chains
[5], genetic algorithms [6], and inductive logic [7].

Bayesian networks [8] are well suited to address the chal-
lenges of data-driven CDG and provide the kind of modeling
required for CDG. First, Bayesian networks offer a natural
and compact representation of the rather complex relation-
ship between the CDG ingredients, namely, the coverage
events on the one hand and the test directives on the other.
In addition, Bayesian networks provide the ability to encode
essential domain knowledge in the CDG system. As a result,
Bayesian network CDG systems were able to produce high
coverage and a high coverage rate in several industrial set-
tings [3,4,9,10]

The CDG approaches mentioned above require a certain
amount of domain knowledge from an expert familiar with
the design details and an expert in machine learning. In addi-
tion, construction of the CDG system may require signif-
icant effort that cannot be invested in early stages of the
verification process. We propose a fully automated method
for constructing CDG systems based on Bayesian networks,
without the need for domain expertise. In contrast to existing
works using Bayesian networks [3,4], we suggest a process
that does not require stages of preprocessing or help from
either verification engineers or machine learning specialists.
Similar to the manual construction process described in [3],
the components of the automated process include three main
stages: feature selection in which selection of relevant direc-
tives is performed; structure learning, where the structure of
the Bayesian network is defined; and parameters learning.

The feature selection stage, which is formally defined in
Sect. 6, is needed to narrow down the number of nodes in
the network which makes the tasks of learning the structure
and parameters more efficient. It also improves the networks
quality because effects of noise are filtered. As will be shown,
this task is quite difficult for the CDG domain. Identifying the
structure of the Bayesian network is the most difficult part in
the manual process. In the automated process, we replace the
manual construction with several generic structure learning
algorithms [11–14]. We then enhance these algorithms with
two heuristics that suit the characteristics of the CDG setting,
namely, pruning edges between directives and quantizing the
probabilities of directives. These automatically constructed
networks may not be as good as the manually constructed
ones, but they do provide enough power to achieve the goals
of coverage boosting.

We tested our method on a cross-product coverage model
used in the verification of the instruction fetch unit (IFU) of
the IBM z10 processor. Our results indicate that the auto-
matic booster approach is working. We were able to achieve

Fig. 1 Structure of a verification environment with CDG

significant improvement in coverage over the regression suite
used in the verification process with a fully automated pro-
cess that requires minimal effort. Our proposed feature selec-
tion methods yield beneficial sets of directives, and we were
able to produce good networks. Moreover, the two heuristics
we propose improve the quality of the learned Bayesian net-
works and perform better than the generic structure learning
algorithms.

The rest of the paper is organized as follows: Sect. 2
provides details on Bayesian networks and their application
to coverage directed generation. In Sect. 3, we explain the
concept of the coverage booster. Section 4 describes the set-
ting of the experiments to follow. Section 5 describes the
fully automatic process of the coverage booster. Section 6
describes the feature selection procedures and their related
results. Section 7 describes the structure and parameter learn-
ing procedures and thier corresponding experimental results.
Section 8 presents the results of the entire booster. We con-
clude and present directions for future work in Sect. 9.

2 Coverage directed generation using Bayesian
networks

In today’s highly automated verification environment, anal-
ysis of coverage information and use of this information
to direct the stimuli generator toward uncovered or lightly
covered areas is one of the remaining human bottlenecks.
Therefore, considerable effort is spent finding ways to
automate the covering procedure. That is, to close the loop
of coverage analysis and stimuli generation. This automated
feedback from coverage analysis to stimuli generation,
known as Coverage Directed stimuli Generation (CDG), can
reduce the manual work in the verification process and
increase its efficiency. In general, the goal of CDG is to auto-
matically provide the stimuli generator with directives that
are based on coverage analysis [3]. Figure 1 presents a sketch
of a verification environment with CDG. The CDG engine
receives information from the coverage analysis tool about
the state and progress of the coverage, and generates direc-
tives to the random test generator that are designed to achieve
one or many of the CDG goals.

123

Automatic boosting of cross-product coverage using Bayesian networks 249

There are two main approaches to CDG. In direct CDG,
or model-based CDG, an external model of the design under
verification is used to generate stimuli to accurately hit the
coverage events [15]. In data-driven CDG, which is often
called feedback-based CDG, the CDG system relies on infer-
ence of the required stimuli directives from observations
of past behaviors [3]. This inference is usually done with
machine learning techniques [3,6,7]. In this paper, we refer to
CDG systems based on Bayesian networks for cross-
product coverage [3]. The rest of this section explains how
such systems are constructed and used.

2.1 A brief introduction to Bayesian networks

A Bayesian network is a graphical representation of the joint
probability distribution for a set of variables [8]. A Bayesian
network consists of two components. The first is a directed
acyclic graph in which each vertex corresponds to a random
variable. This graph represents a set of conditional indepen-
dence properties of the represented distribution: each variable
is independent of its non-descendants in the graph given the
state of its parents. The graph captures the qualitative struc-
ture of the probability distribution, and is exploited for effi-
cient inference and decision making. The second component
is a collection of local interaction models that describe the
conditional probability p(Xi |Pai) of each variable Xi given
its parents Pai . Together, these two components represent a
unique joint probability distribution over the complete set of
variables X [8]. The joint probability distribution is given by
the following equation:

p(X) =
n∏

i=1

p(Xi |Pai) (1)

It can be shown that this equation implies the conditional
independence semantics of the graphical structure given ear-
lier. Equation 1 shows that the joint distribution specified
by a Bayesian network has a factored representation as the
product of individual local interaction models. Thus, while
Bayesian networks can represent arbitrary probability distri-
butions, they provide a computational advantage for those
distributions that can be represented with a simple structure.

Following Pearl [8], Fig. 2 describes a simple example of
a Bayesian network. The network contains five indicator ran-
dom variables as its nodes: earthquake to indicate whether an
earthquake occurred, burglary to indicate if someone broke
into the house, radio to indicate whether the earthquake was
announced on the radio, alarm if the alarm went off in the
house, and call to indicate that the security company notified
the owner about the alarm.

The edges in the graph indicate direct influence of the
source node on the target node. For example, an earthquake
directly increases the probability of setting the alarm because

Earthquauke Burglary

Radio Alarm

Call

E B P(A|E,B)

e b .9 .1

e b .7 .3

e b .8 .2

e b .01 .99

Fig. 2 Simple example of a Bayesian network

of the movements in the house that may trigger the alarm sen-
sors. Similarly, the probability of receiving a call from the
security company is directly dependent on the alarm actu-
ally being activated. Note that a lack of edge or directed path
between nodes in the graph does not mean that the two vari-
ables are independent. For example, receiving a call from
the security company after hearing about an earthquake on
the radio reduces the probability that someone broke into the
house, as compared to the case where there was no announce-
ment about an earthquake.

