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ABSTRACT
An efficient algorithm is presented for detecting approxi-
mate tandem repeats in genomic sequences. The algorithm
is based on a flexible statistical model which allows a wide
range of definitions of approximate tandem repeats. The
ideas and methods underlying the algorithm are described
and examined and its effectiveness on genomic data is demon-
strated.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and medical sciences;
G.3.8 [Mathematics of Computing]: Probability and
statistics—Probabilistic algorithms

General Terms
Algorithms, Experimentation

Keywords
tandem repeats, trf, teiresias, pattern discovery, DNA
repeats, DNA satellites

1. INTRODUCTION
Genomic sequences often contain consecutive copies of

patterns known as tandem repeats (TRs). The origin of
these repeats, as well as their biological function, is not fully
understood. Nevertheless, they are believed to play an im-
portant role in genome organization and evolution [32, 24].
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Replication slippage, unequal crossing-over and evolution-
ary pressures generate a high degree of polymorphism in
the number of repeats [9, 13, 38]. TRs are therefore useful
as genetic markers, such as for DNA fingerprinting [5, 20,
22], mapping genes, comparative genomics and for evolu-
tion studies. Several studies have shown that tandem repeat
polymorphism plays an important role in the adaptation of
pathogenic bacteria to their host [15] and may also have
pharmacological effects in humans [34].

Unusual numbers of triplet tandem repeats are known to
cause disorders such as Fragile-X syndrome and Hunting-
ton’s disease [40, 16]. The SCA10 and Baltic myoclonus
disorders are caused when nucleotide repeats of length 5
and 12 respectively expand to produce hundreds of copies.
Studies have shown that tandem repeats located in regula-
tory regions can cause disease by influencing gene expression
[8, 25]; for example, a tandem repeat polymorphism in the
dopamine transporter (DAT) gene has been associated with
Parkinson’s disease in the Korean population [42]. Other
disorders, such as colorectal and ovarian cancer, are being
investigated for similar connections [12, 21].

A perfect tandem repeat is defined as a string of nucleotides,
called a motif, which is repeated consecutively at least twice
in a sequence. For example, ATTGAATTGA is a perfect
tandem repeat of a motif of length 5. Finding perfect tan-
dem repeats in a sequence of length n is a well-studied prob-
lem for which several O(n · log n) algorithms have been pre-
sented [2, 10, 33]. This is an asymptotically optimal bound
because the maximum number of occurrences of such repeats
is Ω(n · log n) [10]. In the case of tandem repeats that can
not be extended tighter bounds have been obtained [27].

However, perfect tandem repeats are of limited biologi-
cal interest, since events such as mutations, translocations
and reversal events will often render the copies imperfect.
The result is an approximate tandem repeat (ATR), defined
as a string of nucleotides repeated consecutively at least
twice with small differences between the instances. Find-
ing ATRs in a sequence is a harder task than finding perfect
repeats and has been addressed by several papers during re-
cent years. The scope of ATRs discovered by some of the
algorithmic approaches are limited by constraints on the in-
put data, search parameters, the type of allowed mutations
and the number of such mutations [17, 28, 29, 30, 31, 36].

In others, time requirements render the algorithm infea-
sible for the analysis of whole genomes containing millions
of base pairs [23]. More widely applicable algorithms have
been proposed in [6, 37, 39]. Other related algorithms are
[26, 18, 35].
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In this paper we present a new approach to the detection
of ATRs in genomic sequences. Similarly to [6] and [39], we
employ a two-phased algorithm, which consists of a screen-
ing phase, followed by a candidate verification phase. Our
main contribution is an innovative flexible screening phase,
which generates a list of candidate regions which may con-
tain ATRs that are subsequently verified (Section 3). The
flexibility is achieved by using a variable size sliding window
along with a suitable similarity metric, as well as a novel sta-
tistical model which captures well the behavior of the distri-
butions involved (Section 4). The result is an algorithm and
software that detects significantly more ATRs than previous
methods under a variety of definitions and counting meth-
ods. The thoroughly tested algorithm (Section 5) is available
at http://bioinfo.cs.technion.ac.il/ATRHunter.

2. MODELS OF ATRS
Consider sequences over a finite alphabet Σ. A genomic

sequence is a sequence of symbols from the alphabet Σ =
{A, C, G, T} and a proteomic sequence is a sequence over
the alphabet representing the 20 amino acids. An alignment
of two sequences Ψ1 and Ψ2 over Σ is defined as a pair
of sequences Ψ′

1 and Ψ′
2 over Σ ∪ {–} of equal length such

that the removal of the symbols ‘–’ from Ψ′
i yields Ψi. An

optimal alignment is an alignment for which ϕ(Ψ′
1, Ψ

′
2) is

maximal where ϕ is a given scoring function. The score of
the optimal alignment indicates the similarity of the two
original sequences; the higher the score, the more similar
the two sequences are. The scoring function used reflects
an underlying biological model. Common scoring functions
are additive, namely, functions ϕ for which ϕ(Ψ′

1, Ψ
′
2) =∑

α ϕ(Ψ′
1[α], Ψ′

2[α]), where Ψ′
i[α] is the symbol at position

α in Ψ′
i. Standard scoring functions for proteomic sequences

are PAM and BLOSUM [11, 19]. For a wider discussion of
scoring functions and alignments, consult [41].

We define several types of Approximate Tandem Repeats
(ATRs) with respect to a scoring function ϕ. A simple ATR
is a concatenation of sequences T = T1T2 · · ·Tr for which
there exists a sequence T∗ such that ϕ(Ti, T∗) ≥ η for every
i = 1 . . . r. In other words, T consists of r mutated copies
of a consensus motif T∗ with a limited amount of diversity
dictated by ϕ(Ti, T∗) ≥ η. In this definition T∗ may be
different from each and every Ti, alternatively we may insist
that T∗ be equal to at least one Ti. A neighboring ATR
is a concatenation of sequences T = T1T2 · · ·Tr for which
ϕ(Ti, Ti+1) ≥ η for every i = 1 . . . r − 1. According to this
definition, the similarity between distant copies can become
quite small. A pairwise ATR, which generalizes the latter
definition, is a concatenation of sequences T = T1T2 · · ·Tr

for which the similarity ϕ(Ti, Tj) of every pair Ti and Tj is
higher than ηij . The threshold ηij limits the dispersal of
distant sequences and is usually set to be a monotonically
decreases function of |i− j|.

3. ALGORITHM FOR FINDING ATRS
Our goal is to efficiently detect ATRs in large genomes

given an arbitrary scoring function. The proposed algorithm
has two phases, screening and verification. The screen-
ing phase quickly identifies candidate ATRs of one of the
abovementioned types. These candidates are subsequently
accepted or rejected by the verification phase which is tai-
lored to the type of ATR under study.

3.1 Screening phase
The screening phase identifies subsequences which have an

unusually high probability of being an ATR. Such candidate
ATRs are those that pass three similarity criteria developed
below. Setting useful thresholds for these similarity criteria
requires a delicate balance; while strict similarity criteria
limit the number of false candidates and hence reduce ver-
ification time, lenient criteria exclude fewer subsequences
that are in fact ATRs. In Section 4 we develop a statistical
framework to determine these thresholds. In this section we
assume they are given.

For a subsequence to qualify as any type of ATR, every
pair of adjacent copies in the repeat must be similar. Thus,
a basic step in screening is to determine whether a subse-
quence of length t is similar to the following subsequence of
approximately the same length. Producing an alignment for
each pair of consecutive subsequences to assess their simi-
larity is computationally expensive, so an alternative ap-
proach is required. The similarity between two adjacent
subsequences of length t is tested by comparing segments of
length l of these two subsequences. More explicitly, every
segment of length l, called an l-window, in the first subse-
quence is compared with a corresponding l-window in the
second subsequence. The outcome of a comparison of two
l-windows is a vector of length l, in which each entry in-
dicates a match or a mismatch between an aligned pair of
symbols. Given 0 ≤ q ≤ 1, such a vector is said to be a
q-quality vector if the number of matches is at least q · l.
Given l and q, for every position i in the input sequence, we
define two quantities: score and gap. The score St(i) is the
number of l-windows in the subsequence of length t starting
at position i that produce q-quality vectors in these compar-
isons. There are at most t− l + 1 possible q-quality vectors
in a subsequence of length t. Attaining this maximum of
St(i) for a concatenation of two subsequences of length t in-
dicate a certain similarity between these subsequences but
does not necessarily imply that they are identical. This is
due to the fact that q could be less than 1 and so a low den-
sity of mismatches between aligned symbols is not accounted
for. The gap ∆t(i) is the maximal number of consecutive
l-windows in the subsequence of length t starting at position
i that produce vectors which are not q-quality. The quanti-
ties St(i) and ∆t(i) and their distributions play a key role
in the screening phase.

A subsequence has to satisfy three similarity criteria in
order to be a candidate ATR. These criteria depend on the
motif length t and on two parameters, PM and PI , which we
now define. The parameter PM is the probability of a match
between aligned symbols. For the alphabet {A, C, G, T}, we
set PM = P 2

A + P 2
C + P 2

G + P 2
T , where PA, PC , PG, PT are

the respective frequencies of the symbols A, C, G, T . When
the four symbols are distributed uniformly PM = 0.25. The
parameter PI is the percentage of insertion and deletion ex-
pected between adjacent copies in an ATR, and is deter-
mined by a biological model.

