
Approximation Algorithms for the Feedback

Vertex Set Problem with Applications to

Constraint Satisfaction and Bayesian Inference �

Reuven Bar�Yehuda y Dan Geiger Joseph �Seffi� Naor z

Ron M� Roth

Computer Science Department

Technion

Haifa ������ ISRAEL

Abstract

A feedback vertex set of an undirected graph is a subset of vertices that intersects with

the vertex set of each cycle in the graph� Given an undirected graph G with n vertices

and weights on its vertices� polynomial�time algorithms are provided for approximating

the problem of �nding a feedback vertex set of G with a smallest weight� When the

weights of all vertices in G are equal� the performance ratio attained by these algorithms

is �����n�� This improves a previous algorithm which achieved an approximation factor

of O�
p
logn� for this case� For general vertex weights� the performance ratio becomes

minf���� � log
�
ng where � denotes the maximum degree in G� For the special case of

planar graphs this ratio is reduced to 	
� An interesting special case of weighted graphs

where a performance ratio of �� ���n� is achieved is the one where a prescribed subset

of the vertices� so called blackout vertices� is not allowed to participate in any feedback

vertex set�

It is shown how these algorithms can improve the search performance for constraint

satisfaction problems� An application in the area of Bayesian inference of graphs with

blackout vertices is also presented�

�A preliminary version of this paper appeared in the Proceedings of the �th Annual ACM�SIAM Sympo�

sium on Discrete Algorithms� Arlington� Virginia� ����� ��������
yPart of this research was done while the author was visiting SUNY at Bu�alo� This research was

supported by the fund for the promotion of research at the Technion�
zResearch supported in part by Grant No� �	
��		� from the United States
Israel Binational Science

Foundation �BSF
� Jerusalem� Israel� Part of this research was done while the author was visiting DIMACS�

Rutgers University� NJ�

� Introduction

Let G � �V�E� be an undirected graph and let w � V �G� � IR� be a weight function on

the vertices of G� A cycle in G is a path whose two terminal vertices coincide� A feedback

vertex set of G is a subset of vertices F � V �G� such that each cycle in G passes through

at least one vertex in F � In other words� a feedback vertex set F is a set of vertices of

G such that by removing F from G� along with all the edges incident with F � a forest is

obtained� A minimum feedback vertex set of a weighted graph �G�w� is a feedback vertex

set of G of minimum weight� The weight of a minimum feedback vertex set will be denoted

by ��G�w��

The weighted feedback vertex set �WFVS� problem is de�ned as �nding a minimum

feedback vertex set of a given weighted graph �G�w�� The special case where w is the

constant function � is called the unweighted feedback vertex set �UFVS� problem� Given a

graph G and an integer k� the problem of deciding whether ��G� �� � k is known to be

NP�Complete 	GJ
�� pp� ������
�� Hence� it is natural to look for e�cient approximation

algorithms for the feedback vertex set problem� particularly in view of the recent applications

of such algorithms in arti�cial intelligence� as we show in the sequel�

Suppose A is an algorithm that �nds a feedback vertex set FA for any given undirected

weighted graph �G�w�� We denote the sum of weights of the vertices in FA by w�FA��

The performance ratio of A for �G�w� is de�ned by RA�G�w� � w�FA����G�w�� When

��G�w� � � we de�ne RA�G�w� � � if w�FA� � � and RA�G�w� � � if w�FA� � �� The

performance ratio rA�n�w� of A for w is the supremum of RA�G�w� over all graphs G with

n vertices and for the same weight function w� When w is the constant function �� we call

rA�n� �� the unweighted performance ratio of A� Finally� the performance ratio rA�n� of A

is the supremum of rA�n�w� over all weight functions w de�ned over graphs with n vertices�

An approximation algorithm for the UFVS problem that achieves an unweighted per�

formance ratio of
 log� n is essentially contained in a lemma due to Erd�os and P�osa 	EP�
��

This result was improved by Monien and Schulz 	MS���� where they achieved a performance

ratio of O�
p
log n��

In Section
� we provide an approximation algorithm for the UFVS problem that achieves

an unweighted performance ratio of at most ���
�n�� Our algorithm draws upon a theorem

by Simonovits 	Si�
� and our analysis uses a result by Voss 	Vo���� Actually� we consider

a generalization of the UFVS problem� where a prescribed subset of the vertices� called

blackout vertices� is not allowed to participate in any feedback vertex set� This problem

is a subcase of the WFVS problem wherein each allowed vertex has unit weight and each

blackout vertex has in�nite weight� Our interest in graphs with blackout vertices is moti�

vated by the loop cutset problem and its application to the updating problem in Bayesian

�

inference which is explored in Section ��

In Section �� we present two algorithms for the WFVS problem� We �rst devise a primal�

dual algorithm which is based on formulating the WFVS problem as an instance of the set

cover problem� The algorithm has a performance ratio of �� for weighted planar graphs

and � log� n for general weighted graphs� This ratio is achieved by extending the Erd�os�

P�osa Lemma to weighted graphs� The second algorithm presented in Section � achieves

a performance ratio of
���G� for general weighted graphs� where ��G� is the maximum

degree of G� This result is interesting for low degree graphs�

A notable application of approximation algorithms for the UFVS problem in arti�cial

intelligence due to Dechter and Pearl is as follows 	DP�
� De���� We are given a set of

variables x�� x�� � � � � xn� where each xi takes its values from a �nite domain Di� Also� for

every i � j we are given a constraint subset Ri�j � Di�Dj which de�nes the allowable pairs

of values that can be taken by the pair of variables �xi� xj�� Our task is to �nd an assignment

for all variables such that all the constraints Ri�j are satis�ed� With each instance of the

problem we can associate an undirected graph G whose vertex set is the set of variables�

and for each constraint Ri�j which is strictly contained in Di � Dj �i�e�� Ri�j �� Di � Dj�

there is an edge in G connecting xi and xj � The resulting graph G is called a constraint

network and it is said to represent a constraint satisfaction problem�

A common method for solving a constraint satisfaction problem is by backtracking�

that is� by repeatedly assigning values to the variables in a predetermined order and then

backtracking whenever reaching a dead end� This approach can be improved as follows�

First� �nd a feedback vertex set of the constraint network� Then� arrange the variables

so that variables in the feedback vertex set precede all other variables� and apply the

backtracking procedure� Once the values of the variables in the feedback vertex set are

determined by the backtracking procedure� the algorithm switches to a polynomial�time

procedure solve�tree that solves the constraint satisfaction problem in the remaining

forest� If solve�tree succeeds� a solution is found� otherwise� another backtracking phase

occurs�

The complexity of the above modi�ed backtracking algorithm grows exponentially with

the size of the feedback vertex set� If a feedback vertex set contains k variables� each

having a domain of size
� then the procedure solve�tree might be invoked up to
k

times� A procedure solve�tree that runs in polynomial�time was developed by Dechter

and Pearl� who also proved the optimality of their tree algorithm 	DP���� Consequently�

our approximation algorithm for �nding a small feedback vertex set reduces the complexity

of solving constraint satisfaction problems through the modi�ed backtracking algorithm�

Furthermore� if the domain size of the variables varies� then solve�tree is called a number

of times which is bounded from above by the product of the domain�sizes of the variables

whose corresponding vertices participate in the feedback vertex set� If we take the logarithm

of the domain size as the weight of a vertex� then solving the WFVS problem with these

weights optimizes the complexity of the modi�ed backtracking algorithm in the case where

the domain size is allowed to vary�

� The Unweighted Feedback Vertex Set Problem

The best approximation algorithm prior to this work for the UFVS problem attained a

performance ratio of O�
p
log n� 	MS���� We now use some results of 	Si�
� and 	Vo���

in order to obtain an approximation algorithm for the UFVS problem which attains a

performance ratio � �� In fact� we actually consider a slight generalization of the UFVS

problem where we mark each vertex of a graph as either an allowed vertex or a blackout

vertex� In such graphs� feedback vertex sets cannot contain any blackout vertices� We

denote the set of allowed vertices in G by A�G� and the set of blackout vertices by B�G��

Note that when B�G� � �� this problem reduces to the UFVS problem� A feedback vertex

set can be found in a graph G with blackout vertices if and only if every cycle in G contains

at least one allowed vertex� A graph G with this property will be called a valid graph� The

motivation for dealing with this modi�ed problem is clari�ed in Section � where we use the

algorithm developed herein to reduce the computational complexity of Bayesian inference�

Throughout this section� G denotes a valid graph with a nonempty set of vertices V �G�

which is partitioned into a nonempty set A�G� of allowed vertices� a possibly empty set

B�G� of blackout vertices� and a set of edges E�G� possibly with parallel edges and self�

loops� We use �a�G� as a short�hand notation for ��G�w� where w assigns unit weight to

each allowed vertex and an in�nite weight to each blackout vertex� A neighbor of v is a

vertex u � V �G� which is connected to v by an edge in E�G�� The degree �G�v� of v in G

is the number of edges that are incident with v in G� A self�loop at a vertex v contributes

to the degree of v� The degree of G� denoted ��G�� is the largest among all degrees of

vertices in G� A vertex in G of degree � is called an endpoint � A vertex of degree
 is called

a linkpoint and a vertex of any higher degree is called a branchpoint� A graph G is called

rich if every vertex in V �G� is a branchpoint� The notation �a�G� will stand for the largest

among all degrees of vertices in A�G� �a degree of a vertex in A�G� takes into account all

incident edges� including those that lead to neighbors in B�G��� In a rich valid graph we

have �a�G� 	 ��
Two cycles in a valid graph G are independent if their vertex sets share only blackout

vertices� Note that the size of any feedback vertex set of G is bounded from below by the

largest number of pairwise independent cycles that can be found in G� A cycle � in G is

called simple if it visits every vertex in V �G� at most once� Clearly� a set F is a feedback

�

vertex set of G if and only if it intersects with every simple cycle in G� A graph is called

a singleton if it contains only one vertex� A singleton is called self�looped if it contains at

least one self loop� for a singleton we have ��G� �� � � if it is self�looped and ��G� �� � �

otherwise�

A graph G is connected if for every two vertices there is a connecting path in G� Every

graph G can be uniquely decomposed into isolated connected components G�� G�� � � � � Gk�

Similarly� every feedback vertex set F of G can be partitioned into feedback vertex sets

F�� F�� � � � � Fk such that Fi is a feedback vertex set of Gi� Hence� �a�G� �
Pk

i�� �a�Gi��

A ����subgraph of a valid graph G is a subgraph H of G such that the degree in H of

every vertex in A�G� is either
 or �� The degree of a vertex belonging to B�G� in H is

not restricted� A
���subgraph exists in any valid graph which is not a forest� A maximal

����subgraph of G is a
���subgraph of G which is not a subgraph of any other
���subgraph

of G� A maximal
���subgraph can be easily found by applying depth��rst�search �DFS�

on G�

A linkpoint v in a
���subgraph H is called a critical linkpoint if v is an allowed vertex�

and there is a cycle � in G such that V ���
V �H�
A�G� � fvg� We refer to such a cycle �
in G as a witness cycle of v� Note that we can assume a witness cycle to be simple and� so�

verifying whether a linkpoint v inH is a critical linkpoint is easy� Remove the set of vertices

�V �H�
A�G���fvg from G� with all incident edges� and apply a breadth��rst�search �BFS�

to check whether there is a cycle through v in the remaining graph�

A cycle in a valid graph G is branchpoint�free if it does not pass through any allowed

branchpoints� that is� a branchpoint�free cycle passes only through allowed linkpoints and

blackout vertices of G�

The rest of this section is devoted to showing that the following algorithm correctly

outputs a vertex feedback set and achieves an unweighted performance ratio less than ��

Algorithm SubG���� �Input� valid graph G�

Output� feedback vertex set F of G��

if G is a forest then

F � ��
else begin�

Using DFS� �nd a maximal ����subgraph H of G�

Using BFS� �nd the set X of critical linkpoints in H�

Let Y be the set of allowed branchpoints in H�

Find a set W that covers all branchpoint�free cycles of H which

�

are not covered by X�

F � X � Y �W �

end	

Note that if B�G� � �� then all branchpoint�free cycles are isolated cycles in H and so

W consists of one vertex of each such cycle�

We elaborate on how the setW is computed whenB�G� �� �� Let H � be a graph obtained

from H by removing the set X along with its incident edges� Let Hb be the subgraph of

H � induced by the allowed linkpoints and blackout vertices of H �� For every isolated cycle

in Hb� we arbitrarily choose an allowed linkpoint from that cycle to W � Next� we replace

each maximal �with respect to containment� chain of allowed linkpoints in Hb by an edge�

resulting in a graph H�
b � We assign unit cost to all edges corresponding to a chain of allowed

linkpoints� and a zero cost to all other edges� and compute a minimum�cost spanning forest

T of H�
b � We now add to W one linkpoint from each chain of allowed linkpoints in Hb that

corresponds to an edge in H�
b � T � It is now straightforward to verify that the complexity

of SubG���� is linear in jE�G�j�
The following two lemmas� which generalize some claims used in the proof of Theorem �

in 	Si�
�� are used to prove that SubG���� outputs a feedback vertex set of a valid graph

G�

Lemma
 Let H be a maximal ����subgraph of a valid graph G and let � be a simple cycle

in G� Then� one of the following holds�

�a� � is a witness cycle of some critical linkpoint of H� or �

�b� � passes through some allowed branchpoint of H� or �

�c� � is a cycle in H that consists only of blackout vertices or allowed linkpoints of H�

Proof	 Let � be a simple cycle in G and assume to the contrary that neither of �a���c�

holds� This implies in particular that � cannot be entirely contained in H� We distinguish

between two cases� ��� � does not intersect with H� and �
� � intersects with H only in

blackout vertices and allowed linkpoints of H�

Case 	� In this case we could join � and H to obtain a
���subgraph H� of G that

contains H as a proper subgraph� This however contradicts the maximality of H�

Case �� If � intersects with H only in blackout vertices� then as in case �� we can join �

and H and contradict the maximality of H� Suppose now that � intersects with H in some

allowed linkpoints of H� Note that in such a case � must intersect with H in at least two

distinct allowed linkpoints of H� or else � would be a witness cycle of the only intersecting

