
On Parameter Priors for Discrete DAG ModelsDmitry Rusakov and Dan Geigerfrusakov,dangg@cs.technion.ac.ilComputer Science DepartmentTechnion, Israel.AbstractWe investigate parameter priors for discreteDAGmodels. It was shown in previous worksthat a Dirichlet prior on the parameters of adiscrete DAG model is inevitable assumingglobal and local parameter independence forall possible complete DAG structures. A sim-ilar result for Gaussian DAG models hintedthat the assumption of local independencemay be redundant.Herein, we prove that the local independenceassumption is necessary in order to dictate aDirichlet prior on the parameters of a discreteDAG model. We explicate the minimal setof assumptions needed to dictate a Dirichletprior, and we derive the functional form ofprior distributions that arise under the globalindependence assumption alone.1 IntroductionA directed graphical model is a representation of afamily of joint probability distributions for a collec-tion of random variables via a Directed Acyclic Graph.Each node in the DAG corresponds to a random vari-able, and the lack of an edge between two nodes repre-sents a conditional independence assumption. A spe-ci�c joint probability distribution can be representedby a given directed graphical model by specifying thevalues for the set of associated parameters. The DAGalong with such a distribution is called a Bayesian net-work. Graphical models and Bayesian networks havebeen extensively studied in AI, Statistics, MachineLearning, and in many application areas [2-7,9,11].Bayesian networks encode a probability distributionwith a manageable number of parameters (due to thefactorization introduced by underlying graph), thus re-ducing the complexity of the representation and reduc-ing the complexity of decision making based on this

distribution. Bayesian networks are also useful whenconstructed directly from expert knowledge becausethey introduce cause-e�ect relationships that are intu-itive to human experts. These features made Bayesiannetworks a premier tool for representing probabilisticknowledge and reasoning under uncertainty.In this paper we focus on learning|the process ofupdating both the parameters and the structure ofa Bayesian network based on data. To computegoodness-of-�t of data to a network structure in aclosed form, researchers have made a number of as-sumptions. Among them, global and local parame-ter independence for all network structures, Dirichletdistribution on network parameters, and some otherassumptions [2]. It was later shown that the assump-tion of global and local parameter independence forall nodes in every complete network structure dictatesthat the only possible prior parameter distribution fordiscrete DAG models is a Dirichlet prior [5, 7].In contrast, in a subsequent work, it was shown thatfor Gaussian DAGmodels, which consist of a recursiveset of linear regression models, global independencealone dictates that the only feasible parameter prioris the Normal-Wishart distribution, assuming modelswith at least three nodes [6]. It was thus natural tohypothesize that the proofs for discrete and continuouscase can be uni�ed and, as a result, the assumption oflocal independence will turn out to be redundant alsoin the characterization of the Dirichlet distribution.This work shows that, while global parameter indepen-dence dictates a Normal-Wishart prior for GaussianDAG models with more than 3 nodes, global param-eters independence alone does not dictate a Dirichletprior for discrete DAGmodels with more than 3 nodes.We provide a minimal set of assumptions needed todictate a Dirichlet prior and, in addition, we specifythe class of discrete probability distributions, which islarger than the Dirichlet family, that arise under globalindependence assumption alone via a solution of a newset of functional equations.