A subsequence of length t starting at position i is a can-
didate ATR if and only if it passes the following three simi-
larity criteria:

Score criterion: St(i) ≥ σt.
Continuity criterion: ∆t(i) ≤ δt.
Distance criterion: Every q-quality vector counted in St(i)

is the result of a comparison between two l-windows whose
offset, namely, the distance over t positions between them,
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is at least 0 but no more than dt
max. The distance criterion

is similar to the one in [6].
The screening phase employs an iterative algorithm with

up to tmax iterations. In each iteration, candidate ATRs
with motif length t are sought. For each such t the algorithm
selects parameters l and q. These choices are later explained.
Initially, two windows of length l are positioned at locations
1 and t + 1. We refer to these windows as the first and
second respectively. In each iteration, the two l-windows
slide towards the end of the sequence, and their contents
are compared at each step to produce a vector of length l.
While the first window is moved by a single position in each
and every sliding step, the algorithm advances the second
window by 0,1 or 2 positions so as to greedily maximize
the number of q-quality vectors. Namely, if advancing the
second window by a single position, which is the default
choice, does not produce a q-quality vector, the algorithm
considers moving it by either two positions or none if such
a move would produce a q-quality vector without violating
the distance criterion. At the end of the i th sliding step,
for i > t − l, the algorithm counts the number of q-quality
vectors and the maximum number of consecutive vectors
that are not q-quality within the last t−l+1 vectors, and sets
these quantities as St(i− t+ l) and ∆t(i− t+ l) respectively.
The computation of St(i), which takes O(1) time per sliding
step, is facilitated by the recursive formula St(i) = St(i−1)+
Λi − Λi−(t−l+1), where Λi is a boolean variable indicating
whether the vector produced in the i th sliding step is q-
quality. To compute the gaps ∆t(i) in O(1) time per sliding
step, the algorithm maintains a bi-directional linked list, in
which each element contains the size and location of a set of
consecutive vectors that are not q-quality, generated in the
last t− l + 1 steps. The first and last nodes are updated in
every sliding step, in the obvious way. A description of the
algorithm is given in Figure 1.

The choice of the parameters q and l adjusts the screening
phase to the given scoring function. We set upper bounds
qmax and lmax for q and l to be the minimal values such
that any alignment that contains (1 − qmax)l mismatches
and qmaxl matches scores more than η, as defined for pair-
wise ATRs, so a q-quality vector always complies with the
definition of pairwise ATRs. Similarly, any alignment with
t − lmax insertions and deletions (indels) and lmax matches
scores more than η, ensuring that the screening algorithm
can account for ATRs with any amount of indels. Recall
that no alignment is performed in the screening phase in
order to save computations. Consequently, multiple indels
may yield vectors that are not q-quality even if the first
and second windows are quite similar. To restrict the ef-
fects of this phenomenon we limit l to be smaller than 1

PI
.

This choice guarantees that the expected number of indels
in a window of length l is no more than 1. In each iter-
ation of the algorithm a symbol in the sequence appears

in the first window an average of [ (t−l+1)
t

]l times. Setting

the window size l to min{
⌈

t
2

⌉
, lmax, 1

PI
} maximizes this ex-

pression under the two previous constraints. We consider
a simple statistical model, in which the given sequence is
i.i.d. with probability pw for the occurrence of symbol w.
Let Pq =

∑l
i=dqle

(
l
i

)
P i

M (1 − PM )l−i. This is the probabil-

ity for a comparison to produce a q-quality vector. We set
q sufficiently high such that 2Pq(1 − Pq) ≤ 1

l
; as we shall

see, this choice of q yields a linear expected time complexity.

Whenever 2Pqmax(1−Pqmax) > 1
l
, we decrease the value of l

and set qmax accordingly. Regardless of the value PM , there
always exist values l and qmax to satisfy this constraint. Ac-
tual values for l and q are provided in a web supplement.

We now analyze the algorithm’s time complexity, showing
that the expected run time is linear in the sequence length
n for any motif length. A naive implementation, where in
each sliding step a vector of length l is generated afresh,
takes O(n · l) time for each motif length. However, gen-
erating such a vector afresh is not necessary in all sliding
steps. Whenever the two windows are advanced by a sin-
gle position, namely, the default choice is made, comparison
between the two l-windows takes constant time, since l − 1
entries in the resulting vector have already been computed
in the previous step. Otherwise, when the chosen step is
not the default one, comparing the two windows of length
l to produce a vector of that length takes time O(l). The
probability that advancing the second window by a single
position does not produce a q-quality vector is 1 − Pq, and
the probability that advancing the second window by two
positions or none produces a q-quality vector without vi-
olating the distance criterion is less than or equal to 2Pq.
Consequently, it can be shown that the probability for both
events to occur, and hence for the algorithm to choose a slid-
ing step other than the default, is no more than 2Pq(1−Pq).
Since q is chosen to satisfy 2Pq(1− Pq) ≤ 1

l
, the additional

comparisons, originating from choosing a step which is not
the default, contribute an average time of O(1) to each step.
Consequently, and since computing the score and gap at the
end of each sliding step takes constant time, the expected
time for each motif length is O(n). Hence, the time com-
plexity for motif lengths t = 1 . . . tmax is O(tmax · n) . The
performance of this algorithm on various genomic sequences
is demonstrated in Section 5.

3.2 Verification phase for pairwise ATRs
Given a list of candidate ATRs and their lengths, the ver-

ification phase determines which of these candidates are in
fact ATRs of the desired type. Clearly, different types of
ATRs lead to different verification procedures that corre-
spond to the definition of that type. For a pairwise ATR a
two-phased verification procedure is performed.

Firstly, candidate ATRs of length t are aligned with the
following subsequence of length t, to test whether the align-
ment score passes the given threshold. This stage is skipped
in cases where a previous alignment already indicated the
required level of similarity.

Secondly, these two-repeat ATRs are compounded into a
single ATR containing more repeats. Let At(i) denote an
ATR with motif length t such that its last repeat starts
at position i. The ATR may contain k repeats, k ≥ 2.
To extend this ATR, the algorithm aligns each of the first
k− 1 repeats against the second copy of an ATR At′(i + t′)
containing two copies, where t′ ∈ [t − dt

max, t + dt
max], if

such an ATR exists. When several such ATRs exist, the one
with motif length t′ closest to t is chosen. The two ATRs
are combined into one if each of the k− 1 alignments scores
over the given thresholds. The motif length of the combined
ATR is set to be the most common motif length among the
original two-repeats ATRs that generated it.

From an implementation point of view, it is important to
note that alignment is done via dynamic programming with
quadratic complexity. Therefore, for motif lengths over 20
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ATRhunter
Input: Sequence S, maximum motif length tmax, scoring function ϕ, alignment threshold η.

Output: A list of approximate tandem repeats in S (stored in repeats).

repeats ← ∅
For all t up to tmax do

Set l and q to be the window size and the fraction of matches as a function of t, ϕ and η so that 2Pq(1− Pq) ≤ 1
l

{as described in Section 3.1, where Pq is the probability for q matches in a vector}
Set the thresholds σt, δt and dt

max as a function of t, l and q
{as described in Section 4}
candidates← Candidate Selection(t, l, q, σt, δt, dt

max, S)
{The set candidates contains all candidate ATRs of length t}
For each candidate in candidates

If verification(candidate)= true, then repeats← repeats ∪ {candidate}

Candidate Selection(t, l, q, σt, δt, dt
max, S)

Input: Sequence S, motif length t, window size l, q ∈ [0, 1], thresholds for the similarity criteria.

Output: A list of the candidate ATRs of length t in S (stored in c).

c← ∅ ;dist← t
Initialize a binary array A of length |S| to 0 {A success array}
Place two windows of length l, called w1 and w2, at positions 0 and t in S
For i = 1 up to |S| − t− l + 1 {every such iteration is called a sliding step}

Advance w1 by a single position

If advancing w2 by a single position produces a q-quality vector

Advance w2 by a single position ; A[i]← 1

Else:

If dist > t and matching w1 and w2 produces a q-quality vector

A[i]← 1 ; dist← dist− 1

Else if: dist < t + dt
max and advancing w2 by two positions produces a q-quality vector

Advance w2 by two positions ; A[i]← 1 ; dist← dist + 1

Else:

Advance w2 by a single position ; A[i]← 0 {the default sliding step}

St(i− t + l) =
∑i

j=i−t+l A[j]

∆t(i− t + l) = maximum number of consecutive 0’s in A[i− t + l, . . . , i]

If St(i− t + l) ≥ σt and ∆t(i− t + l) ≤ δt, then c← c ∪ {i− t + l}

Return c

Figure 1: The screening algorithm

only a central band of the alignment matrix is used of width
no more than 2 · dt

max, twice the maximum insertion and
deletions allowed by the distance criterion. Since all candi-
date ATRs have passed the screening phase, it is unlikely
that a better alignment exists outside these bounds.

The verification procedure does not allow overlapping ATRs
of the same motif length. Still, for a specific position i,
the algorithm may report ATRs with various motif lengths
starting at that position. To prevent cluttering the output,
when two ATRs which overlap have motif lengths m1 and
m2, where m1 divides m2, the ATR with motif length m1 is
reported only if it scores significantly higher than the other
ATR or if it continues more than m2 positions to the non-
overlapping region. In practice, no more than 3 different
motif lengths are reported, and most of the time reporting
different motif lengths indicates a certain hierarchy of ATRs.
Other implementation details, such as default values for all
parameters, are given on ATRhunter’s web site.

For other types of ATRs, the same screening phase is used,
and only minor changes in verification are needed, according
to the definition of that specific type.

4. STATISTICAL FRAMEWORK
This section develops a statistical framework for deter-

mining the thresholds σt, δt and dt
max for the score, gap and

offset respectively. In Section 4.1 we briefly describe how
our algorithm sets the threshold dt

max for the offset. This
method is identical to Benson’s method [6]. In Sections 4.2
and 4.3 we explain in detail our approach for determining
the thresholds σt and δt using a novel approximation for the
distributions of the random variables describing scores and
gaps.

The threshold σt used for the score criterion is set so that
only in a fraction εt of the binary sequences of length t,
the number of subsequences of length l that contain at least
q · l 1’s is greater than or equal to σt, where q is a con-
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stant q ∈ [0, 1]. In the software ATRhunter we set εt to
max{0.05 ·10−6, min{0.05, 0.6t−l}}. When this fraction can
not be achieved, we set σt to t− l+1, the maximum possible
value. The threshold δt used in the continuity criterion is set
so that the gaps of 95% of the subsequences of length t that
pass the score criterion are not over this threshold. Setting
these thresholds requires the distributions for the score and
gap. Unfortunately, these distributions are not available,
hence, we introduce a method to approximate them.

4.1 Setting bounds for the distance criterion
Consider an optimal alignment (Ψ′

1, Ψ
′
2), with respect to a

scoring function ϕ, between two adjacent sequences Ψ1 and
Ψ2, both of which contain t symbols over the same finite
alphabet. The distance between matching symbols Ψ′

1[i]
and Ψ′

2[i], corresponding to positions i1 and i2 in Ψ1 and
Ψ2 respectively, is t − i1 + i2. The maximum of these dis-
tances minus t over all positions i, 1 ≤ i ≤ t, is called the
offset and is denoted by Z. Let PI denote the average per-
centage of insertions and deletions in an optimal alignment
that scores more than a threshold η using a scoring function
ϕ. This probability is hard to compute and is estimated
based on a biological model or set to a default value of, say,
0.03. Given PI , it has been shown that 95% of the time,
the offset Z ranges between ±2.3

√
PI · t [14]. The proof of

this claim is based on viewing the random variable Z as a
one-dimensional random walk of PI · t expected steps where
each step moves a unit to left or right with equal probability.
The idea of setting bounds on Z in the screening tests is due
to Benson [6]. The screening phase in our algorithm finds
windows with high similarity which are at most t + dt

max

symbols apart. Among subsequences with sufficient num-
ber and density of such windows the verification phase finds
adjacent sequences of length t with alignment scores more
than η. To enhance the success of the screening phase we
set dt

max =
⌊
2.3

√
PI · t

⌋
, following Benson [6].

4.2 Approximation of the score distribution
Let the sequence ω = ω1ω2 . . . ωt be drawn from {0, 1}t

where each element ωi is 1 with probability p and 0 with
probability 1− p, and all elements are independent. Denote
ωk

j = ωjωj+1 . . . ωk. The subsequence ωj+l−1
j is called a q-

quality run of length l or a (q, l)-run if the fraction of 1’s in
it is at least q where 0 ≤ q ≤ 1. A 1-quality run of length
l is also simply called an l-run. We study the distribution
of the number S of q-quality runs of length l appearing in
a random sequence ω drawn as above. This distribution of
the random variable S, which depends on q, l and t, is used
to determine the threshold σt in our algorithm.

Distributions related to such runs have been studied quite
extensively. In particular, a method to compute the variance
of the sum of 1’s in all l-runs is given in [7]. The distribution
of the number of l-runs appearing in a random sequence
before the first appearance of a k-run is discussed in [1]. An
approximation to the distribution of the number of l-runs
in a random binary sequence is given in [4]. Finally, an
approximation to the distribution of the longest q-quality
run in a random sequence of length t for q larger than a
given parameter p is studied in [3] where rigorous bounds
on the approximation error are derived.

Since the distribution of S is not known and all known
bounds are not sufficiently tight for our application, we re-
sort to a novel heuristic approximation. Our approximation

uses a graph that describes sequences of length l according
to the number of 1’s contained, namely, according to their
Hamming weight. The experiments in Section 5 show that in
practice our approximation is quite tight, especially when l
is of the same order as t, the length of the original sequence.

To define the relevant graph some definitions are required.
A sequence u of length l is said to follow a sequence v of
length l if the first l−1 elements of u are identical to the last
l−1 elements of v. Each sequence of length l can be followed
by exactly two sequences, one that terminates with 0 and the
other that terminates with 1. Two consecutive subsequences
ωj+l−1

j and ωj+l
j+1 share l− 1 elements, so they differ in their

Hamming weights if and only if ωj 6= ωj+l, in which case the
difference is exactly 1. Furthermore, when ωj = 1, it follows
that hl(j + 1) = hl(j) with probability p, where hl(j) is the

Hamming weight of ωj+l−1
j , and hl(j + 1) = hl(j) − 1 with

probability 1− p. When ωj = 0, it follows that hl(j + 1) =
hl(j) + 1 with probability p and hl(j + 1) = hl(j) with
probability 1− p. Thus, knowing the Hamming weight of a
subsequence and its first element determines the probability
that the following subsequence’s weight is w.

Let G = (V ∪ V ′, E) be an edge-weighted directed graph
with 2l vertices. Each vertex vi ∈ V , 0 ≤ i ≤ l−1, represents
the set of sequences of length l whose Hamming weight is i
that start with 0. Similarly, each vertex v′i ∈ V ′, for 1 ≤ i ≤
l, represents the set of sequences of length l whose Hamming
weight is i that start with 1. Given q, vertices representing
q-quality sequences are called q-vertices. An edge e = (u, v)
is in E iff there exists a sequence represented by v that
follows a sequence represented by u. For example, (vi, vi+1)
is an edge in E whenever l > 1, and the pair (v′i, vi+1) is not
an edge in E because all sequences represented by v′i start
with 1, so the Hamming weight of any possible sequence that
follows is no more than i. The weight pe on each edge e =
(u, v) is a number satisfying 0 < pe ≤ 1 which is interpreted
as the transition probability of moving from u to v in one step
of a random walk on G. The graph G is shown in Figure 2.

To determine the value of pe for every edge in G, we
employ the following reasoning. Every vertex vi represents(

l−1
i

)
sequences of length l; in

(
l−2

i

)
of these sequences the

2nd position is 0 and in the other
(

l−2
i−1

)
sequences the 2nd

position is 1. Consequently, the probability that a random
sequence represented by vi is followed by a random sequence
represented by a vertex u ∈ V is l−i−1

l−1
, whereas the proba-

bility it is followed by a vertex u ∈ V ′ is i
l−1

. Analogously,

the probability that a random sequence represented by v′i
is followed by a random sequence represented by a vertex
u ∈ V or u ∈ V ′ is l−i

l−1
and i−1

l−1
, respectively. The tran-

sition probability pe associated with an edge e = (u, v) is
defined to be the probability that a random sequence of
length l represented by the vertex u is followed by a random
sequence represented by v. The eight possible transition
probabilities are shown in Figure 3. These are generated
using the abovementioned formulae multiplied by either p
or 1 − p. We multiply by p when u ∈ V ′ and β = 0 or
when u ∈ V and β 6= 0, where β is the difference in the
Hamming weights of sequences represented by u and v, and
multiply by 1 − p otherwise. For example, the probability
associated with a self looped edge e = (vi, vi), corresponding
to a sequence with Hamming weight i, which is followed by
a sequence with identical Hamming weight that starts with
0, is pe = (1− p) · l−i−1

l−1
.
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Figure 2: The graph reflecting all possible windows
of length l.

We present a dynamic programming algorithm to com-
pute the probability distribution of the number of q-vertices
visited by a random walk of length t − l on the graph G,
whose initial vertex is chosen according to the distribution
π(vi) =

(
l−1

i

)
pi(1−p)l−i, π(v′i) =

(
l−1
i−1

)
pi(1−p)l−i. The j th

iteration computes Dj
k, the probability that a random walk

of length j visits exactly k q-vertices, for 0 ≤ k ≤ j + 1. As
we will show, this quantity approximates the desired com-
putation of the probability distribution of q-quality runs of
length l over a random sequence of length l + j. Let Dj

k(u)
stand for the probability that a random walk of length j
visits k q-vertices and ends at vertex u. In this notation,
the sum Dt−l

k =
∑

u∈V ∪V ′ Dt−l
k (u), for 0 ≤ k ≤ t− l, is the

output of the dynamic programming algorithm.
Let Q be the set of all q-vertices in G, and let Q be the set

of all vertices in G that are not q-vertices. We set D0
c(u) =

π(u) for each u ∈ V ∪ V ′, where c = 0 if u ∈ Q and c = 1
otherwise, setting all other values D0

k to 0. The following
recursive formula is used in the j th iteration, to compute
the values Dj

k(v) for each v ∈ V ∪ V ′,

Dj+1
k (v)=


∑

u∈{V ∪V ′} p(u,v) ·Dj
k(u) if v ∈ Q∑

u∈{V ∪V ′} p(u,v) ·Dj
k−1(u) if v ∈ Q

(1)

where p(u,v) = 0 if (u, v) /∈ E.

It can be verified that the value Dt−l
k (u) computed by this

algorithm is indeed the probability that a random walk of
length t − l on the graph G, with an initial vertex chosen
according to the distribution π, visits k q-vertices and ends
at vertex u.

The probability distribution of the number of q-vertices
visited by a random walk of length t− l on G is not identical
to the probability distribution of the number of (q, l)-runs
in a binary sequence of length t for the following reason.
Any binary sequence of length l + j corresponds to a single
walk of length j in the graph G. The number of (q, l)-runs
in such a sequence equals the number of q-vertices visited
by the corresponding walk. However, the process of moving
between vertices in V ∪ V ′ is Markovian by definition while
the result of mapping `-long subsequences of a uniformly
drawn longer sequence into the appropriate vertices in V ∪V ′

is not a Markovian process. More explicitly, the probability
that a subsequence ωj+l

j+1 in a random sequence is represented

by v, given that the subsequence ωj+l−1
j is represented by u,

often depends on the number of previous (q, l)-runs, while
in a random walk on G, the edge e = (u, v) in the j th

step is selected with probability pe regardless of the number
of q-vertices visited in previous steps. For example, given
l = 3, q = 2

3
and p = 1

2
, the probability that subsequence

Figure 3: An illustration of the edges with a source
in vertex vi (right) and v′i (left) with their probabil-
ities.

ω5
3 in a random sequence is represented by v′1, given that

ω4
2 is represented by v1, is 1

4
, which equals pe for the edge

e = (v1, v
′
1), however, the probability that ω5

3 in a random
sequence, in which exactly one of the first two subsequences
of length l is q-quality, given that ω4

2 is represented by v1, is
1
2
. The experiments in Section 5 show that the Markovian

assumption yields an approximation sufficiently useful for
setting σt appropriately.

Our dynamic programming algorithm has a polynomial
time complexity. In each iteration, for each vertex, the al-
gorithm performs no more than t− l+1 constant time com-
putations, each involving the summation of at most 4 values
multiplied by a known factor. Since there are t− l iterations
and 2l vertices, the overall time complexity of the algorithm
is O(t2l).

4.3 Approximate bounds for the gap distribu-
tion

It remains to study the distribution of the random vari-
able M , defined as the maximum number of consecutive
subsequences of length l that are not (q, l)-runs in a ran-
dom binary sequence of length t that contains at least σ
(q, l)-runs. The distribution of M is needed for setting the
threshold δt, but it can not be computed exactly sufficiently
fast.

We approximate this distribution using the expressions
Dj

k computed via Eq.(1). Consider a path r of length a = t−l
in graph G (defined in Section 4.2) that contains at least
σ vertices in Q. Any such path r can be regarded as a
concatenation of three possibly-empty paths r1, r2 and r3,
where r2 is the longest sub-path in r that contains only
vertices in Q, namely, vertices that are not q-vertices. Let
M̂ be a random variable denoting the length of r2 and let Ŝ
be a random variable denoting the number of q-vertices in r,
which clearly equals the number of q-vertices in r1 and r3.
We are interested in an upper bound for the probabilities
P (M̂ ≥ δ | Ŝ ≥ σ) for every 0 ≤ δ ≤ a− σ.

We note that if r1 is not empty, then its last vertex is
v′q·l. Similarly if r3 is not empty, its first vertex is v′q·l with

probability ql−1
l−1

or vq·l with probability (1−q)l
l−1

. Hence, the

concatenation r1r3, with one additional edge, (v′q·l, vq·l) or

(v′q·l, v
′
q·l), is a path of length L = a − M̂ in G. The prob-

ability that a path of length i which starts and ends in Q
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contains at least σ vertices in Q is less than or equal to∑i
k=σ Di−2

k−2. Thus,

P (L ≤ a− δ, Ŝ ≥ σ) ≤
a−δ∑
i=σ

P (L = i)

i∑
k=σ

Di−2
k−2

and since Di+1
k ≥ Di

k for every i and k, we get

P (L ≤ a− δ, Ŝ ≥ σ) ≤
a−δ∑
i=σ

P (L = i)

a−δ∑
k=σ

Da−δ−2
k−2

Therefore, since
∑a−δ

i=σ P (L = i) ≤ 1, an upper bound on
the probability that r contains a path of length greater than
or equal to δ which consists entirely of vertices in Q is given
by:

P (M̂ ≥ δ | Ŝ ≥ σ) =
P (L ≤ a− δ, Ŝ ≥ σ)

P (Ŝ ≥ σ)
≤

∑
k≥σ Da−δ−2

k−2∑
k≥σ Da

k

where
∑

k≥σ Da
k is the probability that r visits at least σ

vertices in Q.
The additional time required to compute this formula for

each value of δ is O(t·l) since in each iteration of the dynamic
programming algorithm presented in Section 4.2, we sum the
intermediate expressions Dj

k(u) for every vertex u ∈ V ∪ V ′

and every k ≥ σ. Since δ ≤ t−l+1 it follows that the overall
additional time required to set δt is O(t2l) which does not
exceed the time complexity of the dynamic programming
algorithm.

Our experiments show that setting the threshold δt in
ATRhunter according to the distribution of M̂ is almost
as good as setting it according to the distribution of M .

5. EXPERIMENTAL RESULTS
The main goal of the experiments performed is to test

the quality of our algorithm’s output, as implemented in
ATRhunter. This quality is measured both by the total
number of ATRs found and the number of ATRs found for
different motif lengths. We evaluate the quality for both
real-world and simulated data. The real-world data sets, for
which the complete list of ATRs is not known, consisted of
three genomes: chromosome I of yeast (230,203 bp) and the
complete genomes of two types of E. coli: K–12 (4,639,221
bp) and O157:H7 (5,498,450 bp). The output quality is com-
pared against trf described in [6], which we ran on all data
sets and the published results of teiresias on chromosome
I of yeast as reported in [39]. The simulated data consisted
of ATRs planted into a synthetic sequence of length 100,000
bp, for which we plot the percentage of planted ATRs recov-
ered by ATRhunter and, for comparison by trf, for each
motif length. For the simulated data we also compare the
run times of the different programs.

Figure 4 shows that ATRhunter found an average of
61% more ATRs than trf in the three genomic sequences,
using trf’s definition of an ATR. Two examples for ATRs
uniquely detected by ATRhunter in these sequences are:
a motif of length 116 which repeats twice starting at posi-
tion 111, 400 in the E.coli–K12 genome, and 2.7 copies of a
motif of length 33 in the E.coli–O157:H7 genome starting at
position 608, 919. ATRhunter also detected 1189 ATRs in
the first chromosome of yeast, using teiresias’s definition
of an ATR, compared to 172 found by teiresias.

Figure 4: Number of ATRs found by ATRhunter
and trf on real data using trf’s definition of an
ATR.

The differences from other programs are due to the strength
of our algorithm rather than a specific counting method.
Overlapping ATRs are only counted when reflecting a hier-
archy of repeats in a specific region. Even in this case, our
counting method applies a cutoff, which limits the number
of overlapping ATRs reported per region. The default value
of this cutoff used in our experiments is 3, while Figure 5
shows that changing it has negligible effect. ATRhunter
finds 1.6 times more ATRs than trf in the three genomic
sequences, when comparing the reports of the two programs
for non-overlapping regions (cutoff =1). Outputs from run-
ning ATRhunter and trf on the three genomic sequences
using trf’s definition of an ATR and the list of ATRs de-
tected by ATRhunter using teiresias definition are pro-
vided in the web supplement, including an indication of the
ATRs that were counted for the purpose of comparison, and
an indication of how clustered repeats are counted.

We note that the ATRs found by the other algorithms
were almost always (∼ 99%) found by ATRhunter as well.
It is interesting to examine a few exceptions. For example,
in the E.coli–K12 genome, trf found two copies of a motif of
length 18 starting at position 1, 253, 217 while ATRhunter
missed this ATR because of its method for choosing the win-
dow size l. We further note that the definitions of an ATR
in trf and teiresias are distinct and different from ours.
Therefore, we performed the comparative experiments based
on the other programs’ ATR definitions. For the compar-
ison with trf the same experiments were conducted using
the four setups for parameters allowed by trf. Similar re-
sults are obtained and are available in the web supplement.

One important strength of ATRhunter is the ability to
quickly detect similarity between large regions, even when
small regions within are different. This enables the program
to find more ATRs with long motifs than other programs.
Figure 6 shows the number of ATRs found by ATRhunter
and trf as a function of the motif length when searching
the E.coli–K12 genome.

On the three genomic sequences shown ATRhunter runs
in 3, 40, and 45 seconds, respectively, on a PC with 1GB
RAM. This is comparable to the trf running times of 2.5,
22, and 25 seconds. Overall, ATRhunter spends 5% less
time per ATR found.

The second evaluation method uses ATRs planted into 10
synthetic i.i.d. sequences of length 100,000 in which each
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Figure 5: Changes in the number of detected ATRs
as a function of the counting cutoff.

symbol had probability 0.25 of appearing in each position,
and plots the percentage of ATRs recovered by ATRhunter.
We planted 100 ATRs in each sequence with location, mo-
tif length and level of similarity randomly chosen, and the
number of copies geometrically distributed with parameter
p = 0.5. The average score of an ATR over all sequences was
238 with a standard deviation 116. We report the success
rate in finding the planted ATRs, using trf’s definition of
an ATR. Some non-planted ATRs were also detected, but
were omitted from the count. When running ATRhunter
and trf with the same alignment parameters, the following
facts emerge:

• ATRhunter found an average of 89% of the planted
ATRs with standard deviation 2.6%. trf found 72%
of them with standard deviation 4.6%.

• Almost all the ATRs uniquely found by ATRhunter
had motif length over 35.

• The running time of both programs was less than 3
seconds for each sequence. trf is 25% faster.

The number of planted ATRs found by both programs on
each sequence is shown in Figure 7, while Figure 8 shows this
as a function of motif length. More details of these exper-
iments and further experiments with planted ATRs, where
other alignment parameters are used and planted ATRs have
different score distributions, are available in the web supple-
ment. We obtained similar results when planting ATRs in
genuine genomic sequences rather than the abovementioned
random sequences.

We examined the screening precision and the success rate
of ATRhunter in finding planted ATRs as a function of
PI . The screening precision is the percentage of candidate
ATRs that passed verification, representing the efficiency
of the screening phase. The success rate is the percentage
of planted ATRs reported by ATRhunter. The input se-
quences for these tests were synthetic sequences of length
500,000 each containing 100 planted ATRs, using the de-
fault values of the program’s parameters. The success rate
for detecting ATRs ranges between 74% and 90%, and in-
creases monotonically with PI . While the success rate is
sensitive to PI , the screening precision is almost oblivious
to PI , remaining at 6% for all PI ≥ 0.02. Hence, the run
time of verification is almost independent of PI .

Figure 6: Number of ATRs found by ATRhunter
and trf as a function of the motif length on E.coli–
K12.

Figure 7: Number of synthetic ATRs found by
ATRhunter and trf in 10 random sequences.

Finally, we tested the accuracy of our approximation of
the distribution of the number of q-quality runs of length l
in a random binary sequence of length t. The exact distribu-
tions, which have been computed exhaustively, are plotted
in Figure 9 against the approximated ones, for several sets of
parameters t ,l and q used by the algorithm. The total vari-
ation between the distributions is very small (e.g., 0.0059
for l = 10) and their similarity is evident.

The penalty in output quality from using the approxi-
mated score distributions is quite minor, as can be seen in
Figure 10 where the thresholds σt obtained from the ap-
proximation are compared to those derived from the exact
distributions, as a function of l.
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Figure 8: Average number of planted ATRs found
by ATRhunter and trf as a function of the motif
length in synthetic sequences.
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