The conditional probabilities that describe the local inter-
actions between a node and its parents are often stored in
tables adjacent to the node. The table on the right hand side
of Fig. 2 holds the probability for the state of the alarm node
conditioned on the occurrence of burglary and earthquake.
For example, if no burglary and no earthquake occurred, the
probability of the alarm being activated is 1%; while if the
house was broken into and no earthquake occurred, the prob-
ability of setting the alarm is 80%. Given all the conditional
probabilities of the nodes in the graph, we can use Eq. 2
below to express the joint probability in the space induced
by the five nodes.

p(B, E, R, A, C)

= p(B) · p(E) · p(R|E) · p(A|B, E) · p(C |A) (2)

The characterization given by Eq. 1 is a purely formal
characterization in terms of probabilities and conditional
independence. An informal connection can be made between
this characterization and the intuitive notion of direct causal
influence. It has been noted that if the edges in the network
structure correspond to causal relationships, where a vari-
able’s parents represent the direct causal influences on that
variable, then resulting networks are often very concise and
accurate descriptions of the domain. Thus, it appears that
in many practical situations, a Bayesian network provides
a natural way to encode causal information. Nonetheless, it
is often difficult and time consuming to construct Bayesian
networks from expert knowledge alone, particularly because

123

250 D. Baras et al.

of the need to provide numerical parameters. This observa-
tion, together with the fact that data is becoming increasingly
available and cheaper to acquire, has led to a growing interest
in using data to learn both the structure and probabilities of
a Bayesian network (cf. [8,16,17]).

Typical types of queries that can be efficiently answered
by the Bayesian network model are derived from applying
the Bayes rule to yield posterior probabilities for the values
of a node (or set of nodes), X , given some evidence, E , i.e.,
assignment of specific values to other nodes:

p(X |E) = p(E |X) · p(X)

p(E)
(3)

Thus, a statistical inference can be made in the form of
either selecting the Maximal A Posteriori (MAP) probability,
max p(X |E), or obtaining the Most Probable Explanation
(MPE), arg max p(X |E).

2.2 Bayesian networks for CDG

The idea behind using Bayesian networks for CDG cross-
product coverage models starts from the understanding that
the space containing the directives to the stimuli generator on
one side and the coverage model on the other side is a large
distribution space. On one side of this space stand the direc-
tives to the stimuli generator, which are defined as probabil-
ity distributions over a domain of values. On the other side
stands the coverage model that is defined as a cross prod-
uct over a finite set of variables which are named attributes.
Each attribute is defined over a finite, possibly categorical,
set of values. Activating the verification environment1 with
different settings of the directives, or even with the same
settings but different random seed, yields different coverage
events. Therefore, the coverage attributes can also be viewed
as random variables.

Bayesian networks can represent this large distribution
space in a compact form. The structure of the network cap-
tures the true dependencies between the various components
of the space. Specifically, it captures directives that directly
affect the values of specific coverage attributes and depen-
dencies between the values of various coverage attributes.
Once the structure and parameters of the Bayesian network
are defined, an abductive query that provides evidence on
the effect nodes (desired coverage events) can be used to
determine the possible cause (directives settings).

Constructing a Bayesian network for a CDG system com-
prises three main steps. The first step is selecting the relevant
directives to be used in the system. The number of inputs to
the stimuli generator, namely directives, is narrowed down to
avoid networks that are too large for training and inference. It

1 That is, generating stimuli using the directives settings, simulating
the DUV, and obtaining coverage data.

also reduces the amount of data required for the learning pro-
cess that follows. The second step, which is the most difficult
one, involves defining the network structure. In many appli-
cations of Bayesian networks, the structure of the network
is defined manually by a domain expert. Although structure
learning algorithms exist (e.g., [11,18]) their performance is
usually inferior to manually constructed networks. The last
step involves estimating the conditional probabilities of each
node in the network. There are efficient algorithms that can
learn these parameters from observations on data in the form
of values to (some or all) the network nodes. In the CDG case,
the set of observations is a sample set of directive settings
along with their coverage events as resulting from activating
the simulation environment. The constructed Bayesian net-
work can be used in a CDG system to determine directives
for a desired coverage event.

It is important to note that the use of Bayesian networks for
CDG is different from most “classical” uses. These character-
istics are caused by the way stimuli generators and
verification environments behave. In many cases, stimuli gen-
erators use the settings of the same directive many times dur-
ing their operation, each time randomly choosing a different
value according to the distribution specified in the settings.
This allows them to generate rich sequences of values out of
one directive. Therefore, it is important to provide the Bayes-
ian network and the algorithms that learn it with settings that
specify probability distributions on the possible values of a
directive, not just settings that determinately define its value.
We call such settings soft evidence. The implications of using
soft evidence in the feature selection and automatic construc-
tion of a Bayesian network are discussed in Sects. 6 and 7
respectively.

3 The coverage booster

Coverage closure is commonly acknowledged as one the
most important goals of the verification process. The recur-
ring observation in this domain is that a portion of the events
to be covered are not reached through the initial attempts.
These events are usually some of the most complex and sub-
tle events, since they resisted the preliminary regular attempts
to create them. Therefore, this involved task is usually car-
ried out by experts, both in the application domain and in the
stimuli generation technology.

Due to the high cost of the coverage closure task, both
in terms of time investment and expertise required, much
attention has been geared toward inserting some automation
into this classically manual process. Our approach, which
relies on machine learning techniques [3], has shown good
initial signs indicating the potential for automating this task.
Indeed, there were several success stories [4,10] that demon-
strated the adequacy of this approach, and showed that this

123

Automatic boosting of cross-product coverage using Bayesian networks 251

apparently intrinsically manual task could be modeled and
performed by a program.

While machine learning techniques have shown their
capacity to capture part of the compound relationship
between events and stimuli generation directives, and auto-
mate the process of closing the loop between stimuli gener-
ation directives and coverage events, constructing the CDG
system is still a manual process requiring both expertise and
effort. This significantly limits the opportunities of CDG
to provide real benefits to the verification process. First,
CDG is beneficial only in places where it replaces significant
effort in coverage closure. This usually means that there are
either large and complex coverage models [10], or extremely
important coverage events [4]. In addition, CDG is possible
only when a significant effort is directed at coverage clo-
sure. In many cases, this happens only towards the end of the
verification effort.

The “Coverage Booster” is our new approach for exploit-
ing the demonstrated capacity of machine learning in this
domain, while showing an improvement, or boost, in effi-
ciency measured in overall human effort. Instead of placing
full coverage as a primary goal, we target minimal human
effort above any other consideration. The coverage booster
may not reach full coverage, but because of the zero human
effort spent, covering new events and improving the cover-
age rate are enough to create real benefits to the verification
process. Therefore, the coverage booster expands the enve-
lope of opportunities for CDG in two ways. First, CDG can be
useful when the verification team cannot allocate much effort
for additional coverage models. Second, CDG can be used
in earlier stages of the verification process, before coverage
becomes a top priority.

4 Experimental environment

To evaluate our proposal we conducted several experiments
using the verification environment for the z10 processor’s
instruction fetch unit (IFU), which is built into the latest IBM
System z (mainframe) computers [19]. The IFU is responsi-
ble for efficiently requesting and buffering instruction fetches
from memory, pre-decoding these instructions, and transfer-
ring them to the decode and execution units for additional
processing. One of the most important functions of the unit,
which has significant impact on the processor performance,
is branch prediction. This is a complex task which includes
the prediction of several aspects of a branch such as whether
it is taken or not and its target address. Successful branch
prediction can reduce the delay penalty of waiting for the
actual outcome of the branch.

The IFU is connected to several other units. Its main inter-
faces are to the cache units that send instructions to the IFU
based on fetch requests; the decode unit that receives pre-

decoded instructions for the IFU; and the execution units
that send information to the IFU regarding the execution of
instructions. The verification environment of the IFU contains
stimuli generators that control the interfaces of the IFU with
these units. The behavior of the generators is controlled by
a large set of directives that are provided by the user. These
directives affect various aspects of the behavior of the unit
interfaces. For example, there are directives that control the
frequency of branch instructions in the instruction steam that
is fed via the interface to the cache units, directives that con-
trol the actual outcome of branch instructions, and directives
that control the frequency and type of flushes arriving from
the execution units.

To ensure the quality of the verification process, the IFU
verification team uses several cross-product coverage mod-
els that capture various aspects of the unit state and behav-
ior. During simulation, the verification environment collects
coverage events for these coverage models and saves them
in trace files. Later, these trace files are processed by cover-
age measurement and analysis tools that produce coverage
reports for the users and the CDG system. Our experiments
were focused on one of these coverage models, namely, the
IfuPipe model. This coverage model examines the state of the
processor pipeline, or more precisely, the state of the pipe-
line in the IFU and nearby units. The IfuPipe model contains
attributes that describe the state of each pipe stage, as well
as other flags relating to branches and pipe recycles. There
are 13 attributes in the model, with domain sizes of 2–3.
There are 139,968 events in the coverage space, out of which
approximately 27,000 events are included in the legal and
interesting subspaces by the verification team. The verifica-
tion environment of the IFU includes hundreds of directives,
out of which, our experimental settings included a set of 23
directives provided by the IFU verification team. This set of
directives is supposed to be the one that best controls the
behavior of the IFU as captured by the IfuPipe model. Most
of the directives in the set control the behavior of branch
instructions and branch prediction.

The experiments described in this paper were done in two
parts. The first part, as reported in Sect. 7.3, was done during
the verification of the unit. This part of the experiment con-
tributed directly to the verification of the unit by improving
the coverage of the IfuPipe model and helping the verifica-
tion team reach areas in the model that they could not reach
before. The second part, with results reported in Sect. 6.3 was
done after the verification of the unit and the entire z10 pro-
cessor was completed. Major changes in the design and the
verification environment between the experiments prevent us
from comparing these two sets of results.

The interface between the verification environment and
the CDG system is done in two ways. During execution of the
CDG system, it extracts coverage information from the cov-
erage analysis tool and uses this information and its under-

123

252 D. Baras et al.

P(Z
1
) = (0.3, 0.7)

Z
2
 = "F7"

P(Z
3
) = (0.1, 0.8, 0.1)

Directive File CoverageTrace

A1 = 2, A2 = br, ...
A1 = 0, A2 = fadd, ...
A1 = 3, A2 = mul, ...

P(Z
1
=1)

0.3
0.3
0.3
....

0.9
0.9
0.9
...

P(Z
1
=2)

0.7
0.7
0.7
....

0.1
0.1
0.1
...

P(Z
2
= F2)

0
0
0
....

1
1
1
...

P(Z
2
=F7)

1
1
1
....

0
0
0
...

... A
1

2
0
3
....

3
3
0
...

A
2

br
fadd
mul
....

fsub
br
br
...

A
K

T
T
F
....

F
T
F
...

Fig. 3 Input data to the CDG process

standing of the relation between coverage and the directives
to produce directive files that are fed into the verification
environment, as depicted in Fig. 1. During the construction
of the CDG system, the verification environment provides
the constructor of the CDG system with directive settings
and the coverage to which these settings lead. Specifically,
each simulation run is controlled by a directive file that pro-
vides distributions over possible values for some directives
and assignments to specific values for others. The simulation,
in turn, provides coverage traces, with each trace containing
all the coverage events of a specific model that occurred dur-
ing the run. These directive files and coverage traces pairs
are presented to the CDG system in a tabular form as shown
in Fig. 3. The table is composed of two parts, one that con-
tains the settings of the directives and another that contains
the coverage events. Each row in the table contains a cov-
erage event and the settings of the directives in the simula-
tion run that produced this event. Since each simulation run
(with specific settings) produces many coverage events, the
table contains many rows whose directive part is identical,
as shown in Fig. 3.

5 Automatic construction of CDG engine

At the heart of a Bayesian network-based CDG engine lies a
Bayesian network that allows a compact yet accurate descrip-
tion of the stochastic space of the coverage attributes on the
one side and the stimuli generator directives on the other side.
As noted previously, the goals of our coverage booster are to
eliminate the need for manual intervention and boost cover-
age in early stages of the verification process. To meet these
goals, the Bayesian network needs to be created automati-
cally. The automated process described in this section gen-
erally follows the manual process described in [3], except
that the manual steps requiring domain expertise in either
the DUV and verification environment or machine learning
techniques are replaced with automated steps. This enhanced

Fig. 4 Construction of the Bayesian networks for CDG

automation may lower the quality of the Bayesian network
and prevent it from reaching coverage closure. However, it
does provide enough power to achieve the goal of coverage
boosting.

The automated process is composed of three stages: fea-
ture selection, structure learning, and parameter learning.
Fig. 4 illustrates the automatic process that creates a Bayesian
network, which is later used for coverage boosting. Initially,
the verification team provides a description of the coverage
model and a list of directives that control the stimuli gen-
erator. The number of directives needs to be cut to allow
efficient learning. In order to perform this selection we cre-
ate an initial random sampling of all the directives that were
provided and simulate with them. This is followed by a fea-
ture selection phase in which we narrow down the number
of directives that are used later; we do this by choosing those
with maximal influence. Next, we create a training set with
random sampling of the directives we chose, while the rest
of the directives are given default values, which are provided
by the verification team. This training set is the input to the
structure learning procedure that is followed by a parameter
learning phase in which the conditional probabilities of the
variables are estimated. At this point we have a Bayesian
network that can be used in a CDG engine. The following
sections provides more details on each of the stages of the
automatic construction.