2 DAG ModelsA Directed Acyclic Graphical model m , m(s;Fs)for a set of variables X = fX1; : : : ; Xng each as-sociated with a set of possible values Di, is a setof joint probability distributions with sample spaceD = D1 � : : : � Dn speci�ed via two components: astructure s and a set of local distribution families Fs.The structure s for X is a DAG having for every vari-able Xi in X a node labeled Xi. We denote the par-ents of Xi by Pasi . The structure s represents the setof conditional independence assertions, and only theseconditional independence assertions, which are impliedby a factorization of a joint distribution for X givenby p(x) = Qni=1 p(xijpasi ), where x is a value for X(an n-tuple), xi is a value for Xi and pasi is a value forPasi . When xi has no incoming arcs in s (no parents),p(xijpasi ) stands for p(xi). A DAG model is completeif it has no missing arcs. Note that any two completeDAG models for X encode the same set of conditionalindependence assertion, namely none.The local distributions are the n conditional andmarginal distributions that constitute the factoriza-tion of p(x). Each such distribution belongs to thespeci�ed family of allowable probability distributionsFs, which depends on a �nite set of numerical param-eters �m 2 �m � Rk. The parameters �im for a localdistribution is a set of real numbers that completelydetermine the functional form of p(xijpasi ).We restrict our discussion to discrete DAG models,where local distributions p(xijpasi ) are speci�ed bymultinomial parameters �im = f�xijpasi jxi 2 Di;pasi 2DPasi g, where DPasi is the set of possible values ofPasi . Let �m denote h�1m; �2m; : : : ; �nmi and let �X de-note the set of joint multinomial parameters for X, i.e.�X = f�~xj~x 2Dg.According to the Bayesian framework, we supposethere exists a prior distribution p(�X). This prior in-duces the distributions of network parameters for eachcomplete model p(�mjm) via a change of parametersformula, because two complete models with multino-mial parameters represent the same set of distribu-tions. We assume the regularity of parameter distri-butions.Assumption 1 (Regularity) The probability distri-bution functions on joint parameters and correspond-ing p.d.f.'s on network parameters for all completemodels are everywhere positive and twice di�erentiable.This paper investigates the functional from of the priordistributions p(�X) that satisfy the properties of globaland/or local parameter independence. Global param-eter independence for one network was introduced in

[11] to allow a decomposable prior-to-posterior analy-sis and global parameter independence for all the net-works was introduced in [2] in order to search amongcandidate models.De�nition Parameters �m of a DAG model m aresaid to be globally independent if f�imgni=1 are mutu-ally independent, i.e. p(�mjm) =Qni=1 p(�imjm).De�nition Parameters �im of a node Xi of a DAGmodel m(s;Fs) are said to be locally independent ifthe subsets �Xi jpasi = f�xijpasi jxi 2 fd1i ; : : : ; djDij�1i ggof �im are mutually independent, i.e. p(�imjm) =Qpasi2DPasi p(�Xijpasi jm) for 1 � i � n.We say that p(�X) satis�es the global (or local) param-eter independence assumption if the parameters �m areglobally (or locally) independent under this distribu-tion for all complete network structures, in this case wealso say that parameters �X are globally (or locally)independent.3 Two Node NetworksWe commence by deriving a functional form of globallyindependent distribution for parameter priors of com-plete two-node network assuming global parameter in-dependence. The results and techniques developed inthis section are the basis for the general result.Consider the following complete two-node network,with variables X,Y having n and k states respectively.YXSince this network is complete it is capable of describ-ing any multinomial distribution of two random vari-ables. Any multinomial distribution, described by aset of parameters f�X=i;Y=jg (in short denoted byf�ijg), can be described by this network by specify-ing �i� , �X=i;� = Pkj=1 �ij and �jji , �Y=jjX=i =�ij=�X=i;� for 1 � i � n and 1 � j � k.We are interested in �nding a functional form of a priordistributions p(f�ijg) that satisfy a global parameterindependence assumption for all complete network forfX;Y g, namely X ! Y (shown above) and X  Y .Thus according to our assumption, such distributionsshould satisfy the following two functional equations,which encode global parameter independence:p(f�ijg) = J�11 f1(f�i�g)g1(f�jjig)p(f�ijg) = J�12 f2(f��jg)g2(f�ijjg) (1)where J1,J2 are appropriate Jacobians and ��j , �ijj arede�ned similarly to �i� and �jji.



We formulate the following theorem that extends theresult stated in [5] for two-node DAG models with bi-nary variables.Theorem 1 Any probability distribution on f�ijg thatsatis�es the regularity assumption (1) and global pa-rameter independence assumption (Equation 1), is ofthe formp(f�ijg) = C hQni=1Qkj=1 ��ijij i �H �n �ij�i+1;j+1�i+1;j�i;j+1 j1 � i � n� 1; 1 � j � k � 1o�(2)where �ij are arbitrary positive constants, H() is anarbitrary Lebesgue integrable, everywhere positive andtwice-di�erentiable function of (n�1)(k�1) variablesand C is a normalization constant.Theorem 1 implies that for two-node discrete DAGmodels global parameter independence assumptionalone does not guarantee the Dirichlet distribution ofpriors. In Section 4 we will prove the similar result forall discrete DAG models. Note, that when H is a con-stant, as happens if local parameter independence isassumed, then p(f�ijg) is a Dirichlet distribution [5].The proof of this theorem is based on the direct solu-tion of a system of functional equations 1. The generalapproach is given in the following subsections.3.1 The Functional EquationConsider two sets of variables fyij1 � i � n � 1g andfzjij1 � i � n; 1 � j � k � 1g. The domain of each ofthese variables is (0; 1). These sets correspond to thesets f�i�g and f�jjig of multinomial parameters dis-cussed above. We de�neyn = 1�Pn�1i=1 yizki = 1�Pk�1j=1 zji; 1 � i � nxj =Pni=1 zjiyi; 1 � j � kwji = zjiyixj 1 � j � k; 1 � i � n: (3)Note that xk = 1�Pk�1j=1 xj and wjn = 1�Pn�1i=1 wji(for 1 � j � k). Here, fxjg corresponds to f��jg andfwjig corresponds to f�ijjg. Finally, we letY = (y1; : : : ; yn�1); Zi = (z1;i; : : : ; zk�1;i);X = (x1; : : : ; xk�1); Wj = (wj;1; : : : ; wj;n�1)Z = (Z1; : : : ; Zn); W = (W1; : : : ;Wk) (4)The functional equation we solve (1) can now be ex-pressed as followsF (Y )g(Z) = G(X)f(W ) (5)by absorbing Jacobians appearing in Equation 1 insidethe functions F; g;G and f that correspond to f1; g1; f2

and g2 respectively. Note that the free variables inEquation 5 are y1; : : : ; yn�1 and zji, 1 � j � k � 1,1 � i � n. All other variables appearing in Equation 5are de�ned by Equations 3 and 4.The solution of Equation 5, which is outlined in thenext subsection, is based on the technique of reducingfunctional equations to partial di�erential equations([1], page 324). Similar technique was used in [5].3.2 Outline of Solution of Equation 5The solution of Equation 5 relies on the fact that dis-tribution functions are everywhere positive and twice-di�erentiable. Thus, it is possible to take the loga-rithm of the original equation and take the �rst andsecond derivatives.We use the following notations: Let ĥ(x) denotelnh(x) for any positive function h(x). Also letF̂i(Y ) = @F̂ (Y )@yi 1 � i � n� 1ĝji(Z) = @ĝ(Z)@zji 1 � i � n;1 � j � k � 1 (6)and similarly for G and f .Taking the derivatives of the logarithm of Equation 5wrt (with respect to) yi and wrt zji, and pushing thederivatives f̂ji(Z) out of the resulting equations we get(for 1 � j � k � 1):Pn�1l=1 (wjl � wkl)F̂l(Y ) =Pnl=1 h� zjlxj � zklxk �Pk�1m=1 zml ĝml(Z)i+Ĝj(X) �Pnl=1 zjlxj ĝjl(Z): (7)Taking a derivative wrt zji and substituting zji � 1k(and thus xj � 1k , wji � yi) we get (for 1 � i � n�1):� n�1Xl=1 ylF̂l(Y ) + F̂i(Y ) = 1yiCi + A (8)where Ci, A are some constants. Solving Equation 8we get F (Y ) = C nYi=1 yCii (9)where C and Ci are some constants. Similarly,G(X) = BQkj=1 xBjj . After substituting the solutionsfor F (Y ) and G(X) into Equation 7 and setting yi � 1n(xj � 1nzj� where zj� =Pni=1 zji), the general solutionfor ĝji(Z) is a Dirichlet solution plus the general so-lution of the following homogeneous �rst-order partialdi�erential equation:nXl=1 "�zjlzj� � zklzk�� k�1Xm=1 zml ĝml(Z)#� nXl=1 zjlzj� ĝjl(Z) = 0:(10)



The general solution of Equation 10 can be shown tobeg(Z) = h�� zjizj+1;i+1zj+1;izj;i+1 j 1 � i � n� 1;1 � j � k � 1 �� (11)where h is an arbitrary everywhere positive, Lebesgueintegrable and twice di�erentiable function. Combin-ing the results of Equation 9 and Equation 11 we con-clude the proof of Theorem 1. �4 Multiple Node Networks: GloballyIndependent ParametersConsider a complete DAG model on n discrete vari-ables: X = X1; : : : ; Xn, each having jD1j; : : : ; jDnjvalues respectively. In this section we are interested indetermining the functional formof distributions on �Xthat satisfy global parameter independence assump-tion, i.e. p(�X) satis�es the following n! functionalequations:p(�X) = J�1I nYj=1 fI;j(f�xij jxi1 ;:::;xij�1 g); (12)for all I = hi1; : : : ; ini permutations on h1; : : : ; niwhere fI;j() are Lebesgue integrable functions thatcorrespond to local parameter distributions. The net-work parameters f�xij jxi1 ;:::;xij�1 g are expressed interms of �X and JI denotes the Jacobian of transfor-mation from the joint parameters to the parameters ofthe complete Bayesian network with topological orderof nodes speci�ed by I. Note, that JI can be absorbedinto fI;j , since JI is a function of f�xij jxi1 ;:::;xij�1 g (see[7], Theorem 10).4.1 Useful LemmasWe present now a set of lemmas that allow the compu-tation of the exact from of globally independent dis-tribution for any set of discrete random variables X.In order to solve Equation 12 we use Theorem 1. Con-sider two discrete random variables Yi = fYi; Y g,where Yi = Xi and Y = X1 � : : : � Xi�1 � Xi+1 �: : :�Xn. We claim the following lemma:Lemma 2 Given that p(�X) satis�es the regularityassumption (1), �X are globally independent if andonly if �Yi are globally independent for all i =1; : : : ; n.Proof: The 'only if' part of the proof is immediateafter noting the correspondence between �X and �Yi .The 'if' part of the proof is done by analyzing thefunctional form of globally independent distributionsfor �Yi , that are obtained using Theorem 1. �

Now, we apply Theorem 1 for Yi and conclude thatany p(�X) that satis�es Equation 12 satis�es the fol-lowing n equations (for i = 1; : : : ; n):p(�X) = Ci Yr2D ��r;ir Hi (�ri�r000i�r0i�r00i )! (13)where ri; r0i; r00i ; r000i 2D are subsequent indexes withrespect to Xi and X nXi (analogous to the argumentsin Equation 2). I.e., when restricted to Xi: [ri]?Xi =[r00i ]?Xi , a, [r0i]?Xi = [r000i ]?Xi , b and b = a+1, andwhen restricted to X nXi: [ri]?XnXi = [r0i]?XnXi , c,[r00i ]?XnXi = [r000i ]?XnXi , d and d = c+1. Here [r]?Xdenote the vector of values of r for nodes X � X.Lemma 2 speci�es that the set of solutions of Equa-tion 12 is equivalent to the solutions of Equation 13,which are obtained using the following lemma:Lemma 3 Consider the following system of m func-tional equations:f(x1; : : : ; xn) =Pni=1 �1ixi + h1(~b11~x; : : : ;~b1k1~x)f(x1; : : : ; xn) =Pni=1 �2ixi + h2(~b21~x; : : : ;~b2k2~x)...f(x1; : : : ; xn) =Pni=1 �mixi+hm(~bm1~x;~bm2~x; : : : ;~bmkm~x)(14)where f; h1; : : : ; hm are unknown functions, �ji areunknown constants and ~bji are arbitrary (given) n-dimensional vectors. For applications in this paper,~bji 2 f�1; 0; 1gn and k1 = k2 = : : : = km.The general solution for f in Equation 14 is:f(x1; : : : ; xn) = nXi=1 �ixi + h(~b1~x; : : : ;~bl~x) (15)where h is an arbitrary function, f�ig are arbitraryconstants and ~b1; : : : ;~bl is the basis of the linearspace Tmi=1Bi, where Bi is a linear space spanned by~bi1; : : : ;~biki.Since Equations 13 can be transformed to the form ofEquation 14 by taking a logarithm of both sides of eachequation and changing the variables to ln �r , Lemma 3provides a powerful tool for solving Equation 13. Theproof of this lemma is quite straightforward by chang-ing the variables inside the h-functions in such waythat they include ~b1~x; : : : ;~bl~x.Application of Lemmas 2 and 3 provides the functionalform of globally independent distribution for any spe-ci�c set of random variables X. However, the exactfunctional form of a globally independent distributionfor a general X is too cumbersome, so we present theresult for binary-values networks only.



4.2 Binary-Valued NetworksThe following theorem gives the exact functional formof globally independent prior distributions for binaryvalued network. This result extends the result statedin [5] for DAG models with two binary variables anddemonstrates that global parameter independence as-sumption alone is not enough to ensure Dirichlet priorfor networks of any size (contrary to the GaussianDAG models, [6]).Theorem 4 Any distribution on �X, where X =X1; : : : ; Xn are binary random variables, that satis�esregularity (1) and global parameter independence as-sumptions is of the formp(�X) = C 24 Y~x2f0;1gn ��~x~x 35h Q~x2A0 �~xQ~x2A1 �~x! (16)where h is an arbitrary measurable function, f�~xg arearbitrary positive constants and C is a normalizationconstant. The set A0 is the set of all binary vectors oflength n with even number of "ones" and the set A1is the set of all binary vectors of length n with an oddnumber of "ones".The full proof, based on Lemmas 2 and 3, is explicatedin the full version of this paper [10].5 Dirichlet Priors: The Minimal Setof AssumptionsWe have shown in the previous sections that globalparameter independence alone is not enough to en-sure a Dirichlet prior on the network parameters. Thenatural question is: \What is a minimal set of inde-pendence requirements that ensure Dirichlet prior?".In this section we give an answer to this question. Westart by providing an additional result that links be-tween global parameter independence in various net-works.We say that the parameters of nodeXi, �im, are globallyindependent if p(�mjm) = p(�imjm)p(�m n �imjm).Lemma 5 Let m1 be an arbitrary complete n-nodenetwork with topological order of nodes Xi1 ; : : : ; Xin ,fi1; : : : ; ing = f1; : : : ; ng and let m2 be another com-plete network, with order Xj1 ; : : : ; Xjn (fj1; : : : ; jng =f1; : : : ; ng). Then given ik = jk and fi1; : : : ; ik�1g =fj1; : : : ; jk�1g: �ikm1 are globally independent if andonly if �jkm2 globally independent.Proof: The proof if straightforward using the corre-spondence between parameters �m1 and �m2 . �We can now present the second key result of this paper.

Theorem 6 Let X = X1; : : : ; Xn be random variablesover D1; : : : ; Dn. Let m1(s1;Fs1) be an arbitrary,complete DAG model for X with topological order ofnodes Xi1 ; : : : ; Xin , fi1; : : : ; ing = f1; : : : ; ng, and letm2(s2;Fs2) be another complete DAG model for X,with order Xj1 ; : : : ; Xjn (fj1; : : : ; jng = f1; : : : ; ng),s.t. jn = i1. If the parameters of Xi1 in m1 are glob-ally independent, i.e.p(�m1 jm1) = p(�i1m1 jm1)p(�m1 n �i1m1 jm1) (17)and the parameters of Xjn in m2 are globally and lo-cally independent, i.e.p(�m2 jm2) =p(�m2 n �jnm2 jm2)Qpas2jn2DPas2jn p(�Xjn jpas2jn jm2)(18)where �Xi jpasi = f�xijpasi jxi 2 Dig, and p(�X) satis�esAssumption 1, then p(�X) is Dirichlet and this set ofconditions is minimal in the sense that the eliminationof any one of these two conditions extends the class ofadmissible priors beyond a Dirichlet distribution.The theorem states that among the n! sets of globaland local parameter independence assumptions usedby previous authors, one actually need only two as-sumptions: global parameter independence for the net-work parameters for the �rst node in some completenetwork, and global and local parameter independencefor the same node in other complete network wherethis node is the last node.Proof: The minimality of these two assumptions isstraightforward, since eliminating any one of them willallow any distribution of the form given by Equation 17or Equation 18. Since Lemma 5 holds, we can assumethat two DAG models under consideration are modelswith node orders Xn; X1; : : : ; Xn�1 andX1; : : : ; Xn re-spectively. By treating nodes X1; : : : ; Xn�1 as a onesuper node for a random variable Y = X1�X2� : : :�Xn�1 the problem reduces to determining prior distri-butions for two-node network with global parameterindependence for all con�gurations and local parame-ter independence for one last node in one network.For a two-node network with n and k node-states,Equations 17 and 18 transform to:p(f�ijg) = f1(f�i�gn�1i=1 )g1(f�jjigj=1;:::;k�1i=1;:::;n )p(f�ijg) = f2(f��jgk�1j=1)Qkj=1 hj(f�ijjgn�1i=1 ) (19)Any solution p that satis�es Equation 19 satis�es alsoEquation 1 and thus can be written in form given byTheorem 1 (Equation 2). We haveC hQni=1Qkj=1 ��ijij iH �n �ij�i+1;j+1�i+1;i�i;j+1 j1�j�k�11�i�n�1o�= f2(f��jgj=1;:::;k�1)Qkj=1 hj(f�ijjgi=1;:::;n�1)(20)