�critical� linkpoint� Since � is not contained in H by assumption� we can �nd two allowed

�

linkpoints v� and v� in V ���
 V �H� that are connected by a path P along � such that

V �P �
 V �H�
 A�G� � fv�� v�g and P is not entirely contained in H� Joining P and H�

we obtain a
���subgraph of G that contains H as a proper subgraph� thus contradicting

the maximality of H�

Lemma � Let H be a maximal ����subgraph of G and let �� and �� be witness cycles in

G of two distinct critical linkpoints in H� Then �� and �� are independent cycles� namely�

V ����
 V ���� � B�G��

Proof	 Let v� and v� be the critical linkpoints associated with �� and ��� respectively�

and assume to the contrary that V ����
 V ���� contains an allowed vertex u � A�G��

Then� there is a path P in G that runs along parts of the cycles �� and ��� starting from

v�� passing through u� and ending at v�� Since �� and �� are witness cycles� we have

V �P �
 V �H�
 A�G� � fv�� v�g� And� since v� and v� are distinct critical linkpoints� the
vertex u cannot possibly coincide with either of them� Therefore� the path P is not entirely

contained in H� Joining P and H we obtain a
���subgraph of G that contains H as a

proper subgraph� thus reaching a contradiction�

Theorem � For every valid graph G� the set F computed by SubG���� is a feedback vertex

set of G�

Proof	 Let � be a simple cycle in G� We follow the three cases of Lemma � to show that

V ���
 F �� ��
�a� � is a witness cycle of some critical linkpoint of H� By construction� all critical

linkpoints of H are in F �

�b� � passes through some allowed branchpoint of H� By construction� all allowed

branchpoints of H are in F �

�c� � is a cycle in H that consists only of blackout vertices or allowed linkpoints of

H� When V ��� contains a critical linkpoint� then SubG���� selects that linkpoint into

the feedback vertex set F � Otherwise� the cycle � must be entirely contained in the graph

Hb that was used to create W � We now show that W covers all cycles in Hb� Assume the

contrary and let � be a cycle inHb that is not covered byW � Recall that in the construction

of H�
b � each chain of allowed linkpoints in � was replaced by an edge with a unit cost� Let

�� be the resulting cycle in H�
b � Since W does not cover �� all unit�cost edges in �� were

necessarily chosen to the minimum�cost spanning forest T � On the other hand� since T

does not contain any cycles� there must be at least one zero�cost edge of �� which is not

contained in T � Hence� by deleting one of the unit�cost edges of �� from T and inserting

instead a particular zero�cost edge of �� into T � we can obtain a new spanning forest T � for

H�
b � However� the cost of T

� is smaller than that of T � which contradicts our assumption

�

that T is a minimum�cost spanning forest�

A reduction graph G� of an undirected graph G is a graph obtained from G by a sequence

of the following transformations�

 Delete an endpoint and its incident edge�

 Connect two neighbors of a linkpoint v �other than a self�looped singleton� by a new
edge and remove v from the graph with its two incident edges�

A reduction graph of a valid graph G is not necessarily valid� since the reduction process

may generate a cycle consisting of blackout vertices only� We will be interested in reduction

sequences in which each transformation yields a valid graph�

Lemma � Let G� be a reduction graph of G� If G� is valid� then �a�G
�� � �a�G��

Proof	 Let H� � G�H�� � � � �Ht���Ht � G� be a sequence of reduction graphs where each

Hi is obtained by a removal of one linkpoint and possibly some endpoints from Hi��� Since

G� is valid� each Hi is a valid graph as well� Let vi be the linkpoint that is removed from

Hi to obtain Hi���

First we show that �a�G
�� 	 �a�G�� Suppose F is a feedback vertex set of Hi�� for some

i� � � i � t and let � be a cycle in Hi that passes through vi� A reduction of � obtained

by replacing the linkpoint vi on � by an edge connecting the neighbors of vi yields a cycle

�� in Hi��� The vertex set of �� intersects the set F � Hence� F is also a feedback vertex set

of Hi which implies that �a�Hi��� 	 �a�Hi��

Now we show that �a�G
�� � �a�G�� Suppose F is a minimal feedback vertex set of Hi�

If F does not contain vi� then F is also a feedback vertex set of Hi��� Otherwise� write

F � fvig � F �� We claim that the set F � cannot fail to cover more than one cycle in Hi���

If it failed� then there would be two distinct cycles �� and �� in Hi that contain vi� in

which case the cycle in Hi induced by �V ���� � V ������ fvig would not be covered by F �
thus contradicting the fact that F is a feedback vertex set of Hi� It follows by this and the

minimality of F that the set F � fails to cover exactly one cycle in Hi��� This cycle contains

at least one allowed vertex u because Hi�� is a valid graph� Therefore� the set F
� � fug is

a feedback vertex set of Hi��� Hence� �a�Hi��� � �a�Hi��

A reduction graph G� of a graph G is minimal if and only if G� is a valid graph and

any proper reduction graph G� of G� is not valid�

Lemma � If G� is a minimal reduction graph of G� then G� does not contain blackout

linkpoints� and every feedback vertex set of G� contains all allowed linkpoints of G��

Proof	 Recall that G� is a valid graph� If G� contains a blackout linkpoint� then its removal

creates a valid reduction graph which contradicts the minimality of G�� Now assume F is

a feedback vertex set of G� and v is an allowed linkpoint which is not in F � If the removal

of v yields a graph that is not valid� then v must have been included in F � If the removal

of v yields a valid graph� then G� is not minimal�

The next lemma is needed in order to establish the performance ratio of SubG����� It

is a variant of Lemma � in 	Vo����

Lemma
 Let G be a valid graph with no blackout linkpoints and such that no vertex has

degree less than �� Then� for every feedback vertex set F of G which contains all linkpoints

of G�

jV �G�j � ��a�G� � �� jF j �
 �

Proof	

Suppose F � V �G�� In this case we have jV �G�j � �jV �G�j�
 � ��a�G����jV �G�j�

and� therefore� the lemma holds trivially� So we assume from now on that jF j � jV �G�j�

Let EF denote the set of edges in E�G� whose terminal vertices are all vertices in F �

De�ne X � V � F and let EX denote the set of edges in E�G� whose terminal vertices are

all vertices in X� Also� let EF�X denote the set of those edges in G that connect vertices in

F with vertices inX� Clearly� EF � EX � and EF�X form a partition on E�G�� Now� the graph

obtained by deleting F from G is a nonempty forest on X and� therefore� jEX j � jXj � ��
However� each vertex in X is a branchpoint in G because all linkpoints are assumed to be

in F and there are no vertices of degree less than
� Therefore�

� jXj �
X
v�X

�G�v� � jEF�X j �
 jEX j � jEF�X j �
 �jXj � ��

i�e��

jEF�X j 	 jXj �
 � jV �G�j � jF j �
 �

On the other hand�

�a�G� jF j 	
X
v�F

�G�v� � jEF�X j �
 jEF j �

Combining the last two inequalities we obtain

jV �G�j � ��a�G� � �� jF j �
 jEF j �
 �

The main claim of this section now follows�

Theorem � The unweighted performance ratio of SubG���� is at most �� �
�jV �G�j��

�

Proof	 Let F be the feedback vertex set computed by SubG���� for a valid graph G which

is not a forest� We show that jF j � ��a�G� �
� The theorem follows immediately from

this inequality�

Let H� X� Y � and W be as in SubG����� Suppose �a�G� � �� Then� all cycles in G

pass through some allowed vertex v in G and� so� no vertex other than v can be a critical

linkpoint in H� Now� if v is a linkpoint in H� then H is a cycle� Otherwise� one can readily

verify that H must contain exactly two branchpoints� In either case we have jF j �
� We

assume from now on that �a�G� 	
�
For every vi � X� let �i be some witness cycle of vi in G� By Lemma
� the cycles �i

are pairwise independent� Therefore� the minimum number of vertices needed to cover such

cycles is jXj�
Let f��jg be the set of branchpoint�free cycles in H that do not contain any critical

linkpoints of H� Note that each cycle ��j is independent with any witness cycle �i� We

now claim that any smallest set W � of vertices of V �H� that intersects with the vertex set

of each ��j must be of size jW j� To see this� note that W � contains only allowed linkpoints

of H� If we remove from H�
b all the edges that correspond to linkpoints belonging to W

��

then we clearly end up with a forest� By construction� the minimum number of edges �or

allowed linkpoints�� needed to be removed from H�
b so as to make it into a forest� is jW j�

Recalling that every cycle ��j is independent with any witness cycle �i� the setW
� cannot

possibly intersect with any of the cycles �i� Hence� in order to cover the cycles f�ig � f��jg
in G� we will need at least jXj� jW �j vertices� Therefore�

�a�G� 	 jXj� jW �j � jXj � jW j �

On the other hand� we recall that jF j � jXj� jY j� jW j�
We distinguish between the following two cases�

Case 	� jY j �
jXj �
jW j� Here we have�

jF j � jXj� jY j� jW j � �jXj � �jW j � ��a�G� � ��a�G��
 �

Case �� jY j �
jXj �
jW j� Let F � be a feedback vertex set of G of size �a�G� and let

W � be a smallest subset of F � that intersects with the vertex set of each ��j � Clearly� W
�

consists of allowed linkpoints of H� and� as we showed earlier in this proof� jW �j � jW j� Let
H� be the subgraph of H obtained by removing all critical linkpoints of H and all linkpoints

in W �� With each deleted linkpoint� we also remove recursively all resulting endpoints from

H while obtaining H�� Thus� a deletion of a linkpoint from H can decrease the number

of branchpoints by
 at most� Hence� the number of branchpoints left in H� is at least

jY j �
jXj �
jW j � �� Furthermore� the graph H� does not contain any endpoints�

�

Let H�
� be a minimal reduction graph of H� and let H� be a valid graph obtained by

removing all singleton components from H�
� � Since H� does not contain any endpoints�

the number of branchpoints of H� is preserved in H
�
� and in H�� Therefore� the graph H�

contains at least jY j�
jXj�
jW j branchpoints� On the other hand� since H�
� is a minimal

reduction and due to Lemma �� there are no blackout linkpoints in H�
� and every feedback

vertex set of H�
� contains all allowed linkpoints of H

�
� � Furthermore� the graphs H

�
� and H�

do not contain any endpoints�

It follows that we can apply Lemma � to H� and any feedback vertex set of H�� thus

obtaining

jY j �
jXj �
jW j � ��a�H���
 � ��a�H
�
� ��
 � ��a�H���
 �

where the equality is due to Lemma �� Therefore�

jF j � jXj � jY j� jW j
� �jXj � �jW j� jY j �
jXj �
jW j
� ��jXj � jW j� �a�H����
 � ���

Recall that W � was chosen as a subset of a smallest feedback vertex set F � of G� Let

X � be a smallest subset of F � that covers the witness cycles f�ig and let Z � be a smallest

subset of F � that covers the cycles of H�� Since H� does not contain any of the critical

linkpoints of H� each witness cycle �i is independent with any cycle in H� and� so� we have

X �
Z � � �� It also follows from our previous discussion that X �
W � � �� In addition� by
construction of H� we have W

�
 Z � � �� It thus follows that

jXj� jW j� �a�H�� � jX �j� jW �j� jZ �j � jF �j � �a�G� �

Combining with ���� we obtain the desired result�

� Weighted Feedback Vertex Set

In this section� we consider the approximation of the WFVS problem described in Section ��

That is� given an undirected graph G and a weight function w on its vertices� �nd a feedback

vertex set of �G�w� with minimum weight� As in the previous section� we assume that G

may contain parallel edges and self�loops�

A weighted reduction graph G� of an undirected graph G is a graph obtained from G by

a sequence of the following transformations�

 Delete an endpoint and its incident edge�

��

 Let u and v be two adjacent vertices such that w�u� � w�v� and v is a linkpoint�

Connect u to the other neighbor of v� and remove v from the graph with its two

incident edges�

The following lemma can be easily veri�ed� �See� e�g�� the proof of Lemma ���

Lemma � Let �G�� w�� be a weighted reduction graph of �G�w�� Then� ��G�� w�� � ��G�w��

A weighted reduction graph G� of a graph G is minimal if and only if any weighted

reduction graph G� of G� is equal to G�� A graph is called branchy if it has no endpoints

and� in addition� its set of linkpoints induces an independent set� i�e�� each linkpoint is either

an isolated self�looped singleton or connected to two branchpoints� Clearly� any minimal

weighted reduction graph must be branchy� We note that the complexity of transforming a

graph into a branchy graph is linear in jE�G�j�
We are now ready to present our algorithms for �nding an approximation for a minimum�

weight feedback vertex set of a given weighted graph� In Section ��� we give an algorithm

that achieves a performance ratio of � log� jV �G�j� In Section ��
 we present an algorithm
that achieves a performance ratio of
���G��

��� The primal�dual algorithm

The basis of the �rst approximation algorithm is the next lemma which generalizes a lemma

due to Erd�os and P�osa 	EP�
� Lemma ��� That lemma was obtained by Erd�os and P�osa

while estimating the smallest number of edges in a graph which contains a given number

of pairwise independent cycles� Later on� in 	EP���� they provided bounds on the value of

��G� �� in terms of the largest number of pairwise independent cycles in G� Tighter bounds

on ��G� �� were obtained by Simonovits 	Si�
� and Voss 	Vo����

Lemma � The shortest cycle in any branchy graph G with at least two vertices is of length

� � log� jV �G�j�

Proof	 Let t be the smallest even integer such that
 �
t�� � jV �G�j� Apply BFS on G

of depth t starting at some vertex v� We now claim that the search hits some vertex twice

and so there exists a cycle of length �
t in G� Indeed� if it were not so� then the induced

BFS tree would contain at least
 �
t�� distinct vertices of G� which is a contradiction�

In each iteration of the proposed algorithm� we �rst �nd a minimal weighted reduction

graph� and then �nd a cycle � with the smallest number of vertices in the minimal weighted

reduction graph� The algorithm sets � to be the minimum among the weights of the vertices

in V ���� This value of � is subtracted� in turn� from the weight of each vertex in V ����

��

Vertices whose weight becomes zero are added to the feedback vertex set and deleted from

the graph� Each such iteration is repeated until the graph is exhausted�

Algorithm MiniWCycle �Input� �G�w�� Output� feedback vertex set F of �G�w���

F � �� �H�wH�� �G�w��

While H is not a forest do begin�

Find a minimal weighted reduction graph �H �� wH�� of �H�wH��

Find a cycle �� in H � with the smallest number of vertices�

Set � � minv�V ����wH��v��

Set wH��v�� wH��v� � � for every v � V �����

Let X � fv � V ���� � wH��v� � �g�
Remove X �with all incident edges� from H ��

�H�wH�� �H �� wH���

F � X � F �
end	

Finding a shortest cycle can be done by running BFS from each vertex until a cycle is

found and then selecting the smallest� A more e�cient approach for �nding the shortest

cycle is described in 	IR
���

It is not hard to see that MiniWCycle computes a feedback vertex set of G� We

now analyze the algorithm employing techniques similar to those used in 	Ho�
�� 	Ho����

and 	KhVY���� We note that the algorithm can also be analyzed using the Local Ratio

Theorem of Bar�Yehuda and Even 	BaEv����

Theorem
� The performance ratio of algorithm MiniWCycle is at most � log� jV �G�j�

Proof	 We assume that jV �G�j � �� Given a feedback vertex set F of �G�w�� let

x � 	xv�v�V �G� be the indicator vector of F � namely� xv � � if v � F and xv � � otherwise�

We denote by C the set of cycles in G� The problem of �nding a minimum�weight feedback

vertex set of �G�w� can be formulated in terms of x by an integer programming problem

as follows�

minimize
P

v�V �G� w�v� � xv
ranging over all nonnegative integer vectors x � 	xv�v�V �G� such thatX

v�V ���

xv 	 � for every � � C �
�
�

Let Cv denote the set of cycles passing through vertex v in G and consider the following

�

integer programming packing problem�

maximize
P

��C y�

ranging over all nonnegative integer vectors y � 	y����C such thatX
��Cv

y� � w�v� for every v � V �
���

Clearly� the linear relaxation of ��� is the dual of the linear relaxation of �
�� with y�� � � C�
being the dual variables�

Let �H �� wH�� be a minimal weighted reduction graph computed at some iteration of

algorithm MiniWCycle� Then� for each cycle �� � H �� we associate a unique cycle � � G

as follows� If all vertices in V ���� belong to G� then � � ��� Otherwise� we �unfold� the

transformation steps performed in obtaining H � from H in backward order� i�e�� from H �

back to H� In each such step we add to �� chains of linkpoints �connecting vertices in ���

that were deleted� When this process �nishes� the cycle �� of H � transforms into a cycle �

of G�

We now show that MiniWCycle can be interpreted as a primal�dual algorithm� We

�rst show that it computes a dual feasible solution for ��� with a certain maximality prop�

erty� The initial dual feasible solution is the one in which all the dual variables y� are

zero�

Let ��i be a cycle chosen at iteration i of MiniWCycle and let �i be the associated

cycle in G� We may view the computation of iteration i of MiniWCycle as setting the

value of the dual variable y�i to the weight � of a lightest vertex in V ���i�� The updated

weight wH��v� of every v � V ���i� is precisely the slack of the dual constraint

X
��Cv

y� � w�v� ���

that corresponds to v�

It is clear that by the choice of �� the values of the dual variables y� at the end of

iteration i of MiniWCycle satisfy the dual constraints ��� corresponding to vertices v �
V ���i�� It thus follows that the dual constraints hold for all vertices v � V �H �� at iteration i�

Let v be a vertex that was removed from H to obtain H � in iteration i ofMiniWCycle�

It remains to show that the dual constraint ��� corresponding to such a vertex holds in each

iteration j of the algorithm for every j 	 i�

We show this by backward induction on j� By the previous discussion it follows that

the constraints corresponding to vertices that exist in the last iteration all hold� Suppose

now that the dual constraints corresponding to vertices in V �H �� in iteration j are not

violated� We show that the dual constraints corresponding to vertices in V �H� � V �H ��

in that iteration are also not violated� Let c be a chain of linkpoints in H in iteration j�

��

and let v� and v� be the two branchpoints adjacent to c� Let u be a vertex of minimum

weight among v�� v�� and the vertices in c� We note that the weighted reduction procedure

deletes all vertices in c except possibly for one representative� depending on whether u is

in c or is one of its adjacent branchpoints� We now observe that the set of cycles that pass

through a linkpoint in c is the same for all linkpoints in c� and is contained in the set of

cycles that pass through v�� and is also contained in the set of cycles that pass through v��

This implies that if the dual constraint corresponding to u is not violated� then the dual

constraints corresponding to any vertex in c is also not violated�

The algorithm essentially constructs a primal solution x from the dual solution y� It se�

lects into the feedback vertex set all vertices for which� �i� the corresponding dual constraints

are tight� and �ii� in the iteration the constraint �rst became tight� the corresponding vertex

belonged to the graph� As stated earlier� this construction yields a feasible solution�

Let x� � 	x�v�v�V �G� and y� � 	y�����C denote the optimal primal and dual fractional

solutions� respectively� It follows from the duality Theorem that

X
v�V �G�

w�v� � xv 	
X

v�V �G�

w�v� � x�v �
X
��C

y�� 	
X
��C

y� � ���

Hence� to prove the theorem� it su�ces to bound the ratio between the LHS and the RHS

of ���� First note that y� �� � only for cycles � in G that are associated with cycles ��

that were chosen at some iteration of MiniWCycle� By the above construction of x� it is

clear that the dual variable y� of each such cycle � contributes its value to at most V ��
��

vertices� Hence�

X
v�V �G�

wv � xv �
X

v�V �G�

X
��Cv

y� �
X
��C

y� � jV ����j �

Now� in each iteration� the graph H � is a branchy graph� Therefore� by Lemma �� we have

that jV ����j � � log� jV �G�j� Hence the theorem is proved�

Proposition

 For planar graphs� the weighted performance ratio of MiniWCycle is at

most 	
�

Proof	 We �rst notice that the weighted reduction process preserves planarity and� there�

fore� at each iteration of algorithm MiniWCycle we remain with a planar graph�

We claim that every rich planar graphGmust contain a face of length at most �� Assume

the contrary� By summing up the lengths of all the faces� we get that
jEj 	 �jZj� where Z
denotes the set of faces of G� By Euler�s formula�

jEj � jV j�
 � jZj

��

Hence�
jEj � �jV j � �� However� since the degree of each vertex is at least �� we get that

jEj 	 �jV j� which is a contradiction� Furthermore� this implies that a branchy planar
graph must contain a cycle of length at most ���

��� Low�degree graphs

The algorithm presented in this section is based on the following variant of Lemma ��

Lemma
� Let G be a branchy graph� Then� for every feedback vertex set F of G�

jV �G�j �
���G� � jF j

Proof	 Let F be a feedback vertex set of G� We can assume without loss of generality that

F contains only branchpoints� since this assumption can only decrease jF j� Let G� be the

minimal �unweighted� reduction graph of G� i�e�� G� contains only branchpoints or isolated

self�looped singletons� Clearly� F is also a feedback vertex set of G�� Thus� G� and F satisfy

the conditions of Lemma � ��a � ��� yielding that�

jV �G��j � ���G�� � �� � jF j �
 �

Since G� is a branchy graph� the number of linkpoints in G can be at most ��G�� � jV �G��j�
�
Hence�

jV �G�j � ���G� �
� � jV �G��j

and� so�

jV �G�j � ���G� �
� � ���G� � �� � jF j

�
���G� � jF j

We now present a weighted greedy algorithm for �nding a feedback vertex set in a graph

G�

Algorithm WGreedy �Input� �G�w�� Output� feedback vertex set F of �G�w���

F � �� i� �� �H�wH�� �G�w��

while H is not a forest do begin�

Find a minimal weighted reduction graph �H �
i� wH�

i
� of �H�wH��

�i � minv�V �H�
i�
wH�

i
�v��

Ui � fu � V �H �
i� j wH�

i
�u� � �ig�

F � F � Ui�

remove Ui from H �
i with its incident edges�

��

�H�wH�� �H �
i� wH�

i
��

i� i� ��

end	

For a subset S � V � let w�S� denote the sum of weights of the vertices in S� We now

prove the following theorem�

Theorem
� Let G be a branchy graph� Denote by F the feedback vertex set computed

by algorithm WGreedy� and by F � a minimum�weight feedback vertex set in G� Then�

w�F � �
���G� � w�F ���

Proof	 Assume that the number of iterations the while loop is executed in algorithm

WGreedy is p� We de�ne the following weight functions w�� � � � � wp on V �G�� The weight

function wi is de�ned� for � � i � p� as follows�

For all v � V �G� � wi�v� �

��
�

�i � �i�� if v � V �H �
i�

� otherwise
�

where �� � ��

For a subset S� let wi�S� denote the sum of weights of the vertices in S� where the

weight function is wi� Clearly�

w�F � �
pX

i��

w�Ui� �
pX

i��

wi�F �

Suppose that at one of the weighted reduction steps of algorithm WGreedy� a chain c of

equal weight linkpoints was reduced to a single vertex� say� v� which either belongs to c or

is one of the two branchpoints adjacent to c� Suppose further that v was added to F � If F �

also contains a vertex from the chain c� then without loss of generality� we can assume that

this vertex can be replaced by v�

Let u � F �� Obviously� u � H �
�� We claim that if u �� F � then u � H �

i for all i �

��
� � � � � p� Assume this is not the case� Then� with respect to the order in which vertices

entered F in algorithm WGreedy� let u be the �rst vertex such that u � F � u �� F �� and

u was removed from the graph in a weighted reduction step� This means that u was at the

time of its removal a linkpoint that had an adjacent vertex u� with smaller weight� But then�

by exchanging u for u� in F �� we obtain a feedback vertex set which has smaller weight�

contradicting the optimality of F �� Hence� for a vertex u � F �� w�u� 	 Pp
i�� wi�u��

Therefore�

w�F �� 	
pX

i��

wi�F
�� �

Notice that in the graph H �
i� the weight function wi assigns the same weight to all vertices�

Hence� by Lemma �
� we have that wi�F � �
���H �
i� � wi�F

�� for all i � ��
� � � � � p� Since

��H �
i� � ��G� for all i� the theorem follows�

��

It follows from Lemma � that the performance ratio of algorithmWGreedy for �G�w�

is at most
���G� for any graph G�

� The Loop Cutset Problem and its Application

In section ��� we consider a variant of the WFVS problem for directed graphs and in

section ��
 we describe its application to Bayesian inference�

��� The loop cutset problem

The underlying graph of a directed graph D is the undirected graph formed by ignoring

the directions of the edges in D� A loop in D is a subgraph of D whose underlying graph

is a cycle� A vertex v is a sink with respect to a loop � if the two edges adjacent to v in

� are directed into v� Every loop must contain at least one vertex that is not a sink with

respect to that loop� Each vertex that is not a sink with respect to a loop � is called an

allowed vertex with respect to �� A loop cutset of a directed graph D is a set of vertices

that contains at least one allowed vertex with respect to each loop in D� Our problem is

to �nd a minimum�weight loop cutset of a given directed graph D and a weight function

w� We denote by ��D�w� the sum of weights of the vertices in such a loop cutset� Greedy

approaches to the loop cutset problem have been suggested by 	SuC��� and 	St���� Both

methods can be shown to have a performance ratio as bad as �n��� in certain planar

graphs 	St���� An application of our approximation algorithms to the loop cutset problem

in the area of Bayesian inference is described later in this section�

The approach we take is to reduce the weighted loop cutset problem to the weighted

feedback vertex set problem solved in the previous section� Given a weighted directed graph

�D�w�� we de�ne the splitting weighted undirected graph �Ds� ws� as follows� Split each

vertex v in D into two vertices vin and vout in Ds such that all incoming edges to v become

undirected incident edges with vin� and all outgoing edges from v become undirected incident

edges with vout� In addition� we connect vin and vout by an undirected edge� Set ws�vin� ��
and ws�vout� � w�v�� For a set of vertices X in Ds� we de�ne ��X� as the set obtained

by replacing each vertex vin or vout in X by the respective vertex v in D from which these

vertices originated�

Our algorithm can now be easily stated�

Algorithm LoopCutset �Input� �D�w�� Output� loop cutset F of �D�w���

Construct �Ds� ws��

�

Apply MiniWCycle on �Ds� ws� to obtain a feedback vertex set X�

F � ��X�	

Note that each loop in D is associated with a unique cycle in Ds� and vice�versa� in a

straightforward manner� Let I��� denote the loop image of a cycle � in Ds� and I ���K�

denote the cycle image of a loop K in D� It is clear that the mapping I is �� � and onto�
The next lemma shows that algorithm LoopCutset outputs a loop cutset of �D�w��

Lemma
� Let �D�w� be a directed weighted graph and �Ds� ws� be its splitting graph�

Then� �i� If F is a feedback vertex set of �Ds� ws� having �nite weight� then ��F � is a loop

cutset of �D�w�� and ws�F � � w���F ��� �ii� If U is a loop cutset of D� then the set Us

obtained from U by replacing each vertex v � U by vertex vout � Ds is a feedback vertex set

of Ds� and w�U� � ws�Us��

Proof	 We prove �i�� The proof of �ii� is similar� Let � be a loop in D� To prove the lemma

we show that an allowed vertex with respect to � belongs to ��F �� Let I ����� be the unique

cycle image of � in Ds� Since F is a cycle cover of Ds having �nite weight� there must be

a vertex vout � F in I ������ Now� it is clear that vertex v � � from which vout originated is

an allowed vertex with respect to � as needed� To complete the proof� by the �niteness of

ws�F �� we must have ws�F � � w���F ��� since ws�vout� � w�v� for each vertex in F �

It follows from Lemma �� that ��D�w� � ��Ds� ws�� In addition� due to Theorem �� ap�

plied to the graph Ds� and since the number of vertices in Ds is twice the number of vertices

in D� we get the following bound on the performance ratio of algorithm LoopCutset�

Theorem
� The performance ratio of LoopCutset is at most � log��
jV �D�j��

We now show that in the unweighted loop cutset problem� we can achieve a performance

ratio better than �� In this case� for each vertex v � D� the weight of vin � Ds is one unit� and

the weight of vout � Ds is �� This falls within the framework considered in Section
� since
vertices with in�nite weight in Ds can be treated as blackout vertices� We can therefore

apply SubG���� in the LoopCutset algorithm instead of applying MiniWCycle and

obtain the following improved performance ratio�

Theorem

 When using SubG����� the unweighted performance ratio of LoopCutset

is at most �� �
�jV �D�j��

Proof	 We have�

w���F �� � ws�F � � ���Ds� ws��

where the equality is due to Lemma ��� and the inequality is due to Theorem
� Since

��

��Ds� ws� � ��D�w� � jV �D�j� the claim is proved�

��� An application

We conclude this section with an application of approximation algorithms for the loop cutset

problem�

Let P �u�� � � � � un� be a probability distribution where each ui draws values from a �nite

set called the domain of ui� A directed graph D with no directed cycles is called a Bayesian

network of P if there is a ��� mapping between fu�� � � � � ung and vertices in D� such that
ui is associated with vertex i and P can be written as follows�

P �u�� � � � � un� �
nY
i��

P �ui j ui� � � � � � uij�i�� � ���

where i�� � � � � ij�i� are the source vertices of the incoming edges to vertex i in D�

It is worth noting that Bayesian networks are useful knowledge representation schemes

for many arti�cial intelligence tasks� Bayesian networks allow a wide spectrum of inde�

pendence assumptions to be considered by a model builder so that a practical balance can

be established between computational needs and adequacy of conclusions� For a complete

exploration of this subject see 	Pe����

Suppose now that some variables fv�� � � � � vlg among fu�� � � � � ung are assigned spe�
ci�c values fv�� � � � �vlg respectively� The updating problem is to compute the probabil�

ity P �ui j v� � v�� � � � � vl � vl� for i � �� � � � � n� In principle� such computations are

straightforward because each Bayesian network de�nes the joint probability distribution

P �u�� � � � � un� from which all conditional probabilities can be computed by dividing the ap�

propriate sums� However� such computations are ine�cient both in time and space unless

they use conditional independence assumptions de�ned by Eq� ���� We shall see next how

our approximation algorithms for the loop cutset problem reduce the computations needed

for solving the updating problem�

A trail in a Bayesian network is a subgraph whose underlying graph is a simple path� A

vertex b is called a sink with respect to a trail t if there exist two consecutive edges a� b

and b � c on t� A trail t is active by a set of vertices Z if ��� every sink with respect to

t either is in Z or has a descendant in Z and �
� every other vertex along t is outside Z�

Otherwise� the trail is said to be blocked by Z�

Verma and Pearl 	VePe��� have proved that if D is a Bayesian network of P �u�� � � � � un�

and all trails between a vertex in fr�� � � � � rlg and a vertex in fs�� � � � � skg are blocked by
ft�� � � � � tmg� then the corresponding sets of variables fur� � � � � � urlg and fus� � � � � � uskg are
independent conditioned on fut� � � � � � utmg� Furthermore� Geiger and Pearl 	GP��� proved

��

a converse to this theorem� Both results are presented and extended in 	GVP����

Using the close relationship between blocked trails and conditional independence� Kim

and Pearl 	KiP��� developed an algorithm update�tree that solves the updating problem

on Bayesian networks in which every two vertices are connected with at most one trail�

update�tree views each vertex as a processor that repeatedly sends messages to each of

its neighboring vertices� When equilibrium is reached� each vertex i contains the conditional

probability distribution P �ui j v� � v�� � � � � vl � vl�� The computations reach equilibrium

regardless of the order of execution in time proportional to the length of the longest trail

in the network�

Pearl 	Pe��� solved the updating problem on any Bayesian network as follows� First� a

set of vertices S is selected� such that any two vertices in the network are connected by at

most one active trail in S � Z� where Z is any subset of vertices� Then� update�tree is

applied once for each combination of value assignments to the variables corresponding to S�

and� �nally� the results are combined� This algorithm is called the method of conditioning

and its complexity grows exponentially with the size of S� Note that according to the

de�nition of active trails� the set S in Pearl�s algorithm is a loop cutset of the Bayesian

network� In this paper we have developed approximation algorithms for �nding S�

When the domain size of the variables varies� then update�tree is called a number

of times which is bounded from above by the product of the domain sizes of the variables

whose corresponding vertices participate in the loop cutset� If we take the logarithm of the

domain size as the weight of a vertex� then solving the weighted loop cutset problem with

these weights optimizes Pearl�s updating algorithm in the case where the domain sizes are

allowed to vary�

� Discussion

It is useful to relate the feedback vertex set problem with the vertex cover problem in order

to establish lower bounds on the performance ratios attainable for the feedback vertex set

problem� A vertex cover of an undirected graph is a subset of the vertex set that intersects

with each edge in the graph� The vertex cover problem is to �nd a minimum weight vertex

cover of a given graph� There is a simple polynomial reduction from the vertex cover

problem to the feedback vertex set problem� Given a graph G� we extend G to a graph

H by adding a vertex ve for each edge e � E�G�� and connecting ve with the vertices in

G with which e is incident in G� It is easy to verify that there always exists a minimum

feedback vertex set in H whose vertices are all in V �G� and this feedback vertex set is also

a minimum vertex cover of G� In essence� this reduction replaces each edge in G with a

cycle in H� thus transforming any vertex cover of G to a feedback vertex set of H�

�

Due to this reduction� it follows that the performance ratio obtainable for the feedback

vertex set problem cannot be better than the one obtainable for the vertex cover problem�

The latter problem has attracted a lot of attention over the years but has so far resisted any

approximation algorithm that achieves in general graphs a constant performance ratio less

than
� We note that the above reduction retains planarity� However� for planar graphs�

Baker 	Bak��� provided a Polynomial Approximation Scheme �PAS� for the vertex cover

problem� For the UFVS problem� there are examples showing that � is the tightest constant

performance ratio of algorithm SubG�����

Another consequence of the above reduction is a lower bound on the unweighted per�

formance ratio of the following greedy algorithm� GreedyCyc� for the feedback vertex

set problem� In each iteration� GreedyCyc removes a vertex of maximal degree from

the graph� adds it to the feedback vertex set� and removes all endpoints in the graph� A

similar greedy algorithm for the vertex cover problem is presented in 	Jo
�� and in 	Lo
���

The latter algorithm was shown to have an unweighted performance ratio no better than

 �log jV �G�j� 	Jo
��� Due to the reduction to the cycle cover problem� the same lower

bound holds also for GreedyCyc� as demonstrated by the graphs of 	Jo
��� A tight upper

bound on the worst�case performance ratio of GreedyCyc is unknown�

Finally� one should notice that the following heuristics may improve the performance

ratios of our algorithms� For example� in each iteration MiniWCycle chooses to place

in the cover all zero�weight vertices found on the smallest cycle� This choice might be

rather poor especially if many weights are equal� It may be useful in this case to perturb

the weights of the vertices before running the algorithm� Similarly� in algorithm SubG�

���� there is no point in taking blindly all branchpoints of H� An appropriate heuristic

here may be to pick the branchpoints one by one in decreasing order of residual degrees�

Furthermore� the subgraph H itself should be constructed such that it contains as many

high degree vertices as possible�

Remark

In a preliminary version of this paper� presented in 	BaGNR���� we conjectured that a

constant performance ratio is attainable by a polynomial time algorithm for the WFVS

problem� This has been recently veri�ed in 	BeG��� BaBF��� where a performance ratio of

 has been obtained�

�

Acknowledgment

We would like to thank David Johnson for bringing 	EP�
� to our attention� and Samir

Khuller for helpful discussions�

References

	BaBF��� Bafna V�� Berman P�� and Fujito T�� Constant ratio approximations of the

weighted feedback vertex set problem for undirected graphs� to appear in Proceedings of

ISAAC �
�

	Bak��� Baker B�S�� Approximation algorithms for NP�complete problems on planar graphs�

Journal of the ACM� �� ������� ��������

	BaEv��� Bar�Yehuda R� and Even S�� A local�ratio theorem for approximating the weighted

vertex cover problem� Annals of Discrete Mathematics�
� �������

����

	BaGNR��� Bar�Yehuda R�� Geiger D�� Naor J�� and Roth R�M�� Approximation Algo�

rithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction

and Bayesian Inference� Proceedings �th Annual ACM�SIAM Symposium on Discrete

Algorithms� Arlington� Virginia� ����� ��������

	BeG��� Becker A� and Geiger D�� Approximation algorithms for the loop cutset prob�

lem� Proceedings of the tenth conference on Uncertainty in Arti�cial Intelligence� Morgan

Kaufmann� Seattle� ����� ������

	DP�
� Dechter R� and Pearl J�� The cycle cutset method for improving search performance

in AI� Proceedings �rd IEEE on AI Applications� Orlando� ���
�

	DP��� Dechter R� and Pearl J�� Network�based heuristics for constraint satisfaction prob�

lems� Arti�cial Intelligence� �� ������� �����

	De��� Dechter R�� Enhancement schemes for constraint processing� backjumping� learning�

and cutset decomposition� Arti�cial Intelligence� �� �������

����
�

	EP�
� Erd�os P� and P�osa L�� On the maximal number of disjoint circuits of a graph� Publ�

Math Debrecen� � ����
�� ���
�

	EP��� Erd�os P� and P�osa L�� On the independent circuits contained in a graph� Canad�

J� Math� �
 ������� ��
���
�

	GJ
�� Garey M�R� and Johnson D�S�� Computers and Intractability� A Guide to the Theory

of NP�completeness� W� H� Freeman� San Francisco� California� ��
��

	GP��� Geiger� D� and Pearl� J�� On the logic of causal models� In Uncertainty in Arti�cial

Intelligence �� Eds� Shachter R�D�� Levitt T�S�� Kanal L�N�� and Lemmer J�F�� North�

Holland� New York� ����� �����

	GVP��� Geiger� D�� Verma� T�S�� and Pearl� J�� Identifying independence in Bayesian

networks� Networks�
� ������� ��
�����

	Ho�
� Hochbaum D�S�� Approximation algorithms for set covering and vertex covering

problems� SIAM J� Computing� �� ����
�� ��������

	Ho��� Hochbaum D�S�� E�cient bounds for the stable set� vertex cover� and set packing

problems� Discrete Applied Math� � �������
���
���

	IR
�� Itai A� and Rodeh M�� Finding a minimum circuit in a graph� SIAM J� Computing�

 ���
��� �����
��

	Jo
�� Johnson D�S�� Approximation algorithms for combinatorial problems� J� Comput�

Sys� Sciences� � ���
���
���

��

	KhVY��� Khuller S�� Vishkin U�� and Young� N�� A primal�dual parallel approximation

technique applied to weighted set and vertex cover� Journal of Algorithms� �
 ������

���
���

	KiP��� Kim H� and Pearl J�� A computational model for combined causal and diagnostic

reasoning in inference systems� In Proceedings of the Eighth IJCAI� Morgan�Kaufmann�

San Mateo� California� ����� ��������

	Lo
�� Lov�asz L�� On the ratio of optimal integral and fractional covers� Discrete Math��

�� ���
��� ��������

	MS��� Monien B�and Schulz R�� Four approximation algorithms for the feedback vertex set

problem� In Proceedings of the �th Conference on Graph Theoretic Concepts of Computer

Science� ����� �����
��

	Pe��� Pearl� J�� Fusion� propagation and structuring in belief networks� Arti�cial Intelli�

gence�
��� �������
���
���

	Pe��� Pearl� J�� Probabilistic reasoning in intelligent systems� Networks of plausible infer�

ence� Morgan Kaufmann� San Mateo� California� �����

	Si�
� Simonovits M�� A new proof and generalizations of a theorem by Erd�os and P�osa

on graphs without k�� independent circuits� Acta Mathematica Academiae Hungaricae

Tomus� �� ����
�� ����
���

�

	St��� Stillman� J�� On heuristics for �nding loop cutsets in multiply connected belief

networks� In Proceedings of the Sixth Conference on Uncertainty in Arti�cial Intelligence�

Cambridge� Massachusetts� �����
���

�

	SuC��� Suermondt H�J� and Cooper G�F�� Probabilistic inference in multiply connected

belief networks using loop cutsets� Int� J� Approx� Reasoning� � �������
�������

	VePe��� Verma� T� and Pearl� J�� Causal networks� Semantics and expressiveness� In

Proceedings of Fourth Workshop on Uncertainty in Arti�cial Intelligence� Minneapolis�

Minnesota �published by the Association for Uncertainty in Arti�cial Intelligence� Moun�

tain View� California�� ����� ��
�����

	Vo��� Voss H�J�� Some properties of graphs containing k independent circuits� Proc� Colloq�

Tihany� Academic Press� New York� ����� �
������

�

