
ELSEVIER Pattern Recognition Letters 16 (1995) 999-1009 

Pattern Recognition 
Letters 

Word-level recognition of small sets of hand-written words 
A. Eliaz 1, D. Geiger * 

Computer Science Department, Technion IIZ, Haifa 32000, Israel 

Received 10 June 1994; revised 26 April 1995 

Abstract 

A system is presented for off-line word-level recognition of small sets of hand-written words. The system performs 
well on a variety of tasks such as recognizing numerals hand-written in English (one through ten), Hebrew characters, 
and Pascal's reserved words. Only small changes are needed in the parameters of the system when switching from one 
application to another. The heart of the proposed system is the use of dynamic programming for matching between a word 
in question and a prestored model of a word. The matching algorithm which uses line segments as its input is similar to 
Lee and Chen's algorithm for matching Chinese characters. We vary the segmentation algorithm showing that regardless 
of the segmentation algorithm chosen, the average recognition rate usually exceeds 95%. Different thinning algorithms are 
also shown not to reduce the stated recognition rate and a rejection scheme further enhances it. 

1. Introduction 

Off-line recognition of script handwriting is a hard 
problem for which a satisfying solution has yet to be 
found. The fact that spacing and sizes vary in script 
handwriting, letters are connected in different fash- 
ions, and the many possible ways of writing each word, 
are among the reasons for this difficulty. Most recogni- 
tion systems to date for script handwriting use tempo- 
ral information, such as the order of  strokes, measured 
while the author writes the text (Mantas, 1986; Tap- 
pert et al., 1990). Such techniques, which are called 
on-line, are useful in applications where a special in- 
put device can be supplied to the user. For example, 
input pads of some commercially available computers. 

There are two approaches for off-line script hand- 
writing recognition. One approach is dividing each in- 
put word into individual letters and identifying each 

* Corresponding author. Email: dang@csd.cs.technion.ac.il. 
l Current affiliation: IBM Research Center, Haifa, Israel. 

letter separately and the second is to identify each 
word as a whole entity. The advantage of the first ap- 
proach is its generality. Each word in western lan- 
guages is composed of a small set of letters for which 
recognition procedures have been devised. The diffi- 
culty in this approach is finding the correct partition 
of a word into its composing letters. The second ap- 
proach which we call, word-level recognition, suffers 
from the fact that the number of possible words in a 
language is enormous. Consequently, rough methods 
are applied in order to form small sets of candidate 
identifications. 

Word-level recognition is most appropriate for ap- 
plications where the input dictionary is limited, e.g., 
numerals hand-written in English on bank checks. In 
this correspondence, we describe an off-line word- 
level recognition system for script handwritten words 
that are selected from a small set of possible words. 
Although the system was originally developed for rec- 
ognizing numerals (one through ten) hand-written in 
English, we have tested it also on two other applica- 

0167-8655/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0167-8655(95)00065-8 



1000 A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

tions and found that the system works well after mi- 
nor adjustments. We applied the system to recognize 
letters of the Hebrew alphabet as well as Pascal's re- 
served words and obtained recognition rates in most 
experiments that exceed 95%. Section 5 summarizes 
the experimental results. 

Our recognition system constructs for each word in 
a given dictionary several word-models reflecting dif- 
ferent styles of writing the word. Each word-model 
is a set of segments characterized by its end-points' 
coordinates. After scanning several representative ex- 
amples for each word in the dictionary, preprocessing 
algorithms that include normalization, thinning and 
segmentation yield word-models which we call tem- 
plates. Preprocessing is described in Section 2. At the 
recognition phase a given word is preprocessed, its 
word-model is formed and then compared to all tem- 
plates using a similarity score defined in Section 3. 
The identity of the most similar template is selected as 
the identity of the given word. The basis of this recog- 
nition algorithm is the observation that variations in 
the segments' features among word models belong- 
ing to the same word are smaller than between word- 
models originating from distinct words. Its success 
hinges upon a careful selection of the similarity score. 

When comparing two segments of two word- 
models, the similarity score takes into account pa- 
rameters of the individual segments consisting of 
position and slope as well as parameters of the seg- 
ments that reside in proximity to the two segments 
being compared. It is the second factor that causes 
the recognition algorithm to perform well in different 
applications. This score is based on Lee and Chen's 
work which used a close variant of it to match Chinese 
characters (Lee and Chen, 1992). As demonstrated 
by Section 5, this similarity score performs well under 
a variety of preprocessing algorithms and recognition 
tasks. Its success is not limited to Chinese characters. 

2. The preprocessing phase 

Even for a small collection of, say, thirty handwrit- 
ten words, using the entire bitmap produced by op- 
tical scanners as the input to a matching algorithm 
consumes too many computational resources. Conse- 
quently, bitmaps are usually processed so that each 
word is described with fewer parameters. We represent 

each word by a set of segments called a word-model. 

Definition 1. A word-model M is a set of segments 
each represented by two pairs, (Xl, Yl ) and (x2, Y2), 
which are the coordinates of its end-points. The num- 
ber of segments in M is denoted by [M[. 

Given an input bitmap resulting from an image 
scan, we use the following four steps to produce a 
word model: normalization, thinning, segmentation 
and merging. These steps are described in the sequel. 

Normalization is the process of equating the size 
of all given bitmaps. The average size of the length 
and width of the bitmaps in the training group defines 
W, the normalized width corresponding to a length of 
300 pixels. Every input bitmap P, of size m × n, is 
transformed into a normalized bitmap of size W x 300 
using: 

a[i] [ j]  = P[  [i- m/WJ ] [ [ j .  n/3001 ] (1) 

for each i = 0, 1 . . . . .  m - 1 and j = 0, 1 . . . . .  299. 
The thinning algorithm we used is a standard 4-pass 

procedure from (Rosenfeld and Kak, 1990).The bi- 
nary bitmaps are scanned in four directions: up-down, 
left-right, down-up, right-left. In each pass, border pix- 
els which are simple and have more than one neigh- 
bor are erased. The process iterates until no more pix- 
els can be erased. The resulting bitmap constitutes a 
skeleton of the original picture, that is, a 1-pixel wide 
picture consisting of a subset of the original black pix- 
els. Most of the pixels of the skeleton have only two 
adjacent pixels. We call these pixels regular and all 
other pixels which have either more or less than two 
adjacent pixels are called non-regular. 

The segmentation algorithm transforms paths of 
regular pixels between two non-regular pixels into a 
set of segments. For a given path, starting from pixel 
v with coordinates (Vx, Vy) to pixel u with coordi- 
nates (Ux,Uy), the segmentation algorithm follows 
the skeleton from one pixel to its neighbor in the 
direction of u. Each step to an adjacent pixel has a 
unit length and each step to one of the diagonally 
adjacent pixels has a length of v/2. When the length 
being accumulated exceeds 12, the algorithm gener- 
ates a new segment, by joining the current pixel with 
the end pixel of the last generated segment. The pro- 
cess stops when it reaches pixel u. This segmentation 
procedure is repeated for all paths that exist between 



A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 1001 

pairs of non-regular pixels until they all generate sets 
of segments. 

Due to the thinning algorithm, occasionally sev- 
eral non-regular pixels are formed in close proximity. 
The merging algorithm searches such pixels around 
each non-regular pixel. This is done by setting up 
frames of growing odd sizes around each non-regular 
pixel until no further non-regular pixels are found. The 
word model is then changed as follows. Every seg- 
ment which had one endpoint outside the frame and 
the other endpoint inside the frame is replaced with a 
segment having the same endpoint outside the frame 
as before and having the central pixel as its endpoint 
inside the frame. Short segments that were entirely in- 
side the frame are eliminated from the word-model. 

In Section 4 we describe variations of the segmen- 
tation and thinning algorithms and examine their in- 
fluence on the recognition rate. 

3. The matching algorithm 

The matching algorithm finds the best match be- 
tween a set of prestored word-models and a word- 
model U of an unknown word. The algorithm mea- 
sures the similarity between U and each stored word- 
model and selects the model that is most similar. Sim- 
ilarity is a function 

S : word-models x word-models ---+ [0, 1) 

that given two word-models produces a number be- 
tween 0 and 1 called the similarity score. Two word- 
models are identical when their similarity score is 0 
while close to 1 similarity scores indicate major dif- 
ferences. 

The similarity function S is defined procedurally. 
This function compares pairs of segments taken from 
two given word-models. When comparing two seg- 
ments, S takes into account parameters of the individ- 
ual segments consisting of position and slope as well 
as parameters of the segments that reside in proximity 
to the two segments being compared. The first score 
is called individualpairwise similarity and the second 
is called the neighborhood pairwise similarity. The 
average of the individual and neighborhood pairwise 
similarities defines thepairwise similarity. Finally, the 
average of the pairwise similarity over all pairs of seg- 

ments yields the similarity between U and M. A de- 
tailed description of this procedure is provided below. 

Let U and M be two word models. For each pair of 
segments ui E U and mj E M the individual pairwise 
similarity is defined by the following equation: 

( duM(i,j) ) 
ISi j -~°l"  X/~. w---- duM-----(i,j) 

+ (1 c~) • (rr [SduM(i'j)l 
-- ---- ~S-7-~VM(~)) I ) (2) 

where duM(i,j) is the distance between i and j ' s  
center-points, sdvM is the absolute value of the slopes 
differences of the two segments i and j,  ranging from 
0 to ~'/2, and a E [0, 1] is a mixing parameter. 

Note that I&j is in [0, 1), obtains a zero value 
for identical segments and approaches 1 as sduM or 
duM(i,j) or both increase. The slopes and center 
points are computed from the coordinates (xl ,yl)  
and (x2,y2) of each segment using standard equa- 
tions. The coordinates system is the same for both U 
and M segments due to normalization. 

While ISij involves only properties of the segments 
themselves, the neighborhood similarity adds infor- 
mation about the segment's surroundings in the word 
model. 

Definition 2. In a word-model A, the w-neighborhood 
N(k) of a segment ak E A is the set of segments that 
have their center-point located in a w × w window 
around ak center-point (excluding ak itself). 

Each segment ae in a w-neighborhood N(k) of 
segment ak is described by a characterizing triplet 
(x, y, z) representing the relationship between seg- 
ments ak and ae where x is the visibility angle of ae 
from ak, ranging from 0 to 2rr, y is the distance be- 
tween the center-points of ak and ae, ranging from 0 

• ' ~ ' . .  ° o ~ 0 . . 

Fig. 1. A triplet from N(k). 



1002 A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

to x/2w/2, and z is the slope difference of ak and a~, 
ranging from -~r/2 to 7r/2 (see Fig. 1). 

Furthermore, for the purpose of computing similar- 
ity between two w-neighborhoods it suffices to com- 
pute characterizing triplets using a small finite number 
of values to each parameter. A discrete characterizing 
triplet (a, t ,  ~,) is defined by the following equations: 

a = round(8x/Tr) (mod 16) 

fl = trunc( 10y/(x/2w) ) 

~/= round(8z/Tr + 8) (mod 8) 

Consequently, a,  t ,  and 7 can assume only 16, 10, 
and 8 integer values respectively. As a result, we gain a 
substantial speedup using discrete triplets for compar- 
ing two w-neighborhoods. Moreover, we hardly loose 
in recognition rate because distinct segments within 
the same w-neighborhood are rarely described by the 
same discrete triplet. 

The neighborhood similarity between two w- 
neighborhoods N(i)  and N( j )  of segments ui and 
m j, is denoted by NSij and defined recursively in the 
sequel. Suppose N(i) and N( j )  are sorted lexico- 
graphically according to a,  t ,  7. This means sorting 
the two w-neighborhoods N(t)  (t = i or j )  in a coun- 
terclockwise order, with the distance from t taken as 
a secondary key and the orientation relative to t as 
the least significant key. Denote the w-neighborhood 
of N(t)  by 

(N( t )  [k]a, N(t)  [k]/~, N(t)  [k] ~,) 

for k = 1,2 . . . . .  IN(t) I where IN(t) I is the number of 
segments in N(t) .  Let Fk and GI stand for the sets of 
the first k and I triplets in N(i) and N( j )  respectively. 
Note that according to our definitions 

FIN(i)I = N(i) ,  GIN(j)I = N( j ) ,  Fo = Go =0. 

In order to calculate NSij, w e  use the edit-distance 
introduced in (Wagner and Fischer, 1974): 

A( Fk, G~) = min{ d( Fk-1, Ge-1 ) + dk,e, 

A(Fk-~, Ge) + 1, 

A(Fk,Ge-1) + 1} (3) 

with 

A(O,O) = O, A(Fk,O) = k, A(O, Gt) =£ 

for k, £ > 0 and: 

1 ~_N(j) [£],~ =3"( N(i)[k],~ dk,t 
\ 

N(i) [k]# - N( j )  [£]# 
+ 

+ N(i)[k] r -  N( j ) [g ] r  -~ ) .  (4) 

NSij is computed using: 

NSij(O, 0) = 0, (5) 

A(N(i) ,  N ( j ) )  
NSij = max{iN(i), IN(j)] }. (6) 

Note that NSij is a real number in the interval [0,1). 
For exactly equal neighborhoods, NSij = 0 and for 
notable distinct neighborhoods NSij gets close to 1. 
The implementation of zl(N(i),  N( j )  ) is done using 
the standard approach of dynamic programming. 

Algorithm 1 (Finding A( N( i), N( j )  ) ). 

Input: 
• N(i),  the neighborhood of segment ui c U repre- 

sented by n triplets (n = IN(i)I) of the form: 

(N(i)  [k]~, N(i)[  k]/3, N(i)[k]r) ,  

k = l , 2  . . . . .  n 

* N( j ) ,  the neighborhood of segment mj E M rep- 
resented by m triplets (m = IN(j)I) of the same 
form. 

Output: z I (N( i ) ,N( j ) ) ,  the edit-distance between 
N(i) and N( j ) .  

1 f o r k : = 0 t o n d o S [ k ] [ 0 ] = k  
2 f o r l : = l t o m d o 8 [ O ] [ l ] = l  
3 f o r k : - - l t o n  
4 for I := 1 to m 

4.1 d l =  8 [ k -  1] [ l -  1] + dkd 
4.2 d2 = 8 [ k ] [ l -  1] + 1 
4.3 d3 = 8 [ k -  1] [l] + 1 
4.4 8[k] [l] = mJn(dl,d2,d3) 

5 A ( N ( i ) , N ( j ) )  = 8[n][m] 

The value of A[k] [l] / max(k, l) gives the similar- 
ity between the first k segments in N(i) and the first l 
segments in N(j ) ,  calculated taking into account only 
these k + 1 segments from the two ordered lists. It is 
computed using the values in the three adjacent cells 



A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 1003 

A [ k -  1] [ / ] , d [ k ]  [ l -  1] and A [ k -  1] [ l -  1] which 
are obtained by earlier iterations. 

The algorithm can be viewed as a minimal cost 
matching of the two neighborhood lists, segment by 
segment. It follows a path in A, from its upper-left 
corner, representing the initial two empty lists, to its 
lower-right one, representing the completion of N(i)  
and N ( j ) ,  while maintaining two partly-built lists and 
adding segments to them as it advances. 

The pairwise similarity is then given by 

S~j = ~ . IS~j + (1 - ~ ) .  NS~j (7) 

where fl is another mixing parameter of the algorithm. 
We denote by NM(i) the set of segments from M 

which have their center-points located in a w x w win- 
dow around ui center-point, on the common coordi- 
nate system of M and U. Similarly, N v ( j )  denotes the 
set of segments from U which have their center-points 
located in a w x w window around mj. The total sim- 
ilarity between the word-models U and M is defined 
by 

S ( U , M )  - 
1 ( 

IUI + IMI ~ mj~,(i> S,j 
uiEU, NM( i) ~ 0 

+ ~ rnin Sij + Ia l )  
mjEM, Nv(j) ~-f3 uiENv(j) 

(8) 

wh~e 

A = {ui E U I NM(i) = O} U {mj E M I N v ( j )  = 0}. 

This formula matches each segment ui in U with the 
most similar segment in NM (i) and each segment mj 
in M with the most similar segment in Nv ( j ) .  If either 
NM(i) or N v ( j )  is empty, a maximal penalty is added 
to the similarity score through the term [A[. 

The matching algorithm just presented differs from 
the algorithm of (Lee and Chen, 1992) in Eqs. (4),  
(7) and (8).  These changes were necessary in order 
to obtain the level of recognition rates reported in Sec- 
tion 5. We show, somewhat contrary to Lee and Chen's 
observations, that the matching algorithm is the single 
most important factor for achieving high recognition 
rates. 

4. Alternative preprocessing steps 

Our primary goal in experimentation has been to 
isolate the component of the recognition system that is 
most influential on the recognition rate. To do so, we 
have applied several thinning and segmentation algo- 
rithms to the same input in the preprocessing stage and 
examined the recognition rate. We noted that while 
each preprocessing algorithm generates different word 
models, there were only slight differences between the 
neighborhoods of segments generated from the same 
area. Consequently, as we shall see in the next sec- 
tion, recognition rates are not very sensitive to the pre- 
processing stages and are mainly determined by the 
neighborhood similarity function. 

In this section, we describe two thinning algorithms 
(Naccache and Shinghal, 1984; Deutsch, 1972), de- 
noted by T2 and T3, respectively, and 3 segmentation 
algorithms (Dunham, 1986; Sklansky and Gonzalez, 
1980; Reumann and Witkam, 1974), denoted by $2, 
$3 and $4, that we use in the experiments. Together 
with T1 and $1, the thinning and segmentation algo- 
rithms presented in Section 2, we have all together 
experimented with 3 × 4 different preprocessing pos- 
sibilities applied to the same database. 

Thinning algorithms which are also often called 
skeletonization algorithms, usually consist of an iter- 
ative process involving deletion of black pixels along 
the edges of the pattern, provided that their deletion 
does not remove endpoints and maintains the connec- 
tivity of the pattern. The process repeats until no more 
pixels are deleted. The remaining pixels constitute a 
skeleton of the original pattern. Thinning algorithms 
differ in the conditions by which pixels are deleted. 
Let Ni, i = 1 . . . . .  8, denote the ith neighbor of a pixel 
in counterclockwise order (see Fig. 2). 

Algorithm T2 compares the neighborhood of each 
pixel to several pre-defined 3 x 3 patterns and classifies 
each pixel as safe or deletable. A pixel is safe if its 
neighborhood matches one of the patterns shown in 
Fig. 2 where 0 stands for either a black or white pixel. 
Each iteration of the algorithm consists of two scans. 
In the first one, every pixel that is not safe and for 
which either N4 = 0 or No = 0 is removed from the 
pattern. Similarly, in the second scan, every pixel that 
is not safe and for which either N2 = 0 or N6 = 0 is 
removed. 

Algorithm T3 deletes pixels by using the sum 



1004 A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

1 2 3 

4 5 

Fig. 2. The 3 x 

7]i7_-o [Ni+~ - Nil where N8 - No which is computed 
for each pixel and is called its crossing number. A 
black pixel with zero, two or more black neighbors 
and with a crossing number equal to zero or two (i.e., 
when there exists exactly one black component in 
its neighborhood) is deleted if its deletion does not 
break the connectivity of  the pattern. A pixel is also 
deleted under additional conditions as specified in 
(Naccache and Shinghal, 1984). 

Segmentation algorithms usually operate as follows: 
for every curve P between two non-regular pixels in 
the skeleton, they find a sequence of pixels which in- 
cludes both endpoints of P such that the polygon ap- 
proximation Q of P, formed by joining successive pix- 
els by a straight segment, lies within a distance e from 
P. Segmentation algorithms, which are also called data 
reduction (or vectorization) algorithms, differ in the 
distance score they use. 

Algorithm $2 uses a uniform norm as its distance 
score. The distance d(pj ,  q) between a pixel pj on P 
and a segment q = (Pi,Pk) from Q where pj lies be- 
tween pixels pi and Pk is defined to be the Euclidean 
distance between pj and q as long as pj lies in a strip 
formed by drawing perpendicular lines at Pi and Pk 
and otherwise it is the Euclidean distance to the clos- 
est endpoint among Pi and Pk (Dunham, 1986). The 
deviation e(q) of a segment q = (Pi,Pk) from pj is 
maxi<<j<<.k d(pj ,  (Pi, Pk) ) and the distance between P 
and Q is the largest deviation among the segments on 
Q, i.e., D(P, Q) = ma,xq~a e(q) .  For each curve be- 
tween two non-regular pixels p0 and Pu the algorithm 
finds a set of pixels such that the curve is approximated 

6 

3 patterns used in T2. 

with the minimal number of segments. The algorithm 
achieves minimality by using the recursive formula 

F(u)  = 1 + m i n F ( v )  
vEB 

where B = {v I 0 <~ v <. u , e ( (pv ,pu ) )  <. e} and 
F(u)  is the minimal number of segments needed to 
approximate the path on P between P0 and Pu. The 
set Q is found by going backwards from pixel Pn to a 
pixel Po which realizes the minimum above for u = n, 
inserting Pv into Q, and continuing backtracking in 
this fashion until P0 is placed into Q. 

Algorithm S3 determines Q by following the curve 
P from P0 to Pn and generating segments as it pro- 
gresses. Let Pi be the endpoint of the currently gener- 
ated segment. The algorithm follows the curve P until 
a pixel Pk is reached such that at least one pixel on the 
path between Pi and Pk is distanced further than e from 
the segment (Pi, Pk). When such a pixel is found, the 
algorithm generates a new segment (Pi, Pk- I  ). 

Algorithm $4 also determines Q by following the 
curve P from P0 to pn and generating segments as 
it progresses but it uses a different criterion than S3. 
Given Pi, the endpoint of the currently generated seg- 
ment, it forms a critical line passing through Pi and 
Pi+l. This line estimates the tangent to P at Pi. The 
algorithm now follows the curve starting at Pi+l until 
a pixel Pk is found which is at a distance higher than 
e from the critical line. Pixel Pk-1 is inserted into Q. 
The algorithm stops when pn is reached. We have used 
e = 2.0 in our implementation of S2, S3 and S4. 

Finally, since the similarity score does not take into 



A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

Table 1 
Results for the evaluation of the first 20 samples of one as compared to one . . . . .  ten 

Sample one two three four five six seven e~ht nme ~n 

1005 

1 0.299 0.471 0.386 0.559 0.469 0.553 0.416 0.510 0.447 0.494 
2 0.282 0.465 0.404 0.580 0.473 0.543 0,428 0.543 0.466 0.510 
3 0.299 0.434 0.417 0.571 0.559 0.562 0.497 0.519 0.412 0.503 
4 0.267 0.429 0.456 0.681 0.523 0.604 0.454 0.495 0.406 0.515 
5 0.204 0.409 0.432 0.626 0.567 0.592 0.405 0.482 0.422 0.537 
6 0.235 0.461 0.423 0.577 0.548 0.543 0.436 0.502 0.380 0.520 
7 0.332 0.524 0.385 0.577 0.651 0.666 0.539 0.622 0.430 0.540 
8 0.221 0.412 0.410 0.609 0.522 0.584 0.389 0.500 0.431 0.511 
9 0.303 0.475 0.434 0.563 0.462 0.535 0.477 0.472 0.449 0.497 
10 0.282 0.506 0.439 0.613 0.541 0.561 0.516 0.576 0.453 0.529 
11 0.251 0.428 0.443 0.631 0.593 0.610 0.433 0.584 0.403 0.577 
12 0.322 0.454 0.407 0.516 0.452 0.548 0.448 0.467 0.414 0.467 
13 0.333 0.530 0.407 0.517 0.593 0.609 0;461 0.575 0.468 0.513 
14 0.250 0.485 0.428 0.649 0.599 0.587 0.434 0.509 0.433 0.585 
15 0.305 0.468 0.392 0.576 0.525 0.635 0.464 0.551 0.499 0.605 

• 16 0.369 0.554 0.367 0.563 0.510 0.654 0.564 0.600 0.441 0.533 
17 0.297 0.518 0.482 0.704 0.662 0.679 0.572 0.605 0.559 0.656 
18 0.318 0.485 0.435 0.543 0.539 0.583 0.457 0.503 0.517 0.481 
19 0.331 0.497 0.457 0.628 0.575 0.635 0.536 0.619 0.464 0.52 I 
20 0.262 0.470 0.427 0.635 0.530 0.584 0.478 0.491 0.451 0.521 

account segment lengths, we added a split and stretch 
stage before classification. Each segment with length 
higher than 16 units is cut into several segments as 
equally sized as possible and each having a length 
less than 16. To avoid excessive fragmentation, every 
pair of neighboring segments (sharing a common end- 
point) is transformed into one segment by connecting 
their disjoint endpoints, if the angle between them is 
higher than 77r/8 and the sum of their length is less 
than 16 units. 

5. Experimental results 

We implemented the system in C and ran it on a 
SUN SPARC workstation. The software consists of 
two main modules: an experimental tool for viewing 
and manually processing samples and a program for 
testing the performance of the similarity matching al- 
gorithm. The samples' pages were scanned on a DEST 
scanner using a resolution of 300 dpi. 

A database of 600 off-line cursive script word im- 
ages was built by asking a single person to write 60 
samples of the following 10 words: one, two, three, 
. . . .  ten. Each group of 60 samples from the same 
word was divided into a training group of 15 sam- 
ples and a test group of 45 samples. A session con- 

sists of a training and a testing stage. In the training 
stage, we have selected a template out of the 15 sam- 
ples from each word as the representative of its class, 
by identifying the one which achieves a minimal sum 
of similarities when compared to the rest of its group. 
We then repeated this experiment with four additional 
writers. We have tested the algorithm by comparing 
each sample not used in the training stage with the 10 
template models Mj found in the training stage. Let 
U/, i = 1 . . . . .  450, be a sample from the testing stage. 
For each Ui we compute S{, j = 1 . . . . .  10, represent- 
ing the similarity between Ui and group j.  Similarities 
were computed using a square window of size 60 × 60 
pixels, and a = fl = 0.5. The identity of U/ is the 
identity of the most similar template. 

Table 1 presents the results of testing 20 instances of 
the word one. This table reflects the variations among 
the similarity scores computed by the algorithm and is 
provided so that some raw data becomes available to 
the reader aside of summarized statistics. The overall 
results of the first experiment are summarized in Table 
2, where T stands for the different thinning algorithms 
and S for the segmentation ones. The total recogni- 
tion rates vary from 92.89% to 97.33% for the given 
database, depending on the chosen preprocessing al- 
gorithms. The data in this table suggests that these 
recognition rates could be vastly improved if the word 



1006 

Table 2 
Overall results for the primary test 
T Group Sl $2 

(%) (~) 

A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

$3 $4 
(%) (%) 

one 95.56 100.00 97.78 97.78 
two 62.22 71.11 91.11 88.89 
three 100.00 100.00 100.00 I00.00 
four 95.56 100.00 97.78 95.56 
five 95.56 91.ll 91.11 97.78 
s/x 93.33 95.56 95.56 9 I. 11 
seven 97.78 97.78 100.00 100.00 
eight 100.00 100.00 100.00 100.00 
nine 100.00 100.00 100.00 100.00 
ten 100.00 97.78 100.00 100.00 
total 94.00 95.33 97.33 97.11 
one 93.33 91.11 95.56 95.56 
two 57.78 73.33 82.22 88.89 
three 100.00 100.00 100.00 100.00 
four 100.00 100.00 100.00 100.00 
five 97.78 95.56 86.67 93.33 
six 97.78 93.33 95.56 91.11 
seven 97.78 100.00 97.78 100.00 
eight 100.00 100.00 100.00 I00.00 
nine 100.00 95.56 100.00 100.00 
ten 100.00 95.56 97.78 100.00 
total 94.44 94.44 95.56 96.89 
one 93.33 97.78 95.56 97.78 
two 84.44 82.22 84.44 55.56 
three 100.00 100.00 i 00.00 100.00 
four 100.00 100.00 100.00 97.78 
five 91.11 91.11 97.78 91.11 
s/x 93.33 88.89 91.11 88.89 
seven 97.78 100.00 97.78 100.00 
eight 100.00 100.00 100.00 100.00 
nine 100.00 97.78 100.00 100.00 
ten 100.00 97.78 100.00 97.78 
total 96.00 95.56 96.67 92.89 

two is removed from the dictionary. Indeed when we 
removed it in a repeated experiment, the recognition 
rates were between 96.79% and 98.52%. The prob- 
lem with recognizing the word two is mainly due to 
the fact that its model is often too close to either three 
or ten. This result suggests the self-evident observa- 
tion that for this method to work well high variations 
among templates are needed. Note that the preprocess- 
ing steps have only a marginal influence on the recog- 
nition rates. We repeated this experiment with four 
additional writers fixing the preprocessing algorithms 
to be T3 and S3. The recognition rates obtained were: 
96.67%, 98.67%, 99.11%, 99.33% (the word two in- 
cluded). 

Examples of the four writing styles are given in 
Fig. 3. These four words were correctly identified 

when compared to prestored models of the first writer. 
In fact all sevens were identified correctly because 
their model is rather long and unique. Generally, the 
system didn't perform well when a word written in one 
handwriting style was compared to prestored words 
created using another handwriting style. 

In Fig. 4, we provide several examples of the word 
two. The upper line consists of the actual bitmaps and 
the lower line consists of the corresponding word- 
models. The first three columns contain prestored 
words. The forth colunm contains a wrong classifi- 
cation. The system has identified this word as a ten 
having a score of 0.32 while the second option was 
the correct one with a score of 0.36. All other options 
got a score higher than 0.4. The word in the fifth 
column was identified correctly with a score of 0.22 
while the second option was ten with a score of 0.29. 
As one can see from this example, it is hard to guess 
a priori which words will be correctly identified. 

To improve recognition rates we added a rejection 
scheme to the training stage of the classification pro- 
cess. After selecting the best template for each word, 
we evaluate the quality of the resulting templates and 
fix a threshold rejection value accordingly as follows. 
From the 150 models used in the training stage 10 
models are selected as templates. We then test the 140 
remaining models vs. the 10 templates, giving 10 sim- 
ilarity scores S~ j) per model. Let gi and hi be the two 
minimal scores of model Ui, and let si be the standard 
deviation among the ten scores. We choose not to clas- 
sify Ui if (hi - g i ) /s i  is smaller than a certain thresh- 
old value O. When this criterion is met, the minimal 
score is too close to the next best score, i.e. it is not 
distinct enough from alternative identities. Otherwise 
we give Ui the identity ofgi. The threshold value is re- 
peatedly raised by increments of 0.001, starting with 
0 (no rejection), until the overall recognition percent- 
age of the 140 models surpasses 99%. The obtained 

value is used in the testing stage for rejecting un- 
known samples using the same scheme. 

Table 3 presents the rejection and recognition rates 
for different combinations of thinning and segmenta- 
tion algorithms. The recognition rate is the percent- 
age of correct identifications among the samples in 
the testing stage that have not been rejected. The 
values learned in the training stage of each session 
are shown as well. Using T2 and S3 the recognition 
rate was 100%, however, the rejection rate was quite 



A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

Table 3 
Overall results with rejection 
T Group S1 

Rej (%) Rec (%) 
1 0 0.283 

$2 $3 S4 

1007 

Rej (%) Rec (%) Rej (%) Rec (%) Rej (%) Rec (%) 

0.167 0.057 0.103 
one 15.56 92.11 6.67 100.00 4.44 100.00 0.00 97.78 
two 44.44 72.00 46.67 87.50 6.67 92.86 20.00 91.67 
three 0.00 100.00 4.44 100.00 0.00 100.00 0.00 100.00 
four  8.89 100.00 0.00 100.00 2.22 97.73 2.22 97.73 
five 13.33 100.00 11.11 95.00 4.44 90.70 0.00 97.78 
six 6.67 95.24 4.44 97.67 0.00 95.56 4.44 93.02 
seven 20.00 100.00 2.22 97.72 2.22 100.00 2.22 100.00 
eight 6.67 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
nine 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
ten 0.00 100.00 0.00 97.78 0.00 100.00 0.00 100.00 
total 11.56 96.99 7.56 98.08 2.00 97.73 2.89 97.94 

2 O 0.320 0.081 0.381 0.252 

one 17.78 97.30 6.67 90.91 17.78 100.00 11.11 100.00 
two 42.22 80.77 46.67 75.00 51.11 100.00 44.44 100.00 
three 0.00 100.00 4.44 100.00 2.22 100.00 2.22 100.00 
four  8.89 100.00 0.00 100.00 8.89 100.00 4.44 100.00 
five 8.89 100.00 11.11 97.62 44.44 100.00 11.11 97.50 
six 4.44 97.67 4.44 95.45 4.44 100.00 6.67 97.62 
seven 24.44 100.00 2.22 100.00 26.67 100.00 6.67 100.00 
eight 2.22 100.00 0.00 100.00 13.33 100.00 13.33 100.00 
nine 8.89 100.00 0.00 100.00 22.22 100.00 17.78 100.00 
ten 2.22 100.00 0.00 100.00 8.89 100.00 11.11 100.00 
total 12.00 98.23 3.78 96.07 20.00 100.00 12.89 99.49 

3 O 0.265 0.265 0.284 0.361 
one 8.89 100.00 17.78 100.00 17.78 100.00 11.11 100.00 
two 40.00 90.62 60.00 94.44 51.11 92.59 60.00 77.78 
three 2.22 100.00 0.00 100.00 2.22 100.00 2.22 100.00 
fo u r 11.11 100.00 6.67 100.00 8.89 100.00 13.33 100.00 
five 6.67 95.12 17.78 100.00 44.44 100.00 26.67 100.00 
six 11.11 95.35 2.22 90.91 4.44 100.00 13.33 100.00 
seven 8.89 100.00 8.89 100.00 26.67 100.00 20.00 100.00 
eight 8.89 100.00 0.00 100.00 13.33 100.00 8.89 100.00 
nine 2.22 100.00 26.67 100.00 22.22 100.00 4.44 100.00 
ten 0.00 100.00 2.22 100.00 2.22 100.00 4.44 100.00 
total 10.44 98.26 13.33 98.72 10.22 99.51 17.11 98.93 

Table 4 
Additional writers using T3 and S3 
Writer 1 2 3 

Rej (%) Rec (%) Rej (%) Rec (%) Rej (%) 
O 0.000 0.070 0.227 

Rec (%) Rej (%) Rec (%) 

0.265 
one 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
two 0.00 97.78 7.69 91.67 26.67 100.00 40.00 100.00 
three 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
four  0.00 93.33 0.00 100.00 6.67 100.00 0.00 100.00 
five 0.00 100.00 0.00 100.00 40.00 100.00 6.67 92.86 
six 0.00 100.00 0.00 100.00 13.33 100.00 0.00 100.00 
seven 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
eight 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 
nine 0.00 95.56 0.00 100.00 0.00 93.33 6.67 100.00 
ten 0.00 100.00 0.00 100.00 26.67 100.00 0.00 100.00 
total 0.00 98.67 0.77 99.23 11.33 99.25 5.33 99.30 



1008 A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

Fig. 3. Four different writers. 

Fig. 4. Examples of the word two taken from a single writer. 

Table 5 
Results for Pascal words (O = 0) 
begin 100.00 
end 100.00 
for 97.78 
if 97.78 
program 100.00 
readln 97.78 
repeat 100.00 
until 100.00 
while 97.78 
writeln 100.00 
total 99.11 

high (20%). Using T3 and S3 the recognition rate 
was 99.51% and the rejection rate was 10.22%. These 
two combinations of preprocessing algorithms yielded 
the best results. Nevertheless, the data indicates that 
the rejection and recognition rates are influenced only 
moderately by the choice of the preprocessing algo- 
rithms. We tested the system with four additional users 
employing T3 and S3 as the preprocessing algorithms 
and without changing its parameters (a ,  t ,  and w). 
Recognition rates varied between 98.67% and 99.3% 
and rejection rates varied between 0% and 11.33%. 
Table 4 presents the rejection and recognition rates for 
each user and for each word. 

To verify the versatility of the recognition system 
we tested two additional dictionaries: a set of 10 Pas- 
cal's reserved words and a set of 20 Hebrew charac- 
ters. Pascal words were found by the system to have 
quite distinct word models and so the chosen O param- 

Table 6 
Results for Hebrew letters (O = 0.363) 
aleph 2.22 100.00 
bet 31.11 100.00 
gimel 2.22 100.00 
daled 95.56 0.00 
he 82.22 87.50 
zain 31.11 70.96 
chet 2.22 100.00 
tet 37.78 100.00 
caf 33.33 100.00 
lamed 31.11 100.00 
mere 2.22 100.00 
nun 15.56 100.00 
samech 2.22 100.00 
ayn 11.11 100.00 
pe 11.11 100.00 
tsadik 2.22 100.00 
kuf 0.00 100.00 
resh 97.79 100.00 
shin 0.00 95.56 
taf 2.22 100.00 
total 20.39 99.03 

eter was 0. Furthermore, the algorithm made only one 
recognition error for each of the following words (for, 
if, readln, while) and no recognition error in all other 
words. The data in this experiment came from a single 
writer. When the Hebrew characters where tested, the 
recognition rates were quite high except for the char- 
acter daled that resembles the character tsadik. How- 
ever, rejection rates were unacceptably high since the 
word models of each character contained too few seg- 
ments (usually less than 20) because they represent a 



Table 7 
Errors out of 450 words as a 

A. Eliaz, D. Geiger/Pattern Recognition Letters 16 (1995) 999-1009 

function of a and/3 

1009 

/3 / ~ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 2 3 3 4 6 6 7 9 12 18 26 
0.1 2 3 5 6 10 11 16 19 25 28 25 
0.2 2 2 3 6 7 11 14 19 23 27 25 
0.3 2 2 3 6 6 11 14 17 20 23 22 
0.4 2 2 4 5 6 9 12 16 18 21 19 
0.5 2 2 3 4 6 6 9 12 17 20 14 
0.6 2 2 2 4 6 6 6 10 13 19 13 
0.7 2 2 2 4 5 6 6 7 11 14 10 
0.8 2 1 2 2 4 5 6 6 7 9 11 
0.9 2 1 2 2 2 4 5 5 7 9 11 
1.0 2 1 1 2 2 2 2 2 2 7 12 

single simple character rather than a full word. Thus, 

the recognition algorithm is more successful when the 

words to recognize contain sufficient number of seg- 
ments (usually over 50) and they are sufficiently dis- 

tinct of each other. These results are shown in Table 

5 and Table 6. 
Finally, we tested the relative importance of the 

neighborhood similarity vs. the individual similarity 

by repeatedly changing fl and we tested the relative 
importance of segments'  distance and segment's slope 

difference (which determine the individual similari- 

ties) by repeatedly changing a.  In this experiment we 

used T3 and $3 as preprocessing algorithms and we 

used no rejection scheme. Table 7 shows the results. 
In particular note that best recognition rates were ob- 

tained when the similarity score is biased towards the 

neighborhood similarity (fl  = 0.1).  In fact, the sys- 
tem works quite well if individual similarity is ignored 

all together. When fl is set to 1, the data shows that 
segment's distance is the main factor in the quality of 
individual similarity and that the segments' slopes can 

almost be ignored. 

Acknowledgment 

The first author wishes to thank R. Bar-Yehuda for 

his advice during the early stages of this research. 

References 

Deutsch, E.S. (1972). Thinning algorithms on rectangular, 
hexagonal, and triangular arrays. Comm. ACM 15 (9), 827-837. 

Dunham, J.G. (1986). Optimum uniform piecewise linear 
approximation of planar curves. IEEE Trans. Pattern Anal. 
Mach. lntell. 8 ( 1 ), 67-75. 

Lee, H.-J. and B. Chen (1992). Recognition of handwritten 
Chinese characters via short line segments. Pattern Recognition 
25, 543-552. 

Mantas (1986). An overview of character recognition 
methodologies, Pattern Recognition 19, 425-430. 

Naccache, N.J. and R. Shinghal (1984). SPTA: A proposed 
algorithm for thinning binary patterns. IEEE Trans. Syst. Man 
Cybernet. 14 (3), 409-418. 

Rosenfeld, A. and A.C. Kak (1990). Digital Picture Analysis, 
Vol. 2, 231-233. 

Reumann, K. and A.P.M. Witkam (1974). Optimizing curve 
segmentation in computer graphics. Internat. Computer 
Symposium, 467-472. 

Sklansky, J. and V. Gonzalez (1980). Fast polygonal 
approximation of digitized curves. Pattern Recognition 12, 327- 
331. 

Tappert, C.C., C.Y. Suen and T. Wakhara (1990). The state of 
the art in on-line handwriting recognition. IEEE Trans. Pattern 
Anal. Mach. Intell. 12 (8), 787-808. 

Wagner, R.A. and M.J. Fischer (1974). The string to string 
correction problem, J. ACM 21 (1), 168-173. 