Expressing �ij in terms of ��j and �ijj and solving forf2 we get that f2 is of Dirichlet form. Absorbing freevariables inside H and hj, denoting �ijj by wji, andtaking the logarithm, yields (for any ��j):Ĥ��wjiwj+1;i+1wj+1;iwj;i+1 j1�j�k�11�i�n�1�� = kXj=1 ĥj(fwjign�1i=1 )(21)the solution of which ishj(wj1; : : : ; wj;n�1) = �j nYi=1w�jiji ; 1 � j � k (22)where �j ; �j1; : : : ; �j;n are constants. Combining theresults of solution of Equation 19 for f2 and Equa-tion 22 we conclude the proof. �6 DiscussionThis paper shows that local parameter independence isessential in the characterization of a Dirichlet prior viadiscrete DAG models (Section 5, Theorem 6). In ad-dition, the functional form of prior distributions thatarise from global parameter independence assumptionalone are investigated (Sections 3 and 4, Theorem 4).Methods for solving functional equations that are de-veloped in this work allow us to compute prior dis-tributions that arise under global parameter indepen-dence assumption for any DAG model (and not onlyfor binary variables). However, the explicit generalformula for such priors is not compact due to a largenumber of variables involved. Instead, we have de-veloped a procedure (based on Lemmas 2 and 3) tospecify such distribution (in symbolic form) for anyspeci�c DAG model (not described here, see [10]).All the results presented in this paper were achievedunder the assumption of local parameter distributionsbeing twice di�erentiable and everywhere positive.One may hope to derive the properties of twice dif-ferentiability and being everywhere positive for prob-ability density functions of Theorem 6 (Equation 19)using the techniques presented in [8], as done in [5, 6].Another open question is the question of functionalform of the prior distribution that arises from localparameter independence assumption alone. In partic-ular, it is unknown (even for two binary variables) ifglobal parameter independence in second condition inTheorem 6 is essential, or it is enough to assume the lo-cal independence alone. The integral functional equa-tion that arises from this reduced set of assumptionsis of the form (for two binary variables):g0(z0)g1(z1) = R 10 G (z0y + z1(1� y))f � z0yz0y+z1(1�y) ; (1�z0)y1�z0y�z1(1�y)� dy (23)

where g0; g1; G and f are unknown functions andz0; z1; y are variables from (0; 1). The general solu-tion for this equation is unknown and the question \Isthere any Lebesgue integrable solution that is not ofthe Dirichlet form?" is open.References[1] J. Acz�el. Lectures on Functional Equations andTheir Applications. Academic Press, 1966.[2] G. Cooper and E. Herskovits. A bayesian methodfor the induction of probabilistic networks fromdata. Machine Learning, 9(4):309{347, 1992.[3] A. Dawid and S. Lauritzen. Hyper markov lawsin the statistical analysis of decomposable graph-ical models. The Annals of Statistics, 21(3):1272{1317, 1993.[4] N. Friedman, D. Geiger, and M. Goldszmidt.Bayesian network classi�ers. Machine Learning,29(2-3):131{163, 1997.[5] D. Geiger and D. Heckerman. A characteriza-tion of the dirichlet distribution through globaland local parameter independence. The Annalsof Statistics, 25(3):1344{1369, 1997.[6] D. Geiger and D. Heckerman. Parameter priorsfor directed acyclic graphical models and the char-acterization of several probability distributions.To appear in Annals of Statistics, 2001.[7] D. Heckerman, D. Geiger, and D. Chickering.Learning bayesian networks: The combination ofknowledge and statistical data. Machine Learn-ing, 20(3):197{243, 1995.[8] A. J�arai. Regularity property of the functionalequation of the dirichlet distribution. AequationesMathematicae, 56:37{46, 1998.[9] J. Pearl. Probabilistic Reasoning in IntelligentSystems: Networks of Plausible Inference. Mor-gan Kaufmann, 1988.[10] D. Rusakov and D. Geiger. On parameter priorsfor discrete dag models. Technical Report CIS-2000-08, Technion, 2000.[11] D. Spiegelhalter and S. Lauritzen. Sequentialupdating of conditional probabilities on directedgraphical structures. Networks, 20:579{605, 1990.