6 Feature selection

A typical verification environment contains tens or even hun-
dreds of directives, which control the stimuli generator and
affect the stimuli it generates. Learning with such a large set
of directives is very difficult or even impossible. Therefore,
it is essential to narrow down the number of directives and
select a small high quality subset for the CDG process. It
turns out that in most cases only a small subset of the direc-
tives are required to control the coverage of a specific model,

123

Automatic boosting of cross-product coverage using Bayesian networks 253

so this reduction does not reduce the ability of the coverage
booster to achieve its goal.

Feature selection is a general term given to a variety of
algorithms that extract the subset of features most relevant
for a given task [20,21]. For CDG, the features are directives
and the feature selection task involves finding directives that
highly influence the coverage attributes. Feature selection in
the CDG settings has several unique characteristics that make
it difficult. The first, and most difficult issue, is the fact that
the data is not fully observed. Most algorithms perform fea-
ture selection on a feature space that is fully observed. That is,
the values of all features are known for every sample. In the
verification case, we are not given the deterministic values
of the directives, but rather a distribution over them. Second,
the data is very noisy because of the highly stochastic nature
of the simulation environment. Third, dominant values that
are present in some of the coverage attributes can mask a
dependencies between directives and a coverage attributes
that affect dominated values. For example, if a specific value
of an attribute appears in 90% of the samples, it would be
hard to detect that a given directive can change the frequency
of other value of that attribute from 5 to 6%. An additional
problem is that the data is categorical and not ordinal, so
feature selection methods based on ordering (such as [22])
cannot be applied. Because of these unique characteristics,
commonly used algorithms cannot be applied as is.

In addition to those problems, in CDG systems the fea-
ture selection problem is a many-to-many task (in contrast to
many-to-one tasks like classification). Our solution divides
the task of selecting the relevant features into two parts: esti-
mating connection strength and choosing directives. First,
we estimate the strength of the connection between each
attribute-directive pair. This is followed by a step of choos-
ing the directives that have the strongest impact on all the
attributes under some predefined criterion. We do not take
into account relations of more than single directive at a time.
These relations are handled by the structure and parameter
learning algorithms described later.

6.1 Estimation of the influence matrix

We use a measure based on mutual information [23] to mea-
sure the level of influence between pairs of attribute-directive.
In information theory, mutual information is a quantity that
measures the information between two random variables. Let
P(X) and P(Y) be the marginal distributions of X and Y
respectively and let P(X, Y) be the joint distribution over
the two random variables. The mutual information between
the random variables is given by

I (X; Y) =
∑

x,y

P(x, y) log
P(x, y)

P(x)P(y)

Fig. 5 Naive Bayes model
z

A
k

A
2A

1

This measure does not directly reveal the type of connection
between the pair (it does not connect certain values together),
but it captures connections and scores the strength of influ-
ence between the two random variables.

To overcome a problem of low uncertainty in either a direc-
tive or an attribute, caused, for example, by dominant values,
we normalize the mutual information. The measure that we
actually use is:

N M I (A; Z) = I (A; Z)

min{H(A), H(Z)}
where H(X) = −∑

x P(x) log P(x) is the Shannon entropy
[23], which measures of the uncertainty in a random variable.

Algorithm 1 introduces a method for estimating the influ-
ence matrix I M(A; Z), where A is an attribute and Z is
a directive. Estimating the influence (here, the normalized
mutual information) requires estimating the joint probabil-
ity P(A, Z) and the marginal probabilities P(A) and P(Z).
We use a naive Bayes model for each individual directive
in which the directive is a parent of all attributes, and there
are no additional edges in the network, as shown in Fig. 5.
The main part of the algorithm is the Expectation Maximiza-
tion procedure [8], in which the the conditional probability
P(A|Z) and the probability P(Z) are estimated from the
training data.

6.2 Subset selection

Given an estimation of the strength of connection between
every attribute-directive pair, the next task is to select a
“good” subset of directives that have a strong effect on all
the attributes. There are several observations regarding this
task. First, this is a many-to-many task, in which the num-
ber of required directives can be smaller than the number of
attributes. Therefore, the impact of this task cannot simply
be divided into choosing the “best” directives for each attri-
bute and then taking the union of all directives. Second, the
behavior of each attribute alone versus all directives is not
necessarily fixed; there may be attributes that are easily con-
trolled and strongly connected (high influence value) to many
or even all directives. On the other hand, there are attributes
that are hard to control and are weakly connected to all direc-
tives. To overcome this problem, the algorithms we suggested
made assumptions about the behavior of the influence of all
directives on an attribute. These assumptions are presented
in the section corresponding to the specific algorithms.

123

254 D. Baras et al.

Input : D - Training data, as shown in Fig. 3
Output: I M - Influence Matrix, where I Mi, j is the influence of directive Z j on attribute Ai

for j ← 1 to N do
EM(D j) // D j ← The relevant columns to Z j and all attributes in D
for i ← 1 to M do

// Estimate probabilities
P(Ai = ai)←∑

z j
P(ai |z j)P(z j)

P(ai , z j)← P(ai |z j)P(z j)

// Calculate influence

I (Ai , Z j)←∑
z j ,ai

P(ai , z j) log
P(ai ,z j)

P(ai)P(z j)

H(Ai)←−∑
ai

P(ai) log P(ai)

H(Z j)←−∑
z j

P(z j) log P(z j)

I Mi, j ← I (Ai ;Z j)

min{H(Ai),H(Z j)} // The influence is the normalized mutual information

end
end

EM(D)
Input : D - The relevant columns directive Z and all attributes in the training data
Output: P(Ai |Z), i = 1, 2, . . . , M - The conditional probability of each attribute Ai given Z

P(Z) - The marginal probability of Z

// Initialize
for i ← 1 to M do P(Ai |Z)← random probabilities
P(Z)← random probabilities
N ← number of rows in D

repeat
// E Step
foreach row r ∈ D do

er ← (a1,r , a2,r , . . . , aN ,r) // The values of all the attributes in row r
foreach zk ∈ domain(Z) do

Dr (zk) denotes the probability of Z = zk in row r

P(zk |er)←
∏

i P(ai,r |zk)·Dr (zk)∑
zl

∏
i P(ai,r |zl ·Dr (zl))

end
end

// M Step - Estimate the parameters of the current Naive Bayes model using maximum
likelihood

foreach zk ∈ domain(Z) do P(Z = zk)← 1
N

∑
r Dr (zk)

for i ← 1 to M do
foreach zk ∈ domain(Z), al ∈ domain(Ai) do P(al , zk)← 1

N

∑
r,ai,r=al

P(zk |al)

foreach zk ∈ domain(Z), al ∈ domain(Ai) do P(al |zk)← P(al ,zk)∑
am∈domain(Ai)

P(am ,zk)

end
until change in estimation between iterations is lower than a given threshold

end

Algorithm 1: Calculate the influence matrix I M

6.2.1 Greedy algorithm

Our experiments in real verification environments revealed
three main types of expected behaviors between attribute-
directive pairs. First, there are many directives that have a
weak influence on all attributes (for a given model). These are
the main candidates to be filtered out in the feature selection
process. Second, there exist attributes that are “easy to con-
trol” in the sense that almost all directives influence them. A
reasonable feature selection algorithm would perhaps ignore
such attributes when choosing directives because they are

easy to control anyhow. Third, we observed that if an attribute
is not easy to control, it has a relatively small number (if any)
of directives that are associated with relatively high influence
values. These observations motivated the main assumption
of this algorithm: the distribution over influence values for
(Ai , Z j), j = 1, . . . , n should be almost uniform over low
values and very low for high values (if any exist). Denote by
I Mi, j the value of influence between the i th attribute and the
j th directive. If we sort these values for a fixed i (namely,
a certain attribute), we expect to see one of the following
behaviors:

123

Automatic boosting of cross-product coverage using Bayesian networks 255

1. All values are low.
2. Almost all values are relatively high.
3. Most values are low, there are few high values (less than

20%), and the difference between the high and low values
is very sharp.

Algorithm FS_Greedy (Algorithm 2) identifies high influ-
ence values, based on this assumption. It favors directives
that have high information values for several attributes. The
algorithm takes into account only the quality of the directives
alone and does not look at the “coverage” of the attributes;
therefore, there may be attributes covered by more than one
directive, and others that are not covered by any chosen direc-
tive.

FS_Greedy(I M, Budget)
Input : I M - Influence Matrix

Budget - Number of directives to choose
Output: S - Set of directives to be used

// Initialize

Ẑ ⇐ ∅
α = 0.5

while (|Ẑ | < budget)and(α > 0.25) do
for i ← 1toM do

Sort the influence values I Mi, j , j ∈ {1, . . . , N } in
descending order: v1, v2, . . . , vN

Compute the ratios v1
v2

, v2
v3

, . . . ,
vN−1
vN

if ∃k, s.t. vk
vk+1

> α · (v1 − vN) and k < N
5 then

// v1, ..., vk are significantly high

Zi ← the set of directives that have significantly
high mutual information with the i’th attribute

else
Zi ← ∅

end
end
Ẑ = Z1 ∪ Z2 ∪ . . . Z M

if |Ẑ | < budget then
αnew = 0.95 · αold

end
end
For each Z j ∈ Ẑ calculate its score
Where score Z j =∑

k 1{Z j ∈ Zk} (number of occurrences)
Return S, the Budget directives with highest scores

end

Algorithm 2: Feature selection greedy algorithm

6.2.2 Scoring directives

The most simple method to score directives would be to count
their occurrences in Zi , as defined in Algorithm FS_Greedy.
However, instead of taking into account only the fact that
a directive has an influence over an attribute, we can con-
sider a weighted version that takes into account the level

of influence. For this purpose we need to define a scoring
function that gets as input the level of influence of a certain
directive on all attributes and returns a score for the quality of
the directive. Denote by v the vector of values of correspond-
ing to level of influence of a directive on all the attributes.
vi = 0 if this directive has no influence on the i th attri-
bute (namely directive /∈ Zi). We used one of the following
options:

– Count: score(v) =∑
i :vi >0 1

– Sum: score(v) =∑
i vi

– Square sum: score(v) =∑
i v2

i
– Square root sum: score(v) =∑

i
√

vi

The difference between the scoring options is the score given
when there are few strong values compared to many medium
values. When counting, there is bias toward directives that
have many values larger than zero that are not necessarily
high, while summing over values biases toward directives
that can have high values associated with a small number of
directives. There is no answer to the question of which is
preferable, hence we use several subsets, each given as the
output of a different scoring function.

6.2.3 Attribute coverage oriented algorithm

FS_Greedy algorithm does not take into account consider-
ations of the following form:

– It can be better to prefer a directive that has a lower influ-
ence value with a certain attribute, if this attribute is not
affected by any other directive.

– It can be better to prefer directives that have medium
influence on several attributes, over a directive that has a
high influence value with a single attribute.

Observations over the results of FS_Greedy led us to the
conclusion that such consideration needs to be accounted
for. To overcome the weaknesses of the previous algorithm,
we suggest a new set selection method called FS_Cover (see
Algorithm 3). Algorithm FS_Cover finds a good subset, tak-
ing into account coverage of attributes by directives. Algo-
rithm FS_Greedy is first used to choose three directives that
are used as the initial set. Next, we iterate until a budget is
reached as follows: at every iteration, we consider adding
each of the remaining directives. We score the current set
with the new directive, and choose the directive that leads
to the highest score. The score depends on rows of a matrix
that is composed only of current set columns, and takes into
account the mean and standard deviation values of the mutual
information values. The pseudo code (including the setScore
algorithm) is presented in Algorithm 3.

123

256 D. Baras et al.

FS_Cover(I M, Budget)
Input : I M - Influence Matrix

Budget - Number of directives to choose
Output: S - Set of directives to be used

// Initialize
S← FS_Greedy(IM, 3)
if |S| > 3 then Randomly choose 3 members
Sleft ← {Zi |1 ≤ i ≤ N , Zi /∈ S}
α← 0.5

while (|S| < budget)and(α > 0.25) do
for Zk ∈ Sle f t do

score(Zk)← SetScore(I M, S ∪ {Zk})
end
k1 ← arg maxk score(Zk)

k2 ← arg maxk
=k1 score(Zk)

k3 ← arg maxk
=k1,k2 score(Zk)

Randomly choose k′ from the triplet k1, k2, k3
S← {S ∪ {Zk′ }}
Sleft ← Sleft − {Zk′ }

end

return S
end

SetScore(I M, S)
Input : I M - Influence Matrix

S - subset of directives
Output: Score of the given subset

M ← I M(:, S) // sub matrix composed of the
directives in the input set

w←∑
j M(:, j) // sum over the directives

μ← mean(w)

σ ← std(w)

score← μ
max{σ,ε} // ε > 0 is a small

predefined constant (handle cases of
σ → 0)

return score
end

Algorithm 3: Feature selection cover algorithm

6.3 Experimental results

We now present the results of the feature selection procedure
for the CDG process. The experiment was conducted on the
z10 IFU environment described in Sect. 4. Figure 6 presents
the log of influence values that were estimated for the prob-
lem. The values are presented in logarithmic scale for clarity
of presentation. Dark cells in the matrix correspond to low
influence and light cells correspond to high influence. Each
row corresponds to an attribute and each column corresponds
to a directive. The chosen directives are marked with ellipses.
These results correspond to using the Algorithm FS_Cover
with a budget request of five directives. We can clearly see
that the chosen directives have very high values over sev-
eral attributes, and that except for attribute 8, which has low
values with all directives, all attributes are covered with at
least one directive. These results overlap with manual feature
selection for three out of five directives. As demonstrated in

directives

at
tr

ib
u

te
s

Log(Normalized Mutual Information Matrix

5 10 15 20

2

4

6

8

10

12 −10

−9

−8

−7

−6

−5

−4

−3

−2

Fig. 6 Normalized Mutual information matrix on real CDG data

Sect. 8, the automatically chosen directives gave high quality
results.

7 Structure and parameter learning

In our CDG systems, the relations between the directives and
coverage attributes are modeled using a Bayesian network,
which is composed of two components: the structure and the
parameters. The structure is a DAG that captures causal rela-
tions and the parameters represent the conditional probability
tables that describe the distribution of a node given its parents.

7.1 Structure learning for CDG

While there are applications where structure learning algo-
rithms provide high quality results (e.g., [10,18]), these algo-
rithms generally have many weaknesses that cause them to
be highly inferior to manually constructed structures. Some
of these weaknesses are closely related to the unique require-
ments of Bayesian networks for CDG. One example is the
use of soft evidence, which is known to produce a richer set
of events on the one hand, but makes structure learning more
difficult on the other. Another example is the difficulty con-
structing networks with hidden nodes, which proved to be
essential in past CDG work [3]. Therefore, we do not expect
the output of structure learning algorithms to be as good as
manually constructed networks. Still, our results show that
automatic structure learning can provide structure that is suf-
ficient to boost coverage.

There are two main approaches to structure learning:
generic algorithms that can be applied to any problem satisfy-
ing predefined conditions and application-based algorithms

123

Automatic boosting of cross-product coverage using Bayesian networks 257

that suit the specific setting of given problems (usually with
unique domains or characterization). We are not aware of
application-specific algorithms that fit the CDG setting;
therefore, we use several well known generic algorithms: K2
[11], mcmc [12], gs [13] and structural EM [14]. These algo-
rithms are used in a wide range of applications with various
levels of success.

The initial experiments with these algorithms provided
reasonable results. However, we wanted to improve the
results by taking into account the specific nature of CDG
settings. For that purpose, we use two techniques. The first
is a post-processing heuristic that prunes arcs between direc-
tives in the network graph. Our initial learned networks have
arcs between directive nodes, for valid reasons. First, some
combinations of assignments to directives cause simulations
to fail or produce small sets of coverage events resulting in
dependencies between directives in the training set. In addi-
tion, the random independent sampling of the directive space
for the training set may still contain undesired dependen-
cies. Still, in the CDG settings, these edges are not desir-
able because we have total control on the directives’ settings
throughout the process. Moreover, these edges may actually
interfere with learning the really important relations between
coverage attributes and directives. Therefore, we decided
to investigate removing these arcs. The resulting networks,
which we refer to as pruned networks, yield better results
(see Sect. 7.3). The same reasoning cannot be used for edges
connecting two attribute nodes because they capture depen-
dencies that are essential for high quality networks. Note that
removing the edges between directives can result in direc-
tives nodes that are disconnected from the attributes nodes, as
indeed happened in our experiments. These orphan directives
are no longer part of the CDG system, therefore, the prun-
ing heuristics can be used as a second order feature selection
procedure.

The second improvement to the generic learning algorithm
is a pre-processing step that modifies the domain of the direc-
tives in order to enrich the settings of directives and overcome
the soft versus hard evidence problem. Hard evidence is the
term we use when we assign a single value to a directive. This
is similar to having soft evidence with one probability set to
one and all others to zero. In verification, directive nodes are
used many times in a single simulation run; in each use, a
new value is randomly chosen based on the probability spec-
ified. Therefore, hard evidence, which forces a single value
to each directive, strongly limits the stimuli sequences gener-
ated. Consequently, soft evidence that sets the probabilities
for each value in the domain of the directives is essential.
However, the structure learning algorithms we use are not
capable of handling soft evidence. In order to deal with this,
we suggest a heuristic that allows us to incorporate soft evi-
dence in the existing algorithms. We refer to this new method
as quantized directives.

The main idea of this method is to replace each directive
node Y whose domain is (y1, . . . , yn) with node Ỹ whose
domain is a discrete set of probabilities over the domain
of the original directive Y . For example, if Y has a
domain (y1, y2, y3), we can create a node Ỹ with seven values
representing the probabilities {(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1

2 , 1
2 , 0), (1

2 , 0, 1
2), (0, 1

2 , 1
2), (1

3 , 1
3 , 1

3)} over (y1, y2, y3).
Using this setting allows us to run simulations with soft evi-
dence that enables the full richness of the generated
sequences, and use the corresponding value in Ỹ as hard
evidence in the structure learning algorithm. Once the struc-
ture is learned, we return to the original directives for the
parameter learning stage. This quantization procedure is not
limited to uniform values over subsets. It can include any soft
evidence chosen. However, there is a trade-off between the
ability to use many soft evidence values and the domain size
of the extended directive. Domain sizes that are too large will
cause the learning to be more difficult and lower the ability
of the network to perform inference.

7.2 Parameter learning

Once the structure of the Bayesian network is known, the next
step is to learn the parameters of its nodes, i.e., the condi-
tional probability of each node given the values of its parents.
Unlike structure learning, there exist algorithms for parame-
ter learning that deal with soft evidence [17]. The algorithm
we use is the EM (Expectation-Maximization) algorithm
[17]. This is an iterative algorithm that is guaranteed to con-
verge to a local maximum of the likelihood. The EM algo-
rithm learns not only the conditional probabilities of internal
nodes, but also the prior probabilities of root nodes (nodes
with no parents). When such a node corresponds to a direc-
tive, calculating the prior probabilities is not needed or even
not desirable for the same reasons that led to the pruning
heuristic. We are currently investigating how to generalize
the learning algorithms to address this issue.

7.3 Experimental results

We tested the ability of four structure learning algorithms
to boost coverage over normal activations of the verification
environment using its regression suite. The regression suite is
a collection of directives settings that are manually designed
by the verification team to cover areas of interest. The number
of directives used in the regression suite is much larger than
the five directives we selected for our experiments or even
the initial 23 directives given to us. We started our experi-
ments after about 20,000 simulation runs that covered 5222
events in the model. At that time, we observed a considerable
slow down in the coverage rate (see Fig. 7). This was done
for two main reasons. First, we wanted to avoid dealing with
the very easy-to-cover events that are hit anyway and thus

123

258 D. Baras et al.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Simulation runs

E
ve

nt
s

basic algorithms

pruned networks

random

regression

Fig. 7 Coverage progress for random, regression, and aggregated
results of basic and prune experiments

are not important to the coverage booster. Second, this set-
ting represents a more realistic setting, where the coverage
booster is not operated from day one.

We used an additional two references in the experiments.
The first was a large set of randomly created directive settings
for the five selected directives. This reference was used to ver-
ify that the regression suite is not naive and more importantly,
to ensure that the feature selection phase alone is not enough
for boosting. The last reference was a naive Bayesian net-
work that contained edges between directives and attributes
and between pairs of attributes with high mutual information.
All the experiments followed the same procedure. We applied
a structure learning algorithm and the parameter learning
algorithm to obtain a trained Bayesian network. Then we
selected 5000 uncovered events and generated (for each net-
work) two sets of directives for each event (using MAP and
MPE queries). Finally, we simulated the IFU with the gen-
erated directives and measured the corresponding coverage.
The networks were not able to produce directives in all the
cases, so the total number of simulation runs for each network
was smaller than the maximum possible 10,000.

The experiments tested the quality of the four structure
learning algorithms mentioned in Sect. 7.1, namely K2 [11],
mcmc [12], gs [13] and structural EM [14]. The experiments
tested and compared the basic algorithm and the two heuris-
tics proposed in Sect. 7.1. In addition, we tested the ability
of the structure learning algorithm to perform feature selec-
tion. Specifically, the four experiments we conducted were
as follows:

– Basic algorithm. The goal of this experiment was to test
the ability of the structure learning algorithms in their
basic form to produce networks that boost coverage. The
results of this experiment were also used as a reference
to the heuristics in the following experiments.

1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

5200

5400

5600

5800

6000

6200

6400

6600

6800

Simulation runs

E
ve

nt
s

naive network
EM algorithm
gs algorithm
K2 algorithm
mcmc algorithm

Fig. 8 Coverage progress for the naive network and the four networks
in the basic experiment

– Pruning. This experiment was aimed at testing the per-
formance of our proposed pruned networks heuristic. We
used the networks of the previous experiment, but
removed edges between directives. Removing these edges
resulted in directive nodes that are orphans, i.e., not con-
nected to any attribute.

– Quantization. The goal of this experiment was to test the
ability of the quantization heuristic to overcome the soft
evidence problem of the structure learning algorithms.
Here, we used a subset of three out of the five origi-
nal directives. These were chosen because they remained
connected to attributes in all the pruned networks of the
second experiment (except EM, which already proved to
result in sparse networks).

– Large set of directives. In this experiment, we added six
more directives to the structure learning algorithm, with
various levels of correlation. The experiment tested the
ability of the structure learning with pruning to perform
feature selection by leaving orphans nodes.

Figures 7, 8, 9 and Table 1 summarize the results of the
four experiments. Figure 7 shows the coverage progress for
the random sampling and the regression suite, and the pro-
gress of the aggregated results of the basic and pruning exper-
iments. As expected, the random sampling shows the worst
behavior over all our settings. More importantly, the fig-
ure shows that both the basic algorithms and their pruning
enhancement are able to boost the coverage.

The next figures and table provide more details on the
performance of the four basic algorithms and their enhance-
ments. Figure 8 compares the performance of the four basic
algorithms. The figure presents the coverage progress of each
of these algorithms and the naive network. The figure shows
that all four algorithms provide a better coverage rate than
the naive network. This confirms the benefits of the structure
learning algorithms, even in their basic form. For all four

123

Automatic boosting of cross-product coverage using Bayesian networks 259

1.5 2 2.5 3 3.5 4
x 10

4

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

Simulation runs

E
ve

nt
s

Learning with large set

Quantized directives

Pruned networks

Basic algorithms

Fig. 9 Coverage progress of aggregated results of all experiments

algorithms, there is some variation in the coverage rate they
provide, the number of simulation runs they produced out
of the 10,000 possible ones, and the number of new events
they cover. These differences are also presented in Table 1.
For each algorithm and each experiment, the table shows the
number of simulation runs produced and the number of new
events covered.

Out of the four algorithms, the gs algorithm provides the
best results. It produces a high number of simulation runs and
has a high coverage rate. Therefore, although the EM algo-
rithm produces more runs, and K2 and mcmc have a slightly
better rate, gs covers the largest number of new events.

The pruning heuristic used in the second experiment not
only pruned the edges between directives, it also left some
directives orphaned. In fact, one of the directives, which was
the weakest among the five selected directives, was removed
in three out of the four networks. In general, as Table 1 shows,
the pruned networks produced roughly the same number of
runs as the networks before the pruning and cover 3–15%
more events. The overall improvement of the pruning heu-
ristic over the basic algorithms is also shown in Figs. 7 and
9. The quantization technique allows the structure learning
algorithm to use soft evidence. The results of this experiment
show that even with the limited amount of softness used in the
experiment, the networks were able to produce many more

runs (twice as many for K2) and reach many more events
(more than 50% for K2). The EM algorithm failed to learn
a network in this experiment and therefore did not produce
any results.

The attempt to use the structure learning algorithm with
pruning for feature selection produced mixed results. On one
hand, the pruning removed most of the new directives that
are not included in the original set and the directives removed
in the second experiment. It also left most of the directives
that were not pruned in the pruning experiment. On the other
hand, the results of this experiment are worse than the original
pruning algorithm. We believe that the “new” directives affect
the ability of the structure learning algorithms to capture the
relations between the ‘good’ directives and the coverage attri-
butes. Therefore, to improve the results of this experiment,
we will try to learn the structure of the network again after
the pruning.

8 Experiments with the full booster

We tested the entire coverage booster flow on the IFU of
z10 and the IfuPipe coverage model described in Sect. 4.
We started with a set of 23 directives that were considered
important for coverage of the model by the unit verifica-
tion team. During the feature selection phase, the number
of directives was reduced to five relevant directives. Specif-
ically, after building the influence matrix using the method
described in Algorithm 1, we used the FS_Cover algorithm
described in Algorithm 3 to select the best five directives.
The results of this phase appear in Sect. 6.3. It is important
to note that the directives selected by the automatic feature
selection procedure are similar, but not identical to the five
directives we selected by hand (using both statistical meth-
ods like the automatic procedure and domain knowledge)
for the structure learning experiments reported in Sect. 7.3.
In fact, out of the five directives, three were selected by both
the automatic and manual selection. Moreover, the two direc-
tives that were selected by the manual procedure and not the
automatic procedure have a score close to the directives that
were selected.

Table 1 Summary of
experimental results Network Basic Pruning Quantization Large set

Events Runs Events Runs Events Runs Events Runs

Naive 970 9,545
K2 824 2,233 918 2,335 1,374 5,546 833 2,309
gs 1,419 7,150 1,454 6,868 1,553 9,306 1,498 10,723
mcmc 766 1,685 871 1,653 919 2,356 927 3,492
EM 1,226 8,641 1,261 8,916
Aggregate 1,837 19,709 1,918 19,772 1,936 17,208 1,713 16,524

123

260 D. Baras et al.

0 0.5 1 1.5 2 2.5

x 10
4

0

1000

2000

3000

4000

5000

6000

Simulation runs

E
ve

nt
s

gs
K2
mcmc
regression

Fig. 10 Coverage progress for the networks in the basic experiment

For the structure learning phase, we used the three useful
algorithms we identified in Sect. 7.1, namely, gs, K2, and
mcmc. We used each of these algorithms to learn the struc-
ture of a Bayesian network and trained each network using
the EM algorithm, as described in Sect. 7.2. Then we acti-
vated the CDG system containing each trained network and
used them to try and cover 3,000 events that are not cov-
ered by the unit regression. The results are shown in Fig. 10.
The results in the figure are for the basic structure learning
algorithms. The results when network pruning is used are
similar. The figure shows that each of the networks is able to
achieve significant boosting over the unit regression and that
there are big differences between the performance of the var-
ious networks in terms of the number of directive files they
are able to produce and the ability of these directive files to
improve coverage. In that sense, the results here are similar
to the results of Sect. 7.3.

A close comparison between the results shown here and
the results of Sect. 7.3 reveals that while the automatic booster
is able to significantly improve the coverage of the unit
regression, its performance is not as good the boosting
achieved when the manual feature selection was used. There
are two main reasons for this difference. First, the automatic
feature selection procedure was not able to take advantage
of the domain knowledge we used in the manual process.
In addition, during the manual selection, we were able to
experiment with several sets of directives and fine tune the
selected directives. All of this resulted in a manual selected
set of directives that is better than the set selected automat-
ically. The second reason for the difference in results are
changes in the verification environment and the design itself
that occurred between the experiments.

9 Conclusions and future work

Closing the loop from coverage analysis to directives to the
stimuli generation, and reaching high coverage, is one of

the most difficult and time consuming challenges faced by
verification teams. In this paper we presented an automatic
technique for constructing a data-driven CDG engine based
on Bayesian networks aimed at providing coverage boosting
with minimal human effort.

Early results obtained on a coverage model used in the unit
verification of an IBM mainframe processor indicate that our
technique is able to boost coverage. Namely, it improves cov-
erage in a significant way with minimal human effort, both
in the construction and activation of the CDG system. Still,
there is a lot of room for improvement and three are issues
that we need to address. First, an automatic process needs
to determine the quality of subsets of directives in order to
choose high quality subsets. Second, we must further inves-
tigate the automatic construction of networks with soft evi-
dence. We are currently working on these issues and believe
that improving these weaknesses will result in a higher qual-
ity booster.

It is clear that the extreme goal, the Holy Grail, is to realize
full coverage closure in a totally automatic way without any
human effort, even for setting up the automatic scheme. This
goal was not yet achieved and we assume that its complexity
might cause it to remain elusive in the foreseeable future.
Yet, we believe that the coverage booster approach has the
potential to bring us closer to this Holy Grail and provide
more benefits to the verification process.

Acknowledgments We would like to thank Steve Mittermaier,
Matthias D. Heizmann and Hilary Mallar for their advice and work
in the IFU pipe model work.

References

1. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional
Verification: The Complete Industry Cycle. Elsevier, Amsterdam
(2005)

2. Piziali, A.: Functional Verification Coverage Measurement and
Analysis. Springer, Berlin (2004)

3. Fine, S., Ziv, A.: Coverage directed test generation for functional
verification using Bayesian networks. In: Proceedings of the 40th
Design Automation Conference, pp. 286–291 (2003)

4. Fournier, L., Ziv, A.: Using virtual coverage to hit hard-to-reach
events. In: Proceedings of the 3rd Haifa Verification Conference,
pp. 104–119 (2007)

5. Wagner, I., Bertacco, V., Austin, T.: Microprocessor verification via
feedback-adjusted Markov models. IEEE Trans. Computer-Aided
Des. Integrated Circuits Syst 26(6), 1126–1138 (2007)

6. Bose, M., Shin, J., Rudnick, E.M., Dukes, T., Abadir, M.: A genetic
approach to automatic bias generation for biased random instruc-
tion generation. In: Proceedings of the 2001 Congress on Evolu-
tionary Computation CEC2001, pp. 442–448 (2001)

7. Hsiou-Wen, H., Eder, K.: Test directive generation for functional
coverage closure using inductive logic programming. In: Proceed-
ings of the High-Level Design Validation and Test Workshop,
pp. 11–18 (2006)

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Network
of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

123

Automatic boosting of cross-product coverage using Bayesian networks 261

9. Fine, S., Ziv, A.: Enhancing the control and efficiency of the cover-
ing process. In: Proceedings of the High-Level Design Validation
and Test Workshop, pp. 96–101 (2003)

10. Fine, S., Freund, A., Jaeger, I., Mansour, Y., Naveh, Y., Ziv, A.: Har-
nessing machine learning to improve the success rate of stimuli
generation. IEEE Trans. Comput. 55(11), 1344–1355 (2006)

11. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction
of probabilistic networks from data. J. Mach. Learning 9(4), 309–
347 (1992)

12. Laskey, K.B., Myers, J.W.: Population markov chain Monte
Carlo. J. Mach. Learning 50(1–2), 175–196 (2003)

13. Chickering, D.: Optimal structure identification with greedy
search. J. Mach. Learning Res. 3, 507–554 (2002)

14. Friedman., N.: The Bayesian structural EM algorithm. In: Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intel-
ligence, pp. 129–138 (1998)

15. Ur, S., Yadin, Y.: Micro-architecture coverage directed generation
of test programs. In: Proceedings of the 36th Design Automation
Conference, pp. 175–180 (1999)

16. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter,
D.J.: Probabilistic Networks and Expert Systems. Springer,
Berlin (1999)

17. Heckerman, D.: A tutorial on learning with Bayesian networks,
Technical report, Microsoft Research. Redmond, Washington
(1996)

18. Rusakov, D., Geiger, D.: Asymptotic model selection for naive
Bayesian networks. J. Mach. Learning Res. 6, 1–35 (2005)

19. http://en.wikipedia.org/wiki/IBM_z6
20. Guyon, I., Elisseeff, A.: An introduction to variable and feature

selection. J. Mach. Learning Res. 3, 1157–1182 (2003)
21. Kohavi, R., John, G.H.: Wrappers for feature subset selection.

Artif. Intell. 97(1-2), 273–324 (1997)
22. Jolliffe, I.T.: Principal Component Analysis. Springer Series in

Statistics. Springer, Berlin (2002)
23. Cover, T.M., Thomas, J.A.: Elements of Information Theory.

Wiley, New York (1991)

123

http://en.wikipedia.org/wiki/IBM_z6

	Automatic boosting of cross-product coverage using Bayesian networks
	Abstract
	1 Introduction
	2 Coverage directed generation using Bayesian networks
	2.1 A brief introduction to Bayesian networks
	2.2 Bayesian networks for CDG

	3 The coverage booster
	4 Experimental environment
	5 Automatic construction of CDG engine
	6 Feature selection
	6.1 Estimation of the influence matrix
	6.2 Subset selection
	6.2.1 Greedy algorithm
	6.2.2 Scoring directives
	6.2.3 Attribute coverage oriented algorithm

	6.3 Experimental results

	7 Structure and parameter learning
	7.1 Structure learning for CDG
	7.2 Parameter learning
	7.3 Experimental results

	8 Experiments with the full booster
	9 Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

