
An Introduction to

Binary Decision Diagrams

Henrik Reif Andersen

01

x

y

y

z

Lecture notes for ����� Advanced Algorithms E��� October �����
	Minor revisions� Apr� ����

E�mail� hra�it�dtu�dk� Web� http���www�it�dtu�dk��hra

Department of Information Technology� Technical University of Denmark
Building ��� DK����� Lyngby� Denmark�

�

�

Preface

This note is a short introduction to Binary Decision Diagrams� It provides some back�
ground knowledge and describes the core algorithms� More details can be found in
Bryant�s original paper on Reduced Ordered Binary Decision Diagrams �Bry��� and the
survey paper �Bry���� A recent extension called Boolean Expression Diagrams is described
in �AH����

This note is a revision of an earlier version from fall ���� 	based on versions from
���� and ����
� The major di�erences are as follows� Firstly� ROBDDs are now viewed
as nodes of one global graph with one �xed ordering to re�ect state�of�the�art of e�cient
BDD packages� The algorithms have been changed 	and simpli�ed
 to re�ect this fact�
Secondly� a proof of the canonicity lemma has been added� Thirdly� the sections presenting
the algorithms have been completely restructured� Finally� the project proposal has been
revised�

Acknowledgements

Thanks to the students on the courses of fall ����� ����� and ���� for helping me debug
and improve the notes� Thanks are also due to Hans Rischel� Morten Ulrik S�rensen�
Niels Maretti� J�rgen Staunstrup� Kim Skak Larsen� Henrik Hulgaard� and various people
on the Internet who found typos and suggested improvements�

CONTENTS �

Contents

� Boolean Expressions �

� Normal Forms �

� Binary Decision Diagrams �

� Constructing and Manipulating ROBDDs ��
��� Mk ��
��� Build ��
�� Apply ��
��� Restrict ��
��� SatCount� AnySat� AllSat ��
��� Simplify ��
��� Existential Quanti�cation and Substitution � � � � � � � � � � � � � � � � � � ��

� Implementing the ROBDD operations ��

� Examples of problem solving with ROBDDs ��
��� The � Queens problem ��
��� Correctness of Combinational Circuits ��
�� Equivalence of Combinational Circuits ��

� Veri�cation with ROBDDs ��
��� Knights tour �

� Project	 An ROBDD Package ��

References ��

CONTENTS �

� BOOLEAN EXPRESSIONS �

� Boolean Expressions

The classical calculus for dealing with truth values consists of Boolean variables x� y� ����
the constants true � and false �� the operators of conjunction �� disjunction �� negation
�� implication �� and bi�implication � which together form the Boolean expressions�
Sometimes the variables are called propositional variables or propositional letters and the
Boolean expressions are then known as Propositional Logic�

Formally� Boolean expressions are generated from the following grammar�

t ��� x j � j � j �t j t � t j t � t j t� t j t� t�

where x ranges over a set of Boolean variables� This is called the abstract syntax of Boolean
expressions� The concrete syntax includes parentheses to solve ambiguities� Moreover� as
a common convention it is assumed that the operators bind according to their relative
priority� The priorities are� with the highest �rst� �� �� �� �� �� Hence� for example

�x� � x� � x� � x� � 			�x�
 � x�
 � x�
� x� �

A Boolean expression with variables x�� � � � � xn denotes for each assignment of truth values
to the variables itself a truth value according to the standard truth tables� see �gure ��
Truth assignments are written as sequences of assignments of values to variables� e�g��
���x�� ��x�� ��x�� ��x�� which assigns � to x� and x�� � to x� and x�� With this particular
truth assignment the above expression has value �� whereas ���x�� ��x�� ��x�� ��x�� yields
��

�
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

Figure �� Truth tables�

The set of truth values is often denoted B � f�� �g� If we �x an ordering of the
variables of a Boolean expression t we can view t as de�ning a function from B

n to B

where n is the number of variables� Notice� that the particular ordering chosen for the
variables is essential for what function is de�ned� Consider for example the expression
x� y� If we choose the ordering x � y then this is the function f	x� y
 � x� y� true if
the �rst argument implies the second� but if we choose the ordering y � x then it is the
function f	y� x
 � x � y� true if the second argument implies the �rst� When we later
consider compact representations of Boolean expressions� such variable orderings play a
crucial role�

Two Boolean expressions t and t� are said to be equal if they yield the same truth
value for all truth assignments� A Boolean expression is a tautology if it yields true for
all truth assignments� it is satis�able if it yields true for at least one truth assignment�

Exercise �
� Show how all operators can be encoded using only � and �� Use this
to argue that any Boolean expression can be written using only �� �� variables� and �
applied to variables�

� NORMAL FORMS �

Exercise �
� Argue that t and t� are equal if and only if t � t� is a tautology� Is it
possible to say whether t is satis�able from the fact that �t is a tautology�

� Normal Forms

A Boolean expression is in Disjunctive Normal Form �DNF� if it consists of a disjunction
of conjunctions of variables and negations of variables� i�e�� if it is of the form

	t�� � t�� � � � � � t�k�
 � � � � � 	tl� � tl� � � � � � tlkl
 	�

where each tji is either a variable xji or a negation of a variable �xji � An example is

	x � �y
 � 	�x � y

which is a well�known function of x and y 	which one�
� A more succinct presentation of
	�
 is to write it using indexed versions of � and ��

l�
j��

�
�

kj�
i��

tji

�
A �

Similarly� a Conjunctive Normal Form �CNF� is an expression that can be written as

l�
j��

�
�

kj�
i��

tji

�
A

where each tji is either a variable or a negated variable� It is not di�cult to prove the
following proposition�

Proposition � Any Boolean expression is equal to an expression in CNF and an expres�
sion in DNF�

In general� it is hard to determine whether a Boolean expression is satis�able� This is
made precise by a famous theorem due to Cook �Coo����

Theorem � �Cook� Satis�ability of Boolean expressions is NP�complete�

	For readers unfamiliar with the notion of NP�completeness the following short summary
of the pragmatic consequences su�ces� Problems that are NP�complete can be solved
by algorithms that run in exponential time� No polynomial time algorithms are known
to exist for any of the NP�complete problems and it is very unlikely that polynomial
time algorithms should indeed exist although nobody has yet been able to prove their
non�existence�

Cook�s theorem even holds when restricted to expressions in CNF� For DNFs satis��
ability is decidable in polynomial time but for DNFs the tautology check is hard 	co�NP
complete
� Although satis�ability is easy for DNFs and tautology check easy for CNFs�

� BINARY DECISION DIAGRAMS �

this does not help us since the conversion between CNFs and DNFs is exponential as the
following example shows�

Consider the following CNF over the variables x��� � � � x
n
� � x

�
�� � � � � x

n
� �

	x�� � x��
 � 	x�� � x��
 � � � � � 	xn� � xn�
 �

The corresponding DNF is a disjunction which has a disjunct for each of the n�digit binary
numbers from ��� � � � ��� to ��� � � � ��� � the i�th digit representing a choice of either xi�
	for �
 or xi� 	for �
�

	x�� � x�� � � � � � xn��� � xn�
 �
	x�� � x�� � � � � � xn��� � xn�
 �

���
	x�� � x�� � � � � � xn��� � xn�
 �
	x�� � x�� � � � � � xn��� � xn�
 �

Whereas the original expression has size proportional to n the DNF has size proportional
to n�n�

The next section introduces a normal form that has more desirable properties than
DNFs and CNFs� In particular� there are e�cient algorithms for determining the satis��
ability and tautology questions�

Exercise �
� Describe a polynomial time algorithm for determining whether a DNF is
satis�able�

Exercise �
� Describe a polynomial time algorithm for determining whether a CNF is
a tautology�

Exercise �
� Give a proof of proposition ��

Exercise �
� Explain how Cook�s theorem implies that checking in�equivalence between
Boolean expressions is NP�hard�

Exercise �
� Explain how the question of tautology and satis�ability can be decided if
we are given an algorithm for checking equivalence between Boolean expressions�

� Binary Decision Diagrams

Let x� y�� y� be the if�then�else operator de�ned by

x� y�� y� � 	x � y�
 � 	�x � y�

hence� t � t�� t� is true if t and t� are true or if t is false and t� is true� We call t the
test expression� All operators can easily be expressed using only the if�then�else operator
and the constants � and �� Moreover� this can be done in such a way that all tests are
performed only on 	un�negated
 variables and variables occur in no other places� Hence
the operator gives rise to a new kind of normal form� For example� �x is 	x � �� �
 �
x� y is x� 	y � �� �
� 	y � �� �
� Since variables must only occur in tests the Boolean
expression x is represented as x� �� � �

� BINARY DECISION DIAGRAMS �

An If�then�else Normal Form �INF� is a Boolean expression built entirely
from the if�then�else operator and the constants � and � such that all tests are
performed only on variables�

If we by t���x� denote the Boolean expression obtained by replacing x with � in t then
it is not hard to see that the following equivalence holds�

t � x� t���x�� t���x� � 	�

This is known as the Shannon expansion of t with respect to x� This simple equation has
a lot of useful applications� The �rst is to generate an INF from any expression t� If t
contains no variables it is either equivalent to � or � which is an INF� Otherwise we form
the Shannon expansion of t with respect to one of the variables x in t� Thus since t���x�
and t���x� both contain one less variable than t� we can recursively �nd INFs for both of
these� call them t� and t�� An INF for t is now simply

x� t�� t��

We have proved�

Proposition � Any Boolean expression is equivalent to an expression in INF�

Example � Consider the Boolean expression t � 	x� � y�
 � 	x� � y�
� If we �nd an
INF of t by selecting in order the variables x�� y�� x�� y� on which to perform Shannon
expansions� we get the expressions

t � x� � t�� t�

t� � y� � �� t��

t� � y� � t��� �

t�� � x� � t���� t���

t�� � x� � t���� t���

t��� � y� � �� �

t��� � y� � �� �

t��� � y� � �� �

t��� � y� � �� �

Figure � shows the expression as a tree� Such a tree is also called a decision tree� �

A lot of the expressions are easily seen to be identical� so it is tempting to identify them�
For example� instead of t��� we can use t��� and instead of t��� we can use t���� If we
substitute t��� for t��� in the right�hand side of t�� and also t��� for t���� we in fact see
that t�� and t�� are identical� and in t� we can replace t�� with t���

If we in fact identify all equal subexpressions we end up with what is known as a
binary decision diagram 	a BDD
� It is no longer a tree of Boolean expressions but a
directed acyclic graph 	DAG
�

� BINARY DECISION DIAGRAMS ��

x�

� � � � �

y�

x�

y� y�

� �� ��

y�

x�

y� y�

Figure �� A decision tree for 	x� � y�
 � 	x� � y�
� Dashed lines denote low�branches�
solid lines high�branches�

Applying this idea of sharing� t can now be written as�

t � x� � t�� t�

t� � y� � �� t��

t� � y� � t��� �

t�� � x� � t���� t���

t��� � y� � �� �

t��� � y� � �� �

Each subexpression can be viewed as the node of a graph� Such a node is either terminal
in the case of the constants � and �� or non�terminal� A non�terminal node has a low�edge
corresponding to the else�part and a high�edge corresponding to the then�part� See �gure
� Notice� that the number of nodes has decreased from � in the decision tree to � in
the BDD� It is not hard to imagine that if each of the terminal nodes were other big
decision trees the savings would be dramatic� Since we have chosen to consistently select
variables in the same order in the recursive calls during the construction of the INF of t�
the variables occur in the same orderings on all paths from the root of the BDD� In this
situation the binary decision diagram is said to be ordered 	an OBDD
� Figure shows a
BDD that is also an OBDD�

Figure � shows four OBDDs� Some of the tests 	e�g�� on x� in b
 are redundant�
since both the low� and high�branch lead to the same node� Such unnecessary tests can
be removed� any reference to the redundant node is simply replaced by a reference to

� BINARY DECISION DIAGRAMS ��

y� y�

y� y�

x�

x�

� �

Figure � A BDD for 	x� � y�
 � 	x� � y�
 with ordering x� � y� � x� � y�� Low�edges
are drawn as dotted lines and high�edges as solid lines�

�

�

� �

�

x�

x�

x�

x�

x�

x�

dcba

Figure �� Four OBDDs� a
 An OBDD for �� b
 Another OBDD for � with two redundant
tests� c
 Same as b with one of the redundant tests removed� d
 An OBDD for x� � x�
with one redundant test�

� BINARY DECISION DIAGRAMS ��

x

y z

x � y
x � z

x x x

Figure �� The ordering and reducedness conditions of ROBDDs� Left� Variables must
be ordered� Middle� Nodes must be unique� Right� Only non�redundant tests should be
present�

its subnode� If all identical nodes are shared and all redundant tests are eliminated� the
OBDD is said to be reduced 	an ROBDD
� ROBDDs have some very convenient properties
centered around the canonicity lemma below� 	Often when people speak about BDDs they
really mean ROBDDs�
 To summarize�

A Binary Decision Diagram �BDD� is a rooted� directed acyclic graph with

� one or two terminal nodes of out�degree zero labeled � or �� and
� a set of variable nodes u of out�degree two� The two outgoing edges

are given by two functions low	u
 and high	u
� 	In pictures� these
are shown as dotted and solid lines� respectively�
 A variable var	u

is associated with each variable node�

A BDD is Ordered 	OBDD
 if on all paths through the graph the variables
respect a given linear order x� � x� � � � � � xn� An 	O
BDD is Reduced
	R	O
BDD
 if

� 	uniqueness
 no two distinct nodes u and v have the same variable
name and low� and high�successor� i�e��

var	u
 � var	v
� low	u
 � low	v
� high	u
 � high	v
 implies u � v�

and
� 	nonredundant tests
 no variable node u has identical low� and
high�successor� i�e��

low	u
 	� high	u
 �

The ordering and reducedness conditions are shown in �gure ��
ROBDDs have some interesting properties� They provide compact representations of

Boolean expressions� and there are e�cient algorithms for performing all kinds of logical
operations on ROBDDs� They are all based on the crucial fact that for any function
f � B n � B there is exactly one ROBDD representing it� This means� in particular� that
there is exactly one ROBDD for the constant true 	and constant false
 function on B

n�
the terminal node � 	and � in case of false
� Hence� it is possible to test in constant time
whether an ROBDD is constantly true or false� 	Recall that for Boolean expressions this
problem is NP�complete�

� BINARY DECISION DIAGRAMS �

To make this claimmore precise we must say what we mean for an ROBDD to represent
a function� First� it is quite easy to see how the nodes u of an ROBDD inductively de�nes
Boolean expressions tu� A terminal node is a Boolean constant� A non�terminal node
marked with x is an if�then�else expression where the condition is x and the two branches
are the Boolean expressions given by the low� or high�son� respectively�

t� � �
t� � �
tu � var	u
� thigh�u�� tlow�u�� if u is a variable node�

Moreover� if x� � x� � � � � � xn is the variable ordering of the ROBDD� we associate
with each node u the function fu that maps 	b�� b�� � � � � bn

 B

n to the truth value of
tu�b��x�� b��x�� � � � � bn�xn�� We can now state the key lemma�

Lemma � �Canonicity lemma�
For any function f � B n � B there is exactly one ROBDD u with variable ordering x� �
x� � � � � � xn such that fu � f	x�� � � � � xn
�

Proof	 The proof is by induction on the number of arguments of f � For n � � there
are only two Boolean functions� the constantly false and constantly true functions� Any
ROBDD containing at least one non�terminal node is non�constant� 	Why�
 Therefore
there is exactly one ROBDD for each of these� the terminals � and ��

Assume now that we have proven the lemma for all functions of n arguments� We
proceed to show it for all functions of n�� arguments� Let f � B n�� � B be any Boolean
function of n�� arguments� De�ne the two functions f� and f� of n arguments by �xing
the �rst argument of f to � respectively ��

fb	x�� � � � � xn��
 � f	b� x�� � � � � xn��
 for b
 B �

	Sometimes f� and f� are called the negative and positive co�factors of f with respect to
x��
 These functions satisfy the following equation�

f	x�� � � � � xn
 � x� � f�	x�� � � � � xn
� f�	x�� � � � � xn
 � 	

Since f� and f� take only n arguments we assume by induction that there are unique
ROBDD nodes u� and u� with fu� � f� and fu� � f��

There are two cases to consider� If u� � u� then fu� � fu� and f� � fu� � fu� � f� �
f � Hence u� � u� is an ROBDD for f � It is also the only ROBDD for f since due to
the ordering� if x� is at all present in the ROBDD rooted at u� x� would need to be the
root node� However� if f � fu then f� � fu���x�� � f low�u� and f� � fu���x�� � f high�u��
Since f� � fu� � fu� � f� by assumption� the low� and high�son of u would be the same�
making the ROBDD violate the reducedness condition of non�redundant tests�

If u� 	� u� then fu� 	� fu� by the induction hypothesis 	using the names x�� � � � � xn��
in place of x�� � � � � xn
� We take u to be the node with var	u
 � x�� low	u
 � u�� and
high	u
 � u�� i�e�� fu � x� � fu� � fu� which is reduced� By assumption fu� � f�
and fu� � f� therefore using 	
 we get fu � f � Suppose that v is some other node
with f v � f � Clearly� f v must depend on x�� i�e�� f

v���x�� 	� f v���x�� 	otherwise also

� BINARY DECISION DIAGRAMS ��

f� � f v���x�� � f v���x�� � f�� a contradiction
� Due to the ordering this means that
var	v
 � x� � var	u
� Moreover� from f v � f it follows that f low�v� � f� � fu� and
f high�v� � f� � fu�� which by the induction hypothesis implies that low	v
 � u� � low	u

and high	v
 � u� � high	u
� From the reducedness property of uniqueness it follows that
u � v� �

An immediate consequence is the following� Since the terminal � is an ROBDD for all
variable orderings it is the only ROBDD that is constantly true� So in order to check
whether an ROBDD is constantly true it su�ces to check whether it is the terminal �
which is de�nitely a constant time operation� Similarly� ROBDDs that are constantly
false must be identical to the terminal �� In fact� to determine whether two Boolean
functions are the same� it su�ces to construct their ROBDDs 	in the same graph
 and
check whether the resulting nodes are the same�

The ordering of variables chosen when constructing an ROBDD has a great impact on
the size of the ROBDD� If we consider again the expression 	x� � y�
 � 	x� � y�
 and
construct an ROBDD using the ordering x� � x� � y� � y� the ROBDD consists of �
nodes 	�gure �
 and not � nodes as for the ordering x� � y� � x� � y� 	�gure
�

��

y� y�

y� y� y� y�

x�x�

x�

Figure �� The ROBDD for 	x� � y�
�	x� � y�
 with variable ordering x� � x� � y� � y��

Exercise �
� Show how to express all operators from the if�then�else operator and the
constants � and ��

Exercise �
� Draw the ROBDDs for 	x� � y�
 � 	x� � y�
 � 	x� � y�
 with orderings
x� � x� � x� � y� � y� � y� and x� � y� � x� � y� � x� � y��

� CONSTRUCTING AND MANIPULATING ROBDDS ��

Exercise �
� Draw the ROBDDs for 	x� � y�
 � 	x� � y�
 with orderings x� � x� �
y� � y� and x� � y� � x� � y�� How does it compare with the example in �gures and ��
Based on the examples you have seen so far� what variable ordering would you recommend
for constructing a small ROBDD for 	x� � y�
� 	x� � y�
� 	x� � y�
� � � �� 	xk � yk
�

Exercise �
� Give an example of a sequence of ROBDDs un� � � n which induces expo�
nentially bigger decision trees� I�e�� if un has size �	n
 then the decision tree should have
size �	�n
�

Exercise �
� Construct an ROBDD of maximum size over six variables�

� Constructing and Manipulating ROBDDs

In the previous section we saw how to construct an OBDD from a Boolean expression
by a simple recursive procedure� The question arises now how do we construct a reduced
OBDD� One way is to �rst construct an OBDD and then proceed by reducing it� An�
other more appealing approach� which we follow here� is to reduce the OBDD during
construction�

To describe how this is done we will need an explicit representation of ROBDDs� Nodes
will be represented as numbers �� �� �� � � � with � and � reserved for the terminal nodes� The
variables in the ordering x� � x� � � � � � xn are represented by their indices �� �� � � � � n�
The ROBDD is stored in a table T � u �� 	i� l� h
 which maps a node u to its three
attributes var	u
 � i� low	u
 � l� and high	u
 � h� Figure � shows the representation of
the ROBDD from �gure 	with the variable names changed to x� � x� � x� � x�
�

��� Mk

In order to ensure that the OBDD being constructed is reduced� it is necessary to deter�
mine from a triple 	i� l� h
 whether there exists a node u with var	u
 � i� low	u
 � l� and
high	u
 � h� For this purpose we assume the presence of a table H � 	i� l� h
 �� u mapping
triples 	i� l� h
 of variable indices i� and nodes l� h to nodes u� The table H is the �inverse
of the table T � i�e�� for variable nodes u� T 	u
 � 	i� l� h
� if and only if� H	i� l� h
 � u� The
operations needed on the two tables are�

T � u �� 	i� l� h

init	T
 initialize T to contain only � and �
u add	T� i� l� h
 allocate a new node u with attributes 	i� l� h

var	u
� low	u
� high	u
 lookup the attributes of u in T

H � 	i� l� h
 �� u
init	H
 initialize H to be empty
b member	H� i� l� h
 check if 	i� l� h
 is in H
u lookup	H� i� l� h
 �nd H	i� l� h

insert	H� i� l� h� u
 make 	i� l� h
 map to u in H

� CONSTRUCTING AND MANIPULATING ROBDDS ��

2 3

4

5 6

7

x� x�

x�

x�

x�

� �

x�

T � u �� 	i� l� h

u var low high

� �
� �
� � � �
 � � �
� �
� � � �
� � � �
� � � �

Figure �� Representing an ROBDD with ordering x� � x� � x� � x�� The numbers
inside the vertices are the identities used in the representation� The numbers � and �
are reserved for the terminal nodes� The numbers to the right of the ROBDD shows the
index of the variables in the ordering� The constants are assigned an index which is the
number of variables in the ordering plus one 	here ��� � �
� This makes some subsequent
algorithms easier to present� The low� and high��elds are unused for the terminal nodes�

Mk�T�H�	i� l� h

�� if l � h then return l
�� else if member	H� i� l� h
 then
� return lookup	H� i� l� h

�� else u add	T� i� l� h

�� insert	H� i� l� h� u

�� return u

Figure �� The function mk�T�H�	i� l� h
�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

Build�T�H�	t

�� function build�	t� i
 �
�� if i � n then
� if t is false then return � else return �
�� else v� build�	t���xi�� i� �

�� v� build�	t���xi�� i� �

�� return mk	i� v�� v�

�� end build�
��
�� return build�	t� �

Figure �� Algorithm for building an ROBDD from a Boolean expression t
using the ordering x� � x� � � � � � xn� In a call build�	t� i
� i is the lowest
index that any variable of t can have� Thus when the test i � n succeeds� t
contains no variables and must be either constantly false or true�

We shall assume that all these operations can be performed in constant time� O	�
� Section
� will show how such a low complexity can be achieved�

The function mk�T�H�	i� l� h
 	see �gure �
 searches the table H for a node with
variable index i and low�� high�branches l� h and returns a matching node if one exists�
Otherwise it creates a new node u� inserts it into H and returns the identity of it� The
running time of mk is O	�
 due to the assumptions on the basic operations on T and H�
The OBDD is ensured to be reduced if nodes are only created through the use of mk� In
describing mk and subsequent algorithms� we make use of the notation �T�H� to indicate
that mk depends on the global data structures T and H� but we leave out the arguments
when invoking it as part of other algorithms�

��� Build

The construction of an ROBDD from a given Boolean expression t proceeds as in the
construction of an if�then�else normal form 	INF
 in section �� An ordering of the variables
x� � � � � � xn is �xed� Using the Shannon expansion t � x� � t���x��� t���x��� a node for t
is constructed by a call to mk� after the nodes for t���x�� and t���x�� have been constructed
by recursion� The algorithm is shown in �gure �� The call build�	t� i
 constructs an
ROBDD for a Boolean expression t with variables in fxi� xi��� � � � � xng� It does so by �rst
recursively constructing ROBDDs v� and v� for t���xi� and t���xi� in lines � and �� and
then proceeding to �nd the identity of the node for t in line �� Notice that if v� and v� are
identical� or if there already is a node with the same i� v� and v�� no new node is created�

An example of using build to compute an ROBDD is shown in �gure ��� The running
time of build is bad� It is easy to see that for a variable ordering with n variables there
will always be generated on the order of �n calls �

� CONSTRUCTING AND MANIPULATING ROBDDS ��

��� � x�� � x�� ��

build���x� � x�� � x�� ��

���� x�� � x�� ��

��� � �� � x�� ����� � �� � x�� ��

��� � �� � �� �� ��� � �� � �� ��

��� � �� � �� �� ��� � �� � �� ��

��� � �� � x�� ��

��� � �� � �� ��

��� � �� � x�� ��

��� � �� � �� ��

��� � �� � �� ��

���� �� � �� ��

b c

d

e

f

g

e

a

�� � �

� � � ���

b c d
�

e f g

x�

x�

x�

x�

x�

x�

x�

x� x�

x�

x�

x�

Figure ��� Using build on the expression 	x� � x�
� x�� 	a
 The tree of calls to build�
	b
 The ROBDD after the call build�		�� �
�x��
� 	c
 After the call build�		�� �
�
x��
� 	d
 After the call build�		�� x�
�x�� �
� 	e
 After the calls build�		�� �
�x��

and build�		� � �
 � x��
� 	f
 After the call build�		� � x�
 � x�� �
� 	g
 The �nal
result�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

��� Apply

Apply�T�H�	op� u�� u�

�� init	G

��
� function app	u�� u�
 �
�� if G	u�� u�
 	� empty then return G	u�� u�

�� else if u�
 f�� �g and u�
 f�� �g then u op	u�� u�

�� else if var	u�
 � var	u�
 then
�� u mk	var	u�
�app	low	u�
� low	u�

�app	high	u�
� high	u�

� else if var	u�
 � var	u�
 then
� u mk	var	u�
�app	low	u�
� u�
�app	high	u�
� u�

��� else 	� var	u�
 � var	u�
 �

��� u mk	var	u�
�app	u�� low	u�

�app	u�� high	u�

��� G	u�� u�
 u
�� return u
��� end app

���
��� return app	u�� u�

Figure ��� The algorithm apply�T�H�	op� u�� u�
�

All the binary Boolean operators on ROBDDs are implemented by the same general
algorithm apply	op� u�� u�
 that for two ROBDDs computes the ROBDD for the Boolean
expression tu� op tu�� The construction of apply is based on the Shannon expansion 	�
�

t � x� t���x�� t���x� �

Observe that for all Boolean operators op the following holds�

	x� t�� t�
 op 	x� t��� t
�
�
 � x� t� op t

�
�� t� op t

�
� 	�

If we start from the root of the two ROBDDs we can construct the ROBDD of the result by
recursively constructing the low� and the high�branches and then form the new root from
these� Again� to ensure that the result is reduced� we create the node through a call to
mk� Moreover� to avoid an exponential blow�up of recursive calls� dynamic programming
is used� The algorithm is shown in �gure ���

Dynamic programming is implemented using a table of results G� Each entry 	i� j
 is
either empty or contains the earlier computed result of app	i� j
� The algorithm distin�
guishes between four di�erent cases� the �rst of them handles the situation where both
arguments are terminal nodes� the remaining three handle the situations where at least
one argument is a variable node�

If both u� and u� are terminal� a new terminal node is computed having the value of
op applied to the two truth values� 	Recall� that terminal node � is represented by a node
with identity � and similarly for ��

� CONSTRUCTING AND MANIPULATING ROBDDS ��

If at least one of u� and u� are non�terminal� we proceed according to the variable
index� If the nodes have the same index� the two low�branches are paired and app

recursively computed on them� Similarly for the high�branches� This corresponds exactly
to the case shown in equation 	�
� If they have di�erent indices� we proceed by pairing the
node with lowest index with the low� and high�branches of the other� This corresponds
to the equation

	xi � t�� t�
 op t � xi � t� op t� t� op t 	�

which holds for all t� Since we have taken the index of the terminals to be one larger
than the index of the non�terminals� the last two cases� var	u�
 � var	u�
 and var	u�
 �
var	u�
� take account of the situations where one of the nodes is a terminal�

Figure �� shows an example of applying the algorithm on two small ROBDDs� Notice
how pairs of nodes from the two ROBDDs are combined and computed�

To analyze the complexity of apply we let juj denote the number of nodes that can
be reached from u in the ROBDD� Assume that G can be implemented with constant
lookup and insertion times� 	See section � for details on how to achieve this�
 Due to
the dynamic programming at most ju�j ju�j calls to Apply are generated� Each call takes
constant time� The total running time is therefore O	ju�j ju�j
�

��� Restrict

The next operation we consider is the restriction of a ROBDD u� That is� given a truth
assignment� for example ���x�� ��x	� ��x
�� we want to compute the ROBDD for tu under
this restriction� i�e�� �nd the ROBDD for tu���x�� ��x	� ��x
�� As an example consider the
ROBDD of �gure ��	g
 	repeated below to the left
 representing the Boolean expression
	x� � x�
 � x�� Restricting it with respect to the truth assignment ���x�� yields an
ROBDD for 	�x� � x�
� It is constructed by replacing each occurrence of a node with
label x� by its left branch yielding the ROBDD at the right�

01

x1

x2 x2

x3

01

x1

x3

The algorithm again uses mk to ensure that the resulting OBDD is reduced� Figure �
shows the algorithm in the case where only singleton truth assignments 	�b�xj�� b
 f�� �g

are allowed� Intuitively� in computing restrict	u� j� b
 we search for all nodes with
var � j and replace them by their low� or high�son depending on b� Since this might
force nodes above the point of replacemen to become equal� it is followed by a reduction
	through the calls to mk
� Due to the two recursive calls in line � the algorithm has an
exponential running time� see exercise ��� for an improvement that reduces this to linear
time�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

x�

x�

x�

x�

x� �

�� � �
� �

x�

x�

x�

x�

x�

��� ��� ��� ���

���

��� ���

���

��� ���

���

���

���

���

���

���

���

���

���

���

������

	��

���

���

���

��� ��� ���

�

� �

�

� �

	

�

�

�

�

� �

� �

� �

�

� �

Figure ��� An example of applying the algorithm apply for computing the conjunction
of the two ROBDDs shown at the top left� The result is shown to the right� Below the
tree of arguments to the recursive calls of app� Dashed nodes indicate that the value of
the node has previously been computed and is not recomputed due to the use of dynamic
programming� The solid ellipses show calls that �nishes by a call to mk with the variable
index indicated by the variables to the right of the tree�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

Restrict�T�H�	u� j� b
 �
�� function res	u
 �
�� if var	u
 � j then return u
� else if var	u
 � j then return mk	var	u
� res	low	u

� res	high	u

�� else 	! var	u
 � j !
 if b � � then return res	low	u

�� else 	! var	u
 � j� b � � !
 return res	high	u

�� end res
�� return res	u

Figure �� The algorithm restrict�T�H�	u� j� b
 which computes an ROBDD
for tu�j�b��

��� SatCount� AnySat� AllSat

In this section we consider operations to examine the set of satisfying truth assignments
of a node u� A truth assignment � satis�es a node u if tu��� can be evaluated to � using
the truth tables of the Boolean operators� Formally� the satisfying truth assignments is
the set sat	u
�

sat	u
 � f�
 B
fx������xng j tu��� is true g�

where B
fx������xng denotes the set of all truth assignments for variables fx�� � � � � xng� i�e��

functions from fx�� � � � � xng to the truth values B � f�� �g� The �rst algorithm� Sat�
Count� computes the size of sat	u
� see �gure ��� The algorithm exploits the follow�
ing fact� If u is a node with variable index var	u
 then two sets of truth assignments
can make fu true� The �rst set has varu equal to �� the other has varu equal to
�� For the �rst set� the number is found by �nding the number of truth assignments
count	low	u

 making low	u
 true� All variables between var	u
 and var	low	u

 in
the ordering can be chosen arbitrarily� therefore in the case of varu being �� a total
of �var�low�u���var �u��� � count	low	u

 satisfying truth assignments exists� To be e�cient�
dynamic programming should be applied in SatCount 	see exercise ����
�

The next algorithm AnySat in �gure �� �nds a satisfying truth assignment� Some
irrelevant variables present in the ordering might not appear in the result and they can
be assigned any value whatsoever� AnySat simply �nds a path leading to � by a depth�
�rst traversal� prefering somewhat arbitrarily low�edges over high�edges� It is particularly
simple due to the observation that if a node is not the terminal �� it has at least one path
leading to �� The running time is clearly linear in the result�

AllSat in �gure �� �nds all satisfying truth�assignments leaving out irrelevant vari�
ables from the ordering� AllSat	u
 �nds all paths from a node u to the terminal �� The
running time is linear in the size of the result multiplied with the time to add the single
assignments �xvar�u� �� �� and �xvar�u� �� �� in front of a list of up to n elements� However�
the result can be exponentially large in juj� so the running time is the poor O	�jujn
�

� CONSTRUCTING AND MANIPULATING ROBDDS �

SatCount�T �	u

�� function count	u

�� if u � � then res �
� else if u � � then res �
�� else res �var�low�u���var �u��� � count	low	u

� �var�high�u���var�u��� � count	high	u

�� return res
�� end count
��
�� return �var�u��� � count	u

Figure ��� An algorithm for determining the number of valid truth assign�
ments� Recall� that the �variable index var of � and � in the ROBDD repre�
sentation is n�� when the ordering contains n variables 	numbered � through
n
� This means that var	�
 and var	�
 always gives n� ��

AnySat	u

�� if u � � then Error
�� else if u � � then return ��
� else if low	u
 � � then return �xvar�u� �� ��AnySat	high	u

�
�� else return �xvar�u� �� ��AnySat	low	u

�

Figure ��� An algorithm for returning a satisfying truth�assignment� The
variables are assumed to be x�� � � � � xn ordered in this way�

AllSat	u

�� if u � � then return h i
�� else if u � � then return h � � i
� else return
�� hadd �xvar�u� �� �� in front of all
�� truth�assignments in AllSat	low	u

�
�� add �xvar�u� �� �� in front of all
�� truth�assignments in AllSat	high	u

i

Figure ��� An algorithm which returns all satisfying truth�assignments� The
variables are assumed to be x�� � � � xn ordered in this way� We use h� � �i to
denote sequences of truth assignments� In particular� h i is the empty sequence
of truth assignments� and h � � i is the sequence consisting of the single empty
truth assignment�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

Simplify	d� u

�� function sim	d� u

�� if d � � then return �
� else if u � � then return u
�� else if d � � then
�� return mk	var	u
� sim	d� low	u

� sim	d� high	u

�� else if var	d
 � var	u
 then
�� if low	d
 � � then return sim	high	d
� high	u

�� else if high	d
 � � then return sim	low	d
� low	u

�� else return mk	var	u
�
��� sim	low	d
� low	u

�
��� sim	high	d
� high	u

��� else if var	d
 � var	u
 then
�� return mk	var	d
� sim	low	d
� u
� sim	high	d
� u

��� else
��� return mk	var	u
� sim	d� low	u

� sim	d� high	u

��� end sim
���
��� return sim	d� u

Figure ��� An algorithm 	due to Coudert et al �CBM���
 for simplifying an
ROBDD b that we only care about on the domain d� Dynamic programming
should be applied to improve e�ciency 	exercise ����

� CONSTRUCTING AND MANIPULATING ROBDDS ��

mk	i� u�� u�
 O	�

Build	t
 O	�n

Apply	op� u�� u�
 O	ju�j ju�j

Restrict	u� j� b
 O	juj
 See note
SatCount	u
 O	juj
 See note
AnySat	u
 O	jpj
 p � AnySat	u
� jpj � O	juj

AllSat	u
 O	jrj � n
 r � AllSat	u
� jrj � O	�juj

Simplify	d� u
 O	jdjjuj
 See note
Note� These running times only holds if dynamic programming is
used 	exercises ���� ����� and ����
�

Table �� Worst�case running times for the ROBDD operations� The running times are the
expected running times since they are all based on a hash�table with expected constant
time search and insertion operations�

��� Simplify

The �nal algorithm called Simplify is shown in �gure ��� The algorithm is used to
simplify an ROBDD by trying to remove nodes� The simpli�cation is based on a domain
d of interest� The ROBDD u is supposed to be of interest only on truth assignments
that also satisfy d� 	This occurs when using ROBDDs for formal veri�cation� Section
� shows how to do formal veri�cation with ROBDDs� but contains no example of using
Simplify�

To be precise� given d and u� Simplify �nds another ROBDD u�� typically smaller
than u� such that td � tu � td � tu

�

� It does so by trying to identify sons� and thereby
making some nodes redundant� A more detailed analysis is left to the reader�

The running time of the algorithms of the previous sections is summarized in table ��

��� Existential Quanti	cation and Substitution

When applying ROBDDs often existential quanti�cation and composition is used� Ex�
istential quanti�cation is the Boolean operation �x�t� The meaning of an existential
quanti�cation of a Boolean variable is given by the following equation�

�x�t � t���x� � t���x� � 	�

On ROBDDs existential quanti�cation can therefore be implemented using two calls to
Restrict and a single call to Apply�

Composition is the ROBDD operation performing the equivalent of substitution on
Boolean expression� Often the notation t�t��x� is used to describe the result of substituting
all free occurrences of x in t by t�� 	An occurrence of a variable is free if it is not within
the scope of a quanti�er�
� To perform this substitution on ROBDDs we observe the

�Since ROBDDs contain no quanti�ers we shall not be concerned with the problems of free variables

of t� being bound by quanti�ers of t�

� CONSTRUCTING AND MANIPULATING ROBDDS ��

following equation� which holds if t contains no quanti�ers�

t�t��x� � t�t� � �� ��x� � t� � t���x�� t���x�� 	�

Since 	t� � t���x�� t���x�
 � 	t� � t���x�
� 	�t� � t���x�
 we can compute this with two
applications of restrict and three applications of apply 	with the operators �� 	�
� �
�
� However� by essentially generalizing apply to operators op with three arguments we
can do better 	see exercise ���
�

Exercises

Exercise �
� Construct the ROBDD for �x� � 	x� � �x�
 with ordering x� � x� � x�
using the algorithm Build in �gure ��

Exercise �
� Show the representation of the ROBDD of �gure � in the style of �gure ��

Exercise �
� Suggest an improvement BuildConj	t
 of Build which generates only a
linear number of calls for Boolean expressions t that are conjunctions of variables and
negations of variables�

Exercise �
� Construct the ROBDDs for x and x � y using whatever ordering you
want� Compute the disjunction of the two ROBDDs using apply�

Exercise �
� Construct the ROBDDs for �	x� � x�
 and x� � x� using build with the
ordering x� � x� � x�� Use apply to �nd the ROBDD for �	x� � x�
 � 	x� � x�
�

Exercise �
� Is there any essential di�erence in running time between �nding restrict	b� �� �

and restrict	b� n� �
 when the variable ordering is x� � x� � � � � � xn�

Exercise �
� Use dynamic programming to improve the running time of Restrict�

Exercise �
� Generalise restrict to arbitrary truth assignments �xi� � bi� �xi� � bi� �� � ��xin �
bin �� It might be convenient to assume that xi� � xi� � � � � � xin �

Exercise �
� Suggest a substantially better way of building ROBDDs for 	large
 Boolean
expressions than build�

Exercise �
�� Change SatCount such that dynamic programming is used� How does
this change the running time�

Exercise �
�� Explain why dynamic programming does not help in improving the run�
ning time of AllSat�

Exercise �
�� Improve the e�ciency of Simplify with dynamic programming�

Exercise �
�� Write the algorithm Compose	u�� x� u�
 for computing the ROBDD of
u��u��x� e�ciently along the lines of apply� First generalize apply to operators op
with three arguments 	as for example the if�then�else operator
� utilizing once again the
Shannon expansion� Then use equation � to write the algorithm�

� IMPLEMENTING THE ROBDD OPERATIONS ��

� Implementing the ROBDD operations

There are many choices that have to be taken in implementing the ROBDD operations�
There is no obvious best way of doing it� This section gives hints for some reasonable
solutions�

First� the node table T is an array as shown in �gure �� The only problem is that the
size of the array is not known until the full BDD has been constructed� Either a �xed
upper bound could be assumed� or other tricks must be applied 	for example dynamic
arrays �CLR��� sec� �����
� The table H could be implemented as a hash�table using for
instance the hash function

h	i� v�� v�
 � pair	i� pair	v�� v�

 mod m

where pair is a pairing function that maps pairs of natural numbers to natural numbers
and m is a prime� One choice for the pairing function is

pair	i� j
 �
	i� j
	i� j � �

�
� i

which is a bijection� and therefore �perfect � it produces no collisions� As usual with
hash�tables we have to decide on the size as a prime m� However� since the size of H
grows dynamically it can be hard to �nd a good choice for m� One solution would be to
take m very large� for example m � ������� 	which is the ��������th prime number
�
and then take as the hashing function

h�	i� v�� v�
 � h	i� v�� v�
 mod �k

using a table of size �k� Starting from some reasonable small value of k we could increase
the table when it contains �k elements by adding one to k� construct a new table and
rehash all elements into this new table� 	Again� see for example �CLR��� sec� ����� for
details�
 For such a dynamic hash�table the amortized� expected cost of each operation is
still O	�
�

The table G used in Apply could be implemented as a two�dimensional array� How�
ever� it turns out to be very sparsely used " especially if we succeed in getting small
ROBDDs " and it is better to use a hash�table for it� The hashing function used could
be g	v�� v�
 � pair	v�� v�
 mod m and as for H a dynamic hash�table could be used�

� Examples of problem solving with ROBDDs

This section will describe various examples of problems that can be solved with an
ROBDD�package� The examples are not chosen to illustrate when ROBDDs are the
best choice� but simply chosen to illustrate the scope of potential applications�

��� The
 Queens problem

A classical chess�board problem is the � queens problem� Is it possible to place � queens
on a chess board so that no queen can be captured by another queen� To be a bit more

� EXAMPLES OF PROBLEM SOLVING WITH ROBDDS ��

general we could ask the question for arbitrary N � Is it possible to place N queens safely
on a N �N chess board�

To solve the problem using ROBDDs we must encode it using Boolean variables� We
do this by introducing a variable for each position on the board� We name the variables
as xij� � � i� j � N where i is the row and j is the column� A variable will be � if a queen
is placed on the corresponding position�

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

The capturing rules for queens require that no other queen can be positioned on the
same row� column� or any of the diagonals� This we can express as Boolean expressions�
For all i� j�

xij �
�

��l�N�l ��j

�xil

xij �
�

��k�N�k ��i

�xkj

xij �
�

��k�N���j�k�i�N�k ��i

�xk�j�k�i

xij �
�

��k�N���j�i�k�N�k ��i

�xk�j�i�k

Moreover� there must be a queen in each row� For all i�

xi� � xi� � � � � � xiN

Taking the conjunction of all the above requirements� we get a predicate SolN	�x
 true at
exactly the con�gurations that are solutions to the N queens problem�

Exercise �
� �� Queens Problem� Write a program that can �nd an ROBDD for
SolN	�x
 when given N as input� Make a table of the number of solutions to the N
queens problem for N � �� �� � �� �� �� �� �� � � � When there is a solution� give one�

� EXAMPLES OF PROBLEM SOLVING WITH ROBDDS ��

�

�

�

xor

xor

x y

co
ci

s

Figure ��� A full�adder

��� Correctness of Combinational Circuits

A full�adder takes as arguments two bits x and y and an incoming carry bit ci� It
produces as output a sum bit s and an outgoing carry bit co� The requirement is that
� � co � s � x� y� ci� in other words co is the most signi�cant bit of the sum of x� y� and
ci� and s the least signi�cant bit� The requirement can be written down as a table for co
and a table for s in terms of values of x� y� and ci� From such a table it is easy to write
down a DNF for co and s�

At the normal level of abstraction a combinational circuit is nothing else than a
Boolean expression� It can be represented as an ROBDD� using Build to construct
the trivial ROBDDs for the inputs and using a call to Apply for each gate�

Exercise �
� Find DNFs for co and s� Verify that the circuit in �gure �� implements a
one bit full�adder using the ROBDD�package and the DNFs�

��� Equivalence of Combinational Circuits

As above we can construct an ROBDD from a combinational circuit and use the ROBDDs
to show properties� For instance� the equivalence with other circuits�

Exercise �
� Verify that the two circuits in �gure �� are not equivalent using ROBDDs�
Find an input that returns di�erent outputs in the two circuits�

� EXAMPLES OF PROBLEM SOLVING WITH ROBDDS �

�

�

� �

�

�

�

�

x�

x�

y�

y�

b

x�

y�

x�

y�

a

�

nor

�

nor

�

�

�

Figure ��� Two circuits used in exercise ��

� VERIFICATION WITH ROBDDS �

t�h�

t�

c�

c�

t�

t�

h�

h�

h�

c�

c�

Figure ��� Milner�s Scheduler with � cyclers� The token is passed clockwise from c� to c�
to c� to c� and back to c�

� Veri�cation with ROBDDs

One of the major uses of ROBDDs is in formal veri�cation� In formal veri�cation a model
of a system M is given together with some properties P supposed to hold for the system�
The task is to determine whether indeed M satisfy P � The approach we take� in which we
shall use an algorithm to answer the satisfaction problem� is often called model checking�

We shall look at a concrete example called Milner	s Scheduler 	taken from Milner�s
book �Mil���
� The model consists of N cyclers� connected in a ring� that co�operates
on starting and detecting termination of N tasks that are not further described� The
scheduler must make sure that the N tasks are always started in order but they are
allowed to terminate in any order� This is one of the properties that has to be shown to
hold for the model� The cyclers try to ful�ll this by passing a token� the holder of the
token is the only process allowed to start its task�

All cyclers are similar except that one of them has the token in the initial state� The
cyclers cyci� � � i � N are described in a state�based fashion as small transition systems
over the Boolean variables ti� hi� and ci� The variable ti is � when task i is running and �
when it is terminated� hi is � when cycler i has a token� � otherwise� ci is � when cycler
i � � has put down the token and cycler i not yet picked it up� Hence a cycler starts a
task by changing ti from � to �� and detects its termination when ti is again changed back
to �� and it picks up the token by changing ci from � to � and puts it down by changing
ci�� from � to �� The behaviour of cycler i is described by two transitions�

if ci � � � ti � � then ti� ci� hi 	� �� �� �
if hi � � then c�i mod N���� hi 	� �� �

The meaning of a transition �if condition then assignment is that� if the condition is
true in some state� then the system can evolve to a new state performing the 	parallel

assignment� Hence� if the system is in a state where ci is � and ti is � then we can
simultaneously set ti to �� ci to � and hi to ��

� VERIFICATION WITH ROBDDS �

The transitions are encoded by a single predicate over the value of the variables before
the transitions 	the pre�state
 and the values after the transition 	the post�state
� The
variables in the pre�state are the ti� hi� ci� � � i � N which we shall collectively refer to as
�x and in the post�state t�i� h

�
i� c

�
i� � � i � N � which we shall refer to as �x�� Each transition

is an atomic action that excludes any other action� Therefore in the encoding we shall
often have to say that a lot of variables are unchanged� Assume that S is a subset of the
unprimed variables �x� We shall use a predicate unchangedS over �x� �x� which ensures that
all variables in S are unchanged� It is de�ned as follows�

unchangedS �def

�
x�S

x � x� �

It is slightly more convenient to use the predicate assignedS� � unchanged�xnS� which
express that every variable not in S � is unchanged� We can now de�ne Pi� the transitions
of cycler i over the variables �x� �x� as follows�

Pi �def 	ci � �ti � t�i � �c
�
i � h�i � assignedfci�ti�hig

� 	hi � c��i mod N��� � �h
�
i � assignedfc�i mod N����hig

The signalling of termination of task i� by changing ti from � to � performed by the
environment is modeled by N transitions Ei� � � i � N �

Ei �def ti � �t
�
i � assignedftig�

expressing the transitions if ti � � then ti �� �� Now� at any given state the system can
perform one of the transitions from one of the Pi�s or the Ei�s� i�e�� all possible transitions
are given by the predicate T �

T �def P� � � � � � Pn � E� � � � � � En �

In the initial state we assume that all tasks are stopped� no cycler has a token and only
place � 	c�
 has a token� Hence the initial state can be characterized by the predicate I
over the unprimed variables �x given by�

I �def ��t � ��h � c� � �c� � � � � � �cN �

	Here � applied to a vector �t means the conjunction of � applied to each coordinate ti�

The predicates describing Milner�s Scheduler are summarized in �gure ���

Within this setup we could start asking a lot of questions� For example�

�� Can we �nd a predicate R over the unprimed variables characterizing exactly the
states that can be reached from I� R is called the set of reachable states�

�� How many reachable states are there�

� Is it the case that in all reachable states only one token is present�

�� Is task ti always only started after ti���

� VERIFICATION WITH ROBDDS

unchangedS �def

V
x�S x � x�

assignedS� �def unchanged�xnS�

Pi �def 	ci � �ti � t�i � �c
�
i � h�i � assignedci�ti�hi

� 	hi � c�i mod N�� � �h
�
i � assignedci mod N���hi

Ei �def ti � �t
�
i � assignedti

T �def

�
��i�N

Pi � Ei

I �def ��t � ��h � c� � �c� � � � � � �cN

Figure ��� Milner�s Scheduler as described by the transition predicate T and the initial�
state predicate I�

�� Does Milner�s Scheduler possess a deadlock� I�e�� is there a reachable state in which
no transitions can be taken�

To answer these questions we �rst have to compute R� Intuitively� R must be the set
of states that either satisfy I 	are initial
 or within a �nite number of T transitions can
be reached from I� This suggest an iterative algorithm for computing R as an increasing
chain of approximations R�� R�� � � � � Rk� � � � Step k of the algorithm �nd states that with
less than k transitions can be reached from I� Hence� we take R� � � the constantly false
predicate and compute Rk�� as the disjunction of I and the set of states which from one
transition of T can be reached from Rk� Figure �� illustrates the computation of R�

How do we compute this with ROBDDs� We start with the ROBDD R � � � At any
point in the computation the next approximation is computed by the disjunction of I and
T composed with the previous approximation R�� We are done when the current and the
previous approximations coincide�

Reachable�States	I� T� �x� �x�

�� R �
�� repeat
� R� R
�� R I � 	��x� T � R
��x��x��
�� until R� � R
�� return R

��� Knights tour

Using the same encoding of a chess board as in section ���� letting xij � � denote the
presence of a Knight at position 	i� j
 we can solve other problems� We can encode moves
of a Knight as transitions� For each position� � moves are possible if they stay on the
board� A Knight at 	i� j
 can be moved to any one of 	i� �� j � �
� 	i� �� j� �
 assuming
they are vacant and within the board boundary� For all i� j and k� l with � � k� l � N
and 	k� l

 f	i� �� j � �
� 	i� �� j � �
g�

Mij�kl �def xij � �xk�l � �x
�
ij � x�kl �

�
�i��j�� ��f�i�j���k�l�g

xi�j� � x�i�j� �

� VERIFICATION WITH ROBDDS �

Full state space

I � R�

R�

R�

R

�
�

�

Figure ��� Sketch of computation of the reachable states

Hence� the transitions are given as the predicate T 	�x� �x�
�

T 	�x� �x�
 �def

�
��i�j�k�l�N��k�l��f�i���j�����i���j���g

Mij�kl

Exercise �
� �Knight�s tour� Write a program to solve the following problem using
the ROBDD�package� Is it possible for a Knight� positioned at the lower left corner to
visit all positions on an N �N board� 	Hint
 Compute iteratively all the positions that
can be reached by the Knight�
 Try it for various N �

Exercise �
� Why does the algorithm Reachable�States always terminate�

Exercise �
� In this exercise we shall work with Milner�s Scheduler for N � �� It is by
far be the most convenient to solve the exercise by using an implementation of an ROBDD
package�

a� Find the reachable states as an ROBDD R�

b� Find the number of reachable states�

c� Show that in all reachable states at most one token is present on any of the
placeholders c�� � � � � cN by formulating a suitable property P and prove
that R� P �

� PROJECT� AN ROBDD PACKAGE �

d� Show that in all reachable states Milner�s Scheduler can always perform a
transition� i�e�� it does not possess a deadlock�

Exercise �
� Complete the above exercise by showing that the tasks are always started
in sequence �� �� � � � � N� �� � � � �

Exercise �
� Write a program that given an N as input computes the reachable states
of Milner�s Scheduler with N cyclers� The program should write out the number of
reachable states 	using SatCount
� Run the program for N � �� �� �� �� ��� � � � Measure
the running times and draw a graph showing the measurements as a function of N � What
is the asymptotic running time of your program�

� Project	 An ROBDD Package

This project implements a small package of ROBDD�operations� The full package should
contain the following operations�

Init	n

Initialize the package� Use n variables numbered � through n�

Print	u

Print a representation of the ROBDD on the standard output� Useful for debugging�

Mk	i� l� h

Return the number u of a node with var	u
 � i� low	u
 � l� high	u
 � h� This could
be an existing node� or a newly created node� The reducedness of the ROBDD should
not be violated�

Build	t

Construct an ROBDD from a Boolean expression� You could restrict yourself to the
expressions x or �x or �nite conjunctions of these� 	Why�

Apply	op� u�� u�

Construct the ROBDD resulting from applying op on u� and u��

Restrict	u� j� b

Restrict the ROBDD u according to the truth assignment �b�xj��

SatCount	u

Return the number of elements in the set sat	u
� 	Use a type that can contain very
large numbers such as �oating point numbers�

AnySat	u

Return a satisfying truth assignment for u

Sub�project �

Implement the tables T and H with their operations listed in section �� On top of these
implement the operations Init	n
� Print	u
� and Mk	i� l� h
�

REFERENCES �

Sub�project �

Continue implementation of the package by adding the operations Build	t
 and Ap�

ply	op� u�� u�
�

Sub�project �

Finish your implementation of the package by adding Restrict	u� j� b
� SatCount	u
�
and AnySat	u
�

References

�AH��� Henrik Reif Andersen and Henrik Hulgaard� Boolean expression diagrams� In
Proceedings� Twelfth Annual IEEE Symposium on Logic in Computer Science�
pages ��"��� Warsaw� Poland� June ��"July � ����� IEEE Computer Society�

�Bry��� Randal E� Bryant� Graph�based algorithms for Boolean function manipulation�
IEEE Transactions on Computers� �	C��
����"���� �����

�Bry��� Randal E� Bryant� Symbolic Boolean manipulation with ordered binary�decision
diagrams� ACM Computing Surveys� ��	
���"��� September �����

�CBM��� Olivier Coudert� Christian Berthet� and Jean Christophe Madre� Veri�cation
of synchronous sequential machines based on symbolic execution� In J� Sifakis�
editor� Automatic Veri�cation Methods for Finite State Systems� Proceedings�
volume ��� of LNCS� pages ��"�� Springer�Verlag� �����

�CLR��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction
to Algorithms� McGraw�Hill� �����

�Coo��� S�A� Cook� The complexity of theorem�proving procedures� In Proceedings of the
Third Annual ACM Symposium on the Theory of Computing� pages ���"����
New York� ����� Association for Computing Machinery�

�Mil��� Robin Milner� Communication and Concurrency� Prentice Hall� �����

