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ABSTRACT
We present a holistic approach for efficient execution of bags-of-
tasks (BOTs) on multiple grids, clusters, and volunteer computing
grids virtualized as a single computing platform. The challenge is
twofold: to assemble this compound environment and to employ it
for execution of amixture of throughput- and performance-oriented
BOTs,with a dozen to millions of tasks each. Our generic mecha-
nism allows per BOT specification of dynamic arbitrary scheduling
and replication policies as a function of the system state, BOT exe-
cution state, and BOT priority.

We implement our mechanism in theGridBotsystem and demon-
strate its capabilities in a production setup. GridBot has executed
hundreds of BOTs with over 9 million jobs during three months
alone; these have been invoked on 25,000 hosts, 15,000 from the
Superlink@Technion community grid and the rest from the Tech-
nion campus grid, local clusters, the Open Science Grid, EGEE,
and the UW Madison pool.

1. INTRODUCTION
Bags of Tasks (BOTs) are traditionally the most common type

of parallel applications invoked in grids. BOTs are composed of
a number of independent jobs that form a single logical computa-
tion. Their pleasantly parallel nature enables large scale invocation
on the grids, despite slower networks, limited connectivity between
geographically distributed resources, and job failures. Grid work-
flow engines have further strengthened the position of BOTs as the
dominant type of grid workloads because they enable compound
parallel applications with multiple interdependent BOTs [2,19,39].

Large grids, such as OSG [7] and EGEE [5], andcommu-
nity grids such as SETI@HOME have been very efficient in run-
ning throughput-orientedBOTs with thousands or millions of
jobs. However, the invocation of moderate-sized,performance-
orientedBOTs in largenon-dedicatedgrids often results in higher
turnaround times than executing them on a smalldedicatedclus-
ter [25]. This is because shorter BOTs are more sensitive to the
turnaround time of a single job. Their performance is dominated
by the slowest job – even a single failure increases the turnaround
time of the whole BOT. In contrast, in larger BOTs there are enough
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jobs to keep all the available CPUs busy for maximum available
throughput to be achieved. Yet, the transition of a BOT from the
high-throughput phaseto the tail phase, characterized by the de-
crease in the number of incomplete jobs toward the end of the run,
makes even throughput-oriented BOTs less immune to failures and
delays.

The factors affecting the performance in large grids include the
job invocation and scheduling overheads due to long queuing times
and network delays. Job failures [24, 28] might also cause a job to
be restarted from the beginning on another host. These failures of-
ten occur as a result of the opportunistic resource allocation mech-
anisms, which prematurely preempt lower priority jobs in favor of
higher priority ones in order to maintainfair-shareof grid resources
among the users. Finally, grids typically trade job turnaround time
for overall throughput. In community grids [13], for example, a
batch of jobs is sent to a host for sequential execution, and the re-
sults are reported only after completion of all the jobs in the batch.

This throughput-optimizedmodus operandiof grid environ-
ments often makes them less attractive to scientists, who are
tempted to build their own dedicated clusters optimized for shorter
BOTs, instead of using the grids. However, the required compu-
tational demand typically outgrows the limited local resources, in
particular if the scientific results prove successful. Thus, the same
researchers will eventually need to access additional clusters, cloud
computing infrastructures, institutional and international grids, and
even end up establishing a community grid of their own.

Unfortunately, multiple separately managed grids without a
common scheduling mechanism are an impediment to high per-
formance for both shorter and larger BOTs. Static partitioning of a
BOT among the grids does not account for sporadic changes in the
resource availability, and reduces the number of jobs per BOT in
each, decreasing overall efficiency. Thus, the segmentation of the
resources requires dynamic job distribution and load-balancing.

Further complications arise if the workload comprises a mix-
ture of large and small BOTs, as often happens in grid workflows.
For example, better turnaround times will be obtained for smaller
BOTs if they are scheduled on more reliable resources [25]. Rout-
ing BOTs to different grids according to the estimated BOT re-
source demand, as in the Grid Execution Hierarchy [31], results in
rapid turnaround for smaller BOTs, but only for moderate system
loads. Otherwise, the available resources become segmented and
performance reduced for large and small BOTs alike. Also, any
static policy that does not capture changes in the system state and
BOT execution dynamics will be suboptimal. A BOT considered
“throughput-oriented” at one point may become “performance-
oriented” and vice versa, due to the changes in the computational
demand of larger BOTs in the tail phase, and fluctuations in grid
resource availability. Lastly, budget constraints, emerging in pay-
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as-you-use cloud computing environments, may require a special
resource allocation policy for some BOTs to reduce the costs.

Another aspect of multi-BOT scheduling is prioritization. For
example, a shorter BOT will experience a significant slowdown in a
FIFO queue if submitted after a long one. Consider also a scenario
where the two BOTs are invoked by two different users contributing
their own clusters to the system. Clearly the BOTs would be priori-
tized on the cluster belonging to the BOT owner, with lower priority
on the foreign cluster. A simple priority queue, which would solve
the problem of slowdown in the first scenario, will not suffice.

Contribution. We present a generic scalable mechanism for ef-
ficient concurrent execution of multiple arbitrary-sized BOTs in
compound multi-grid environments. To the best of our knowledge,
this is the first solution which combines several diverse grids in a
single monolithic platform supporting flexible runtime policies for
large-scale execution of multiple BOTs.

First, we unify the grids by establishing an overlay ofexecu-
tion clients, a technique termedoverlay computing[3, 12, 29, 37].
While widely used for eliminating long queuing delays and aggre-
gating multiple grids, the existing technologies fall short in grids
with strict firewall policies and private networks. Our implemen-
tation overcomes this limitation while requiring no prior coordina-
tion with grid administrators, or deployment of additional software
in the grids. Furthermore, community grid resources are integrated
with all the others forming a unified work-dispatch framework.

Second, we apply several known techniques for achieving rapid
turnaround of BOTs, including resource matching, job replica-
tion and dynamic bundling [34]. In particular,replication –
speculative execution of multiple copies of the same job – was
shown to decrease BOT turnaround time in failure-prone environ-
ments [14, 15, 25, 26, 38]. Many of these works devise specific
replication algorithms applicable in a certain setup. Our contribu-
tion is in the explicit separation of themechanismsthat implement
these techniques from thepoliciesthat determine when and how the
mechanisms are employed by the work-dispatch framework. The
BOT owner may assignarbitrary runtime policies for each BOT.
These polices can depend on the system state, the BOT properties
and state, the state of the different job replicas in the BOT, as well
as various statistical properties of the resources. The policies can
be adjusted during execution to accommodate unexpected changes
in user requirements or system state.

Third, we enable resource-dependent prioritization policies to
be specified for concurrently executing BOTs, so that multi-BOT
scheduling algorithms can be used [21].

The GridBot system, which implements these policy-driven
mechanisms, consists of awork-dispatch serverand grid execu-
tion clients submitted to the grids by theoverlay constructor. Our
implementation is based on the BOINC server [13], developed as
a part of the middleware for building community grids. Beyond
its extensibility and proven scalability, BOINC is the de-facto stan-
dard middleware for building such grids. By integrating our mecha-
nisms into BOINC, we make GridBot compatible with the standard
BOINC execution clients, making it possible, in principle, to use
over three million computers worldwide [1] where these clients are
installed. Combined with the other clients dynamically deployed
in grids to form the overlay, GridBot creates a unified scheduling
framework for standard and community grids. To accommodate
large number of resources we applied a number of optimizations
for greatly increased scalability.

We envision the GridBot system to be employed by workflow
engines, such as Pegasus [19] and DAGman [2]. However, our
original motivation was to supply the growing computing demands
of the Superlink project [33]. The Superlink-online Web portal [8]

provides computing services for geneticists worldwide, enabling
data analyses for detection of disease-provoking genetic mutations.
The computational problem is exponential in the size of the data;
hence the computing demands range from a few seconds to hun-
dreds of CPU years. The data is submitted via a simple Web-based
interface, and the analysis is automatically parallelized into a BOT
with jobs of the desired granularity. The BOT sizes can range from
a few jobs to millions, depending on the complexity of the input.

GridBot serves as a computing platform for running BOTs from
Superlink-online, and is deployed in a pre-production setting. It
currently utilizes resources in the OSG, EGEE, the UW Madison
Condor Pool, the Technion campus grid, a number of local clus-
ters, and the Superlink@Technion community grid [9]. During
three months, about 25,000 computers worldwide have participated
in the computations, with 4,000 from EGEE, 1,200 from Madison,
3,500 from OSG, and the rest from about 5,000 volunteers from 115
countries. GridBot’s effective throughput roughly equalled that of
a dedicated cluster of 8,000 cores, with theoretical peak through-
put of 12 TFLOPs. Over 9 million jobs from about 500 real BOTs
were executed, ranging from hundreds to millions jobs per BOT,
requiring minutes to hours of CPU time for each job. The total
effective CPU power consumed in three months equals 250 CPU
years. (Due to the on-demand nature of the workload originating
from the Superlink-online Web portal, there were also periods of
idle time.) The current GridBot statistics are gathered via an exten-
sive runtime monitoring infrastructure and are available online [6].

In our experiments we demonstrate the flexibility, efficiency and
scalability of GridBot for running various real-life BOTs. We also
evaluate common replication and scheduling policies on a scale
which to the best of our knowledge has never been shown before.

Related work. From the onset of cluster and grid comput-
ing research, a number of systems have been developed for ex-
ecution of BOT-type workloads using application-level schedul-
ing ( APST [17], Nimrod-G [12], Condor Master-Worker [20]
among others). The recent works reemphasized the importance
of overlay computing concepts (also termed multi-level schedul-
ing) [3,22,29,35,37]. However, the existing systems do not provide
BOT-specific execution mechanisms, leaving their implementation
to the application. Nor can they utilize community grids or grids
with strict firewall policies. Our approach is to enable the execution
of BOTs in compound non-dedicated environments by making the
BOT a first-class citizen at the work-dispatch level, thus removing
the burden from the application, while allowing for theapplication-
specific policyto be specified.

Condor glidein technology [3, 36] is the closest to GridBot in
terms of its overlay computing and policy specification mecha-
nisms [30]. However it currently lacks BOT-specific functionality
in general and replication in particular. Furthermore, private net-
works and strict firewall policies pose significant obstacles to the
use of glideins in standard and community grids. Yet, the success
of Condor encouraged us to use classads as the policy language.

Falkon [29] achieves remarkable scalability and work-dispatch
efficiency, but to the best of our knowledge it does not allow any
parameterized policies to be specified.

Workflow engines, such as Swift [39], DAGman [2], Pega-
sus [19] and Nimrod-K [11], provide a convenient way to compose
multiple BOTs or jobs into a composite parallel application. All
of them allow execution over regular batch or overlay-computing
systems, but do not expose the replication policy to the user.

The idea of replicating jobs in failure-prone environments was
investigated from both theoretical [26] and practical perspec-
tives [10, 14, 18, 23, 38]. These papers propose the algorithms
for replication and resource selection to reduce BOT turnaround.
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These works motivated the design of our replication and schedul-
ing mechanisms and served as examples of policies to be enabled
by GridBot.

Bundling of multiple jobs was suggested in the context of Pega-
sus [34] and Falkon [29].

Scheduling heuristics for multi-BOT scheduling were investi-
gated by Iosup et al. [21] and Anglano et al [15], and served as
a motivating example for our ranking policy mechanism.

Integration of different types of grids, including community
grids, was also discussed by Cappello et al [16], and further de-
veloped by EDGeS [4] project. These works mostly focus on the
system infrastructure, as opposed to the user-centric mechanisms
of GridBot.

2. BACKGROUND
The termgrid refers to a distributedcomputingenvironment with

opportunisticbest-effort, preemptive resource allocation policies.
Namely, the jobs can be preempted by the resource manager at any
moment, and neither the amount of available resources nor the time
it takes to acquire them is bounded. In contrast, adedicated cluster
(or cluster, for short) is a computing environment with preemption-
free allocation policy and short queuing times.

We further categorize grids intocollaborative and community
grids. Collaborative grids are formed by a federation of resources
from different organizations, shared among the participants accord-
ing to some agreed policy, e.g.,fair-share. Community grids con-
sist of the home computers of enthusiasts who donate them to one
or several scientific projects.

The termbag-of-tasks(BOT) refers to a parallel computation
comprised of independent jobs. Successful termination of all jobs
is necessary for termination of the BOT.

Overlay computingis a technique for mitigating the long waiting
times in grid queues whereby special execution clients are submit-
ted to the grids instead of real jobs. When invoked on the grid re-
source, such a client fetches the jobs directly from the user-supplied
work-dispatch server, thus bypassing the grid queues.

2.1 Resource management
Collaborative grids are built as a federation of clusters (not nec-
essarily dedicated, in our terms). Each cluster is managed by the
local batch queuing system, which along with the resource allo-
cation policy for its local users, also obeys the global grid-wide
user policies. In the following we focus on large-scale collabora-
tive grids such as EGEE [5] and OSG [7]. The internal structure
and the resources of each cluster in a grid are hidden behind the
gateway node, which is used for job submission and monitoring.
The compute nodes often reside on a private network or behind a
firewall and local login to the nodes or the gateway is not permitted.
The grid users submit jobs directly to the gateway or via Resource
Brokers (as in EGEE).
Community grids rely on home computers around the world. They
have been popularized by Berkeley Open Infrastructure for Net-
work Computing (BOINC) [13] used for establishing community
computing grids for specific scientific needs. Such a grid is man-
aged by a singlework-dispatch server, which distributes the jobs
among the BOINCclients. The BOINC client, installed on a vol-
unteer’s computer, may connect to multiple work-dispatch servers,
effectively sharing the machine between multiple community grids.
This crucial feature makes the idea of establishing community com-
puting grids particularly appealing. Indeed, in theory, over three
million participating computers can be accessed. The only chal-
lenge, which is surprisingly much more complicated, is to motivate
their owners to join the newly established grid.

2.2 Grid characteristics
In this section we analyze the properties of a number of collab-

orative and community grids in order to quantify the parameters
affecting BOT performance. These will determine the realistic as-
sumptions we can make while designing our solution.

In Figure 1(a) we present the history of the number of avail-
able resources as observed by a user having the steady demand of
1000 jobs, measured during one week in OSG and the UW Madi-
son Condor pool. This short snapshot demonstrates typical behav-
ior observed in opportunistic grids, and highlights the difficulty in
providing short-term predictions of the resource availability. Ob-
serve the sharp changes (sometimes of an order of magnitude) in
the number of allocated resources over short time periods. The
growth in the number of resources during the 21st-22nd of Febru-
ary is, however, expected, as it coincides with the weekend. This
variability prompts a design thatdoes not rely on static estimates
of the number of available resources.

Figure 1(b) shows the distribution of queuing times of a random
sample of about 45,000 jobs invoked in the UW Madison pool and
12,000 jobs in the OSG, measured from the moment the job enters
the batch queue until it starts execution. The measurements were
performed in the steady state with 100 running jobs. Termination of
one job triggered submission of a new one. Observe the variations
in queuing times, which range from a few seconds to a few hours.
Similar findings were reported in [27] for EGEE. These results un-
equivocally show thatoverlay computingis an absolute must for
obtaining short turnaround time.

Figure 1(c) summarizes the failure rate of jobs 20 to 60 minutes
long, measured during one month of operation in OSG, EGEE, UW
Madison, the Technion cluster (100 cores) and the community grid
Superlink@Technion with ~15,000 CPUs. Note that all the jobs
executed in collaborative grids experience quite high failure rate
due to preemptions, whereas failures due to hardware or software
misconfiguration are rare. The community grids, however, have a
low preemption rate and frequent hardware and software failures.
Thus, any solution for BOT execution will have tobe optimized to
handle job failures.

3. GRIDBOT ARCHITECTURE
The GridBot architecture is depicted in Figure 2. It is logically

divided intowork-dispatch logic and the gridoverlay constructor.
Execution clients in the overlay follow the pull model, whereby

they initiate the connection to the server to fetch new jobs, but the
server is not allowed to initiate the connection to the clients. We
target the case where the traffic initiated from the public network to
the clients is entirely disallowed. However, we assume that they can
initiate connection to a single port of at leastonehost in the public
space. This assumption holds in the majority of grid environments
with which we had a chance to work.

The overlay constructor is responsible for submitting new execu-
tion clients into the grids whenever there are jobs in the job queue.
It determines the number of clients to be submitted to each grid and
issues the resource requests to one or moresubmitters. Note, how-
ever, that there are also static (as opposed to dynamically deployed
via the overlay) clients which originate in a community grid. They
are entirely under the control of the resource owners and contact
the server at their will.

4. WORK-DISPATCH LOGIC
The work-dispatch logic comprises two interdependent com-

ponents: the generic mechanisms for matching, prioritization,
bundling, deadline and replication; and the policy evaluation mod-

3



18 Feb 19 Feb 20 Feb 21 Feb 22 Feb 23 Feb 24 Feb 25 Feb 26 Feb
0

200

400

600

800

1000

R
un

ni
ng

 jo
bs

UW Condor
OSG 

(a)

1000 2000 3000 4000 5000
Queuing time (seconds)

20

40

60

80

%
 o

f i
nv

ok
ed

 jo
bs UW Condor 

OSG

(b)
Grid #Jobs Preempted (%) Failed (%)

UW Madison 96938 20 1%
OSG 60648 10 1%

EGEE 16437 7 2%
Technion 42411 2 0.2%

Superlink @Technion 241364 (♣)0.2 13%
(♣) Job is counted as preempted if no results were returned before the deadline

(c)

Figure 1: (a) Resource availability. (b) Queuing time distribu-
tion. (c) Failure rate in different grids.

ule for enforcing the user-specified policies controlling these mech-
anisms.

As in Condor, we use classads for the policy specification.Clas-
sified advertisements (classads)[30] is a generic language for ex-
pressing and evaluating properties. A classad is a schema-less list
of name-value attributes. It can be logically divided into a set
of descriptive attributes having constant values, as in XML, and
functional attributes specifying an arbitrary expression for comput-
ing their actual value in runtime. These expressions may include
constants, references to other attributes, calls to numerous built-in
functions, or nested classads. A classad interpreter enables efficient
dynamic evaluation of the functional attributes at runtime, which,
coupled with the schema-less nature of the language, opens unlim-
ited possibilities for policy specification.

4.1 Classads in GridBot
Every system entity is described as a classad. Here we detail

only the most important attributes in each classad, but in practice
there are more of them, and new ones can be added.

The host classadcontains the static and dynamic properties,
some of which are reported by the host, such as number and type of
CPUs, host owner name, the performance estimates and the number
of currently running jobs on this host; and others maintained by the
work-dispatch server and include long-term statistics, such as the
job failure rate, the average turnaround time of jobs on that host,
and the amount of CPU time usedrecentlyfor producing error-free
results.

The job classadfor a non-replicated job has a small set of prop-
erties, such as job invocation parameters. However, if there are
other running replicas of that job, the classad will bedynamically
extendedby the work-dispatch mechanism to include thehostclas-
sad for each such replica. Hence, the scheduling and replication

1. System state DB
2. Job Queue

Execution
client

Communication
frontend

Work dispatch logic

Grid overlay 
constructor

Grid submitter

Execution
client

Execution
client

Community grid

Collaborative grid
Dedicated cluster
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Grid submitter
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Resource Request Resource Request

Fetch job

Fetch/generate jobs

Fetch queue stateUpdate result

Work-dispatch server

Figure 2: GridBot high level architecture

policies can refer not only to the current instance of the job, but to
all the hosts executing the other replicas.

The BOT classadcontains the number of incomplete jobs per
BOT, and, most importantly, theTail attribute, used to monitor
the execution phase of the BOT.Tail is dynamically updated by
the work-dispatch logic when the transition between the high-
throughput and the tail phase occurs. Note that ifTail is used in
some policy, the work-dispatch logic affectsits own behavior at
runtime. We elaborate on the tail phase detection in the implemen-
tation section.

The queue classadpublishes the number of BOTs in the queue,
allowing for the policies to refer the current queue load.

All the functional attributes, expressing the policies, are placed
in the BOT classad, and shared among all the jobs of the BOT.
They includeJobRequirements, ReplicationRequirements, Rank,
Concurrency and Deadline, and will be discussed later.

Figure 3 presents an example of a compound classad compris-
ing BOT, Queue and Job classads. Observe that the Job classad
also contains the classads of the hosts executing its replicas. The
meaning of the policies (in bold) is explained below.

4.2 Policy-driven work-dispatch algorithm
The work-dispatch mechanism comprises the scheduling and

replication phases, described in Algorithm 1 and 2 respectively.
The scheduling phase is invoked upon every job request. First,

the host, queue and BOT classads are instantiated. Then, the job
queue is traversed, for each job its classad instantiated, and all the
policies evaluated given the specific values of job, BOT, host and
queue attributes. The goal of the traversal is to find acandidate set
of jobs,J , for whichJobRequirementsevaluate to true. Among the
jobs in the candidate set, those having the highestRankare selected.
The number of jobs assigned to a host at any moment is determined
by the value of theConcurrencyattribute. Before sending the jobs
to the host, thedeadline parameter for each job is assigned the
value of theDeadlineattribute.

The ability to assign multiple jobs per host allows pipelining, or
bundling, used to reduce the per-job invocation overhead for shorter
jobs. In the multi-BOT case the use of higherConcurrencyby the
BOT with lowerRankmay lead to a violation of the prioritization
policy. Hence, the value of theConcurrencyattribute of the highest
priority BOT is enforced.

The replication phase is executed by periodically traversing all
running jobs. It is regulated by two policies: the jobdeadline
mentioned above, whose expiration signifies that the remote re-
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[ Job= [ Name=”job1”;
Executable=”/bin/hostname”;
NumberOfReplicas=2;
Replica1= [ Name=”job1_1”;

Host=[ Name=”is3.myhost”;
SentTime=242525;
ErrorRate=0.08;]

];
Replica2= [ Name=”job1_2”;

Host=[ Name=”is2.myhost”;
SentTime=242525;
ErrorRate=0.08;]

];
];

BOT= [JobRequirements = !Tail? True:
regexp(Host.Name,/ * myhost * /)
&& Host.ErrorRate<0.1;

Rank= !Tail?1: Host.JobsToday;
ReplicationRequirements=

(NumberOfReplicas<3&&
Job.Replica1.Host.ErrorRate>0.1);

Concurrency=2* Host.NumCpus;
Deadline=Concurrency * 2000;
JobsLeft=10;
JobsDone=5;
Tail=true;

];
Queue= [BOTsInQueue=1;]

]

Figure 3: Example of a typical GridBot classad

Algorithm 1 Scheduling phase: upon job request from hosth

Instantiate classad forh, BOT and queue
Foreach job j in the job queue
Instantiate classad forj
EvaluateConcurrencyj , Deadlinej , JobRequirementsj andRankj

I f JobRequirementsj = true
Add j to candidate setJ

End

Order the jobs inJ by Rankj

Concurrency←Concurrency of a job with maximumRank
Foreach job j ∈ J

Concurrency←min(Concurrency, Concurrencyj )
If Concurrency < assigned+#running jobs onh
deadlinej ←Deadlinej
Assign jobj to hosth
assigned← assigned+1

End
End

source failed and the job should be restarted, andReplicationRe-
quirements, used to speed up the computations toward the end of
BOT execution. TheReplicationRequirementsattribute is evalu-
ated only when the number of idle jobs that belong to the specific
BOT becomes too low. Without this constraint, the replicated and
not yet replicated jobs would contend for the resources, leading to
the throughput degradation.

While both theDeadlineandReplicationRequirementspolicies
control replication, they serve two completely different goals. The
replication of jobs with an expired deadline is necessary in pull-
based architectures where the client might not report its failure
to the work-dispatch server. The deadline expiration ensures that
any job executed by a faulty client will eventually be completed.
In contrast, theReplicationRequirementsaim at reducing BOT
turnaround time by increasing the likelihood of successful job ter-
mination.

Several examples of possible policies are presented in Figure 3.
The matching policy defined by theJobRequirementsattribute al-

Algorithm 2 Replication phase: once in replication cycle
Foreach running jobj
/*Replication for expired Deadline*/

Check the execution timet of j

If t > deadlinej

Create new replicaj′ and enqueue
Mark j as failed
continue

End
/*Replication for speculative execution*/

If few unsent jobs of that BOT in the queue
Find all replicas ofj and their respective executing hosts
Instantiate classad forj
If ReplicationRequirements = true

Create new replicaj′ and enqueue
End

End

lows for execution of a job on any host if the BOT is not in the
tail phase, otherwise restricting it to those hosts having the string
myhostin their names and low error rate. TheRankexpression as-
signs higher relative priority to the jobs of this BOT on hosts which
recently produced successful results, but this prioritization will be
applied only in the tail phase. TheReplicationRequirementspolicy
allows replication only if there are less than three replicas and the
first one is running on a host with a high failure rate. TheConcur-
rencyexpression allows a host to prefetch no more than two jobs for
each CPU core. TheDeadlineattribute assigns the jobdeadline
parameter in accordance with the actual number of jobs sent to the
host, and indirectly depends on the host properties in this case.

5. GRID OVERLAY
The overlay of execution clients is automatically established in

the grids in response to the changing resource demand.
The grid overlay constructor distributes the client invocation re-

quests between different grids under the following constraints:

1. Each grid restricts the number of concurrently executing or
enqueued jobs

2. A grid job must not stay idle on the execution host, as hap-
pens when the execution client cannot receive new jobs from
the work-dispatch server

The second constraint is particularly difficult to satisfy when the
BOT JobRequirementspolicy prevents execution of jobs on hosts
with specific properties, e.g., a policy which excludes the hosts
with a high failure rate. Clearly, this information is inaccessible
to grid submitters as it is not maintained by the native grid resource
managers. Even if it were imported from the work-dispatch server,
large scale grids typically disable fine-grained selection of individ-
ual hosts.

Our solution is based on two complementary techniques. First,
the running client automatically commits suicide if it fails to obtain
new jobs from the server or if it detects low CPU utilization by the
running job. Second, we allow coarse-grained selection of grids
via the BOTGridPolicyattribute. This attribute is evaluated by the
overlay constructor in the context of grid classads published by the
grid submitters. Once the set of suitable grids is determined, the
problem becomes a variation of the classicbipartite graph maxi-
mum matchingproblem, where multiple BOTs must be matched to
multiple grids subject to the constraints on the number of available
resources in each grid and the resource demand of each BOT. We
omit the details for lack of space.
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6. IMPLEMENTATION
We implemented the work dispatch algorithm and integrated it

into the existing BOINC server. We begin with a brief description
of the original BOINC work-dispatch logic and then explain our
own implementation.

6.1 BOINC
BOINC uses standard HTTP protocol for communication be-

tween the execution clients and the work-dispatch server. The
server is based on the out-of-the-box Apache Web server. Data
transfers are performed by the Web server, whereas the control flow
is handed over to the custom backend.

The serverdoes notmaintain an open TCP connection with the
clients during the remote execution of a job. Rather, clients imme-
diately disconnect after fetching new jobs or reporting results. This
design allows for impressive scalability with respect to the num-
ber of concurrently executing clients, but results in a delay in client
failure detection until thedeadline expiration.

The server comprises several modules, in particular thesched-
uler and feeder, which implement the work-dispatch logic. The
schedulerhandles work requests from clients. This is a latency-
critical component whose performance directly affects the system
throughput. Thus, in order to hide the latency of accessing the
job queue in the database, thefeederpre-fetches the jobs from the
database and makes them available to the scheduler via ashared-
memory scheduling buffer.The feeder is responsible for keeping
this buffer full as long as there are jobs in the queue.

6.2 Integrating work-dispatch policies
Scheduling phase(Algorithm 1) cannot be implemented “as is”,
because it requires the policies to be evaluated onall the jobs in
the queueuponeach job request. The size of the queue can easily
reach a few million, rendering the policy evaluation infeasible.

One natural approximation of the algorithm would be to apply it
to a random sample of the jobs in the queue. Yet, naïve uniform
sampling is not applicable as the BOTs in the queue may have dif-
ferent number of jobs each, hence the larger ones would be over-
represented in the sample. Instead, we apply the algorithm on the
sample which includes the jobs ofall enqueued BOTs. Hence, if
there aren BOTs in the queue, we reserve at least1/n-th of the
scheduling buffer capacity per BOT. To fill the relevant segment of
the buffer, the feeder fetches the jobs of the BOT from the queue,
redistributing the remaining buffer space among the other BOTs.

The jobs remain in the scheduling buffer until they are matched,
or until their scheduling time-to-live timer expires. This timer pre-
vents buffer congestion by the jobs with too restrictiveJobRequire-
ments. The jobs whose time-to-live timer has expired, are removed
from the buffer and returned back to the queue for another schedul-
ing attempt.
Replication phase (Algorithm 2) requires continuous monitoring
of the deadline expiration of all running jobs. In practice, the ex-
pired jobs are detected via efficient database query without exhaus-
tive traversal.

The evaluation of theReplicationRequirements, however, can-
not be offloaded to the database, as it is hard (if at all possible),
to map the respective classad expression to the general database
query. However, the algorithm evaluates theReplicationRequire-
mentsattribute only when there are not enough enqueued jobs of
the respective BOT, hence avoiding the overhead during the high-
throughput phase. Furthermore, the feeder selects the candidates
for replication via weighted sampling, where the weight is reverse
proportional to the number of existing replicas of a job, to first
replicate all the jobs having fewer replicas. We also restrict the

maximum number of replicas per job to avoid unlimited replica-
tion.

6.3 Tail phase detection
We consider a BOT to be in the tail phase when the number of its

jobs in the queue drops below a certain threshold, usually about the
size of the scheduling buffer. Once this condition is satisfied, the
feeder updates theTail attribute in the BOT’s classad, making this
information available to the work-dispatch logic. The advantage
of such tail detection heuristics is that it does not require to esti-
mate the number of the available resources, which cannot be done
reliably.

The new jobs created as a result of replication (or job failure)
may fill the queue again, causing theTail attribute to turn back to
false. Such fluctuations are sometimes undesirable and can be dis-
abled, in particular when theTail attribute is used to tighten the
constraints on the scheduling policies in the tail phase, e.g., by al-
lowing execution on more reliable hosts. On the other hand, the
Tail attribute can be used for automatic adjustment of the replica-
tion rate if it becomes too high.

6.4 Scalability optimizations
System scalability depends mainly on scheduler’s ability to

quickly choose the set of the jobs having the highestRankfor the
requesting host. Since theRankdepends on the host parameters,
no advanced indexing is applicable, hence only exhaustive traver-
sal over all the jobs in the scheduling buffer will allow the precise
actuation of the ranking policy. TheConcurrencyattribute further
complicates the problem, as the number of jobs to be sent to a host
depends on the host properties. The option of reducing the schedul-
ing buffer is unacceptable, as it must be large enough to allow rep-
resentation of all the enqueued BOTs.

Our optimization is based on the observation that the jobs of a
single BOT are almost alwaysidentical from the scheduling per-
spective. Indeed, the policies are specified at the BOT level as all
the jobs pertaining to the same BOT are assumed to share the same
resource requirements. However, for the jobs with multiple running
replicas, this similarity no longer exists. The scheduling policy may
differentiate between jobs having multiple running replicas by con-
sidering the properties of the hosts where these replicas are being
executed. One example is when the policy disallows invocation
of multiple replicas of the same job in the same grid, in order to
distribute the risk.

Applying the above optimization reduces the scheduling com-
plexity fromO(#jobs in scheduling buffer) toO(#BOTs in schedul-
ing buffer). Also, it enables the rejection of unmatched hosts up-
front, which is very important when community grids are part of the
infrastructure, as the clients cannot be prevented from contacting
the server. This optimization significantly increases the scalability
while still covering most of the important scheduling policies, as
will be shown in the experiments.

6.5 Execution clients
The overlay is formed by BOINC clients submitted to the grid by

the grid submitters. However, a few modifications to the existing
clients were required, involving some non-trivial changes to allow
proper error handling in grids.

We focus on the following types of failures:

1. Failures due to faulty resources which continuously produce
errors immediately after starting the job – “black holes”

2. Network failures or failures due to the excessive server load
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Black hole elimination requires the client statistics to be stored
on the server. The client generates a unique random identifier when
first contacting the server, and uses it in all future communications.
This identifier is supposed to be stored persistently in the machine
where the client is installed. In grids, however, the client state is
wiped from the execution machine after preemption, which effec-
tively results in the loss of the server-side statistics. We solved the
problem by generating a consistent identifier using the host MAC
address.

Network failures are frequent in wide area networks, and BOINC
clients automatically retry the failed transaction with exponential
back-off. In grids, however, the back-off eventually leads to au-
tomatic self-termination of the client to avoid grid resource idling.
Our attempt to shorten the back-off solved this particular problem,
but resulted in an exceedingly high network traffic (which in fact
was classified as a DDoS attack) when the real cause of the failure
was the server overload and not the network outage. Hence, for
large scale deployments, the exponential backoff must be in place
even at the expense of efficiency.

7. RESULTS
The development of GridBot was primarily motivated by the

Superlink-online system, which performs statistical analysis of ge-
netic data for detecting defective disease-provoking genes in hu-
mans and animals. It is accessible via a simple Web interface, and
is used by geneticists worldwide. Since 2006, over 18,000 anal-
yses have been performed by the system. The analysis is auto-
matically parallelized and transformed into a BOT with jobs of the
required granularity [33]. The computational demands vary signif-
icantly among different inputs, ranging from a few CPU seconds to
hundreds of CPU years.

The experiments described in this section serve three main goals:
to compare GridBot with the other alternatives for running BOTs;
to evaluate its scalability as a function of the number of jobs and
BOTs in the queue, and the job request rate; and to demonstrate
the flexibility of the policy specification as well as the impact of
different scheduling and replication policies in a large-scale multi-
grid environment.

We performedall the experiments using real data from the
runs that were previously invoked via Superlink-online. Namely,
we used the genetic data previously submitted by the users of
Superlink-online, effectively re-executing the analysis, in some
cases several times to obtain statistically valid results.

The GridBot deployment used for these experiments is shown in
Figure 4. Nor the exclusive access to the resources was granted,
neither any of them were reserved during the experiments. Instead,
all the grid resources were allocated on purely opportunistic basis
via local grid management infrastructures.

The current deployment features the fail-over dedicated cluster,
in addition to the grids. Jobs that fail repeatedly in the grids are au-
tomatically transferred to this cluster to be invoked in the controlled
environment.

Naive execution via BOINC overlay. We executed a medium-
sized BOT using resources in all available grids. For this experi-
ment we replaced the policy-driven work-dispatch server with the
unmodified BOINC server. The rest of the GridBot system was
left unchanged. The experiment was repeated five times and the
best run selected. The graph in Figure 5 shows the distribution of
the number of incomplete jobs over time. Observe the high con-
sumption in the throughput phase and the slow tail phase.

The graph also demonstrates how theDeadline parameter af-
fects the job execution.Deadlinewas set to three days for all jobs.
This was the minimum acceptable value for the volunteers in Su-
perlink@Technion grid. The reason for such a long deadline is in
the structure of community grids in general, most of which assign
deadlines of several weeks. Since a single client is connected to
many such grids, those with shorter deadlines (less than three days)
effectively require their jobs to be executed immediately, thus post-
poning the jobs of the other grids. This is considered selfish and
leads to contributor migration and a bad project reputation, which
together result in a significant decrease in throughput.

Observe that some of the results were returned more than 30
hours after they were sent for execution. In general, we found that
the ratio between execution time and turnaround time for the jobs
in the community grid varies between 0.01 to 1, with the average at
0.3 (as opposed to 1 for collaborative grids).

The execution of the same BOT by GridBot using the same set of
resources required only 8 hours versus 280 by the naive execution,
without violating the minimum deadline constraint for community
grids.

GridBot versus Condor. We compared the turnaround time of a
BOT executed via GridBot under the policy to route jobs only to
the UW Madison Condor pool, with the turnaround time of that
BOT executed directly via Condor in the same pool. Comparison
with Condor is particularly interesting since GridBot implements a
matching mechanism similar to that of the Condor work-dispatch
daemon. This setup gives an advantage to Condor because its
work-dispatch daemon is located close to the execution machines
in Madison, whereas the GridBot server resides in Israel.

To put GridBot under high load, we ran a BOT of 3000 short
jobs ranging from 30 seconds to 5 minutes. GridBot was config-
ured with a 10 minuteDeadline. The replication policy allowed
replication of a job if the failure rate of the running host was above
10%. The BOT was executed five times in each system.

The average turnaround time in GridBot was 53+/-10 minutes,
versus 170+/-41 minutes in Condor, with GridBot faster, on aver-
age, by a factor of 3. Less than 1% of the jobs were replicated. This
result proves that the execution via GridBot does not introduce any
overhead as compared to Condor, and in this case (small BOTs with
short jobs) is even more efficient.

High throughput run. We invoked a BOT with 2.2 million jobs
ranging from 20 to 40 minutes. The BOT was completed in 15 days.
The accumulated CPU time (sum of the times measured locally by
each execution client, hence excluding communications) used by
the system for this run is 115 CPU years. The effective throughput
is equivalent to that of a dedicated cluster of 2,300 CPUs. The
BOT execution involved all nine available clusters and grids. The
contribution by the five main grids is summarized in Figure 6(c).

Figure 6(a) depicts the change in the number of incomplete jobs
during the run. The almost linear form of the graph suggests
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Figure 5: Naïve execution of BOT in multi-grid

that GridBot consistently managed to recruit a large number of re-
sources despite the high volatility of grid resources.

Figure 6(b), which is a snapshot of the online GridBot Web con-
sole [6], presents the effective throughput of the system during
the last week of this run. In this chart,Community, OSG, EGEE,
Madison-condor, T-condorsignify the Superlink@Technion com-
munity grid, the Open Science Grid, the EGEE grid, the large Con-
dor pool in UW Madison, and the Technion dedicated Condor pool,
while all the rest represent different clusters and groups of desktop
machines in the Technion campus.

In a non-dedicated environment, the number of concurrently ex-
ecuting CPUs cannot be used to estimate the throughput because of
the job failures. To obtain a more realistic estimate, we periodically
sampled the running time of 1000 recently finished jobs, and mul-
tiplied their average by the number of jobs consumed since the last
sample. Provided that all the jobs have similar computing demand,
the obtained estimate yields the number of CPUs in an imaginary
fully dedicated cluster. The capacity of each CPU in this imaginary
cluster equals the average over the capacities of all CPUs contribut-
ing to the computation (currently 1.4 GFLOPs per CPU according
to our data).

Observe the spike in the throughput on 24/02 in Figure 6(b).
There was a network failure in the Technion, and the spike occurred
immediately after the network was restored. This is a consequence
of the prefetching of jobs by the clients. The clients continued to
execute the already prefeched jobs despite their inability to access
the server and uploaded them when the connectivity was restored.

The tail phase began in the evening of 24/02, when there were
about 60,000 incomplete jobs. All these jobs had already been sent
for execution, and the queue was empty. This also coincides with
the throughput drop in the grids, since the overlay constructor rec-
ognized the decreased resource demand.

This run demonstrates the unique capabilities of GridBot to em-
ploy multiple grids under a unified scheduling framework.

Influence of the scalability optimization. We evaluated how the
scalability optimization (Section 6.4) affected the throughput.

GridBot was configured with a scheduling buffer of 1500 jobs
and invoked with and without the optimization. We used a BOT
of 29,000 jobs, 10-15 minutes each. For each configuration we ran
the BOT twice: the first time over all collaborative grids, and the
second time over all resources including the community grid.

Both configurations performed equally over the collaborative
grids, with a peak job dispatch rate of about 3 jobs per second.
However, the run over all grids failed in the non-optimized mode.
The increased job request rate was beyond the server’s capabilities
and led to the buildup of pending requests. The current implemen-
tation failed to handle this overload properly, and at some point
started to drop all the requests without serving them.

While the optimization was crucial to allow scaling to more re-
sources, even the non-optimized mode was scalable enough to en-
able the run over all collaborative grids.
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Figure 6: High throughput run statistics: (a) The number of in-
complete jobs over time. (b) Throughput across different grids
over time. (c) Aggregate statistics per grid.

Scalability benchmarks. We evaluated the scalability of GridBot
across three dimensions: number of jobs in the queue, number of
BOTs in the queue, and number of job requests per second. GridBot
was configured in the optimized mode in all the experiments.

We observed no change in performance even with several million
of enqueued jobs, as was also demonstrated by the high throughput
run above. This was expected, as the work-dispatch logic does not
depend on this parameter. The other two parameters were evaluated
by imposing high load in a real large-scale setup.
Number of BOTs in the queue.We submitted 50 BOTs at once, each
with 1200 jobs with an average running time of three minutes per
job. This number of BOTs exceeds by a factor of five the peak load
observed in the production Superlink-online system. We restricted
the BOT execution to EGEE,OSG,UW Madison, and the Technion
cluster. However, additional load was created by the hosts from
Superlink@Technion, which cannot be prevented from contacting
the server.

We assigned a uniqueRankbetween 1 and 50 to each BOT to
force the system to execute them one-by-one. Thus, we expect
the higher priority BOTs to approach termination before the low-
priority BOTs are started.

Figure 7(a) shows the results of the experiment. The statistics
depicted in the graph were calculated as follows. The BOTs are
ordered byRankin an increasing order. For each BOT we recorded
the time stamp when the number of incomplete jobs reached 1000,
500, 100, 50 and 0 (BOT terminated). One curve connects the re-
spective timestamps of all the BOTs. The ordinate represents the
time in the system.

Ideally, we expect the graph to decrease linearly from the low-
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Figure 7: Scalability benchmark for the number of BOTs in the
queue: (a) Precision of the ranking policy. (b) Distribution of
the turnaround times.

est priority to the highest, indicating that the BOTs are executed
according to their priorities.

Figure 7(a) demonstrates that the system behaves exactly as ex-
pected. According to the curve corresponding to the beginning of
each BOT (1000 jobs left), none of the lower-ranked BOTs was
started before those with higher priority. Observe also that the
curve for 500 remaining jobs closely follows the one for 1000 jobs.
Hence the bulk of computations for each BOT is performed ac-
cording to the correct order. The deviation from this ideal behavior
starts when the number of incomplete jobs drops below 100. This
behavior is expected in the tail phase, where the execution progress
becomes affected by random resource failures.

While Rankis constant in this experiment, the work-dispatch al-
gorithm is not optimized for this case and evaluates theRankat-
tribute as usual. Thus, the correct execution in this experiment in-
dicates correct execution with an arbitraryRankexpression.

Figure 7(b) shows the distribution of BOT turnaround times as a
function of the number of BOTs in the queue. Clearly the perfor-
mance is not affected by the larger number of enqueued BOTs.
Number of job requests. We invoked a single BOT with 42200 jobs,
10 to 50 minutes per job. The maximum job request rate during
the execution of this BOT on all the available resources reached 4
requests per second. SinceConcurrencywas set to 5, which is rea-
sonable for high-throughput runs with millions of jobs, the effective
job dispatch rate reached 20 per second. The peak throughput was
equivalent to that of a cluster of 3,700 dedicated cores.

Next we invoked the same BOT, but this time we split each origi-
nal job into five. Hence this run involved 211,000 jobs of a few min-
utes each. As expected, the job request rate increased and reached
18 requests per second from different clients, leading to an effective
work dispatch rate of 93 jobs per second. Despite the high load, we
observed no degradation in the overall throughput.

Unfortunately, our attempt to push the limits even further did not
succeed. The increase in network traffic and the rate of establishing
new inbound connections to the server was classified by the central
Technion firewall as a DDoS attack, and resulted in severe network
degradation. Thus the network, rather than the work dispatch im-
plementation, becomes the major bottleneck when scaling beyond
30-40 job requests per second.
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Figure 8: Influence of policies on turnaround time for small
BOTs.

Influence of policies on turnaround time for small BOTs.
Figure 8 presents the results of the execution of four copies of the
same BOT with 1200 jobs of three minutes each. All BOTs were
invoked one after the other. The policies used in this experiment
appear in 8(b).

The scheduling policy of all BOTs allowed the use of the col-
laborative grids (OSG,EGEE and UW Madison) and the Technion
cluster. B4 further restricted the execution to hosts having low fail-
ure rate and a recent history of successful job execution.

All BOTs had the sameDeadline, and the same conservative
replication policy, allowing a job to be replicated only once in
(Concurrency×1000) seconds.

We see that for such small BOTs, the execution of jobs on poten-
tially faulty hosts should be avoided (Figure 8(a)). We also observe
that the increase ofConcurrency, namely, the increase in the size
of bundle of jobs assigned to the same host, results in a longer
tail phase. This is caused by the increased failure rate due to the
higher chances of such job to be preempted. Such a policy should
thus be avoided toward the end of the run. Among these policies,
B4 seems to behave best as it dynamically chooses the hosts with
higher chances to complete the jobs. Such a policy, however, is
likely to be beneficial ony for shorter BOTs because of the de-
creased throughput versus the more permissive ones.

Influence of replication policy in collaborative grids. We evalu-
ated the influence of the replication and scheduling policies in col-
laborative grids alone. In each run we invoked a single BOT with
30,000 jobs, 10-15 minutes each. The results in the table below are
averaged over five runs for each policy.

The Permissivereplication policy allowed up to 5 replicas per
job, whereas theRestrictiveone allowed replication only if one of
the replicas was running on an unreliable host (error rate higher
than 1%, no recent successful results) or longer than 30 minutes.
The Permissivescheduling policy allowed execution on all hosts.
TheRestrictivescheduling added the constraint to allow only reli-
able hosts during the tail phase. We measured the portion of jobs
created during replication (Replicas column) and the portion of jobs
whose results were discarded as there was already one result avail-
able (Waste column) out of the number of jobs in the run without
replication.

We see that allowing unlimited replication is both wasteful and
inefficient. Replicas of the same job compete for resources, which
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Replication Scheduling Replicas
(%)

Waste
(%)

Turnaround

P1 Permissive Permissive 58 30 4.1h
P2 Restrictive Restrictive 11 7 3.2h
P3 Permissive Restrictive 73 57 4.2h
P4 Disabled Restrictive 0 0 5.1h
P5 Disabled Permissive 0 0 5.8h

Figure 9: Influence of replication policy in collaborative grids.

effectively slows down the execution. When the replication is dis-
abled, the policy P4 which restricted the execution to the reliable
resources toward the end of the run achieved better results.

These are only a few examples of the intuitively correct policies.
But the true power of GridBot is in the ability to accommodate any
user-specified runtime policies, which is impossible in any other
system for BOT execution.

Replication with multiple BOTs and community grid. The ex-
periment focuses on the influence of replication policies on the
turnaround time when multiple BOTs are in the queue. In addi-
tion, we allowed the use of community grid resources. We invoked
the same BOT as previously, but instead of submitting one BOT
each time, BOTs were assigned different priorities and invoked si-
multaneously. The evaluated policies appear in Figure 10(b). The
Permissivereplication policy allowed up to 5 replicas for a job. The
Restrictive1 allowed replication once in 15 minutes, and only if at
least one of the existing replicas is running on a host with high error
rate. TheRestricitve2 was set to replicate only when the number of
incomplete jobs dropped below 2000. ThePermissivescheduling
policy allowed execution on all machines. TheRestrictive1 added
the constraint of disallowing community grid resources in the tail
phase. TheRestrictive2 was similar toRestrictive1, but the begin-
ning of the tail phase was recognized via the static condition of
the number of incomplete jobs being below 2000, rather than the
dynamicTail attribute.

Figure 10(a) shows the results of the run. We see that R1 has
longer turnaround time despite thePermissivereplication policy,
which agrees with the results of the same policy in the previous
experiment. R2 results in faster execution, and so does R3, despite
the restrictive replication policy.

R4 proved particularly inefficient, due to the incorrect estimate
of the expected beginning of the tail phase. Observe that the true
tail phase began when there were about 10,000 incomplete jobs,
in contrast with the 2000 jobs threshold estimated a priori. Fur-
thermore, all the jobs which failed during the true tail phase were
resubmitted to the community grid hosts, as all the collaborative
grids were still occupied by R3. Once we changed the threshold
from 2000 to 4000 jobs, it completed in 80 minutes.

Observe that the number of replicas generated in this experiment
is larger than the number of replicas in the one involving only col-
laborative grids, even by the restrictive policies. This is because of
the use of the community grid for such relatively short BOTs. From
30% to 70% of all jobs were sent to community grid resources,
characterized by a higher turnaround time. Hence, even the restric-
tive replication policy allowed replication of such jobs. Most of the
original jobs succeeded but the results were discarded.

We also see the influence of excessive replication when there are
multiple BOTs in the queue. Observe that the time between R4 and
R3 is shorter than that between R3 and R2, or R2 and R1. Observe
also the knee in the graph of R3 when it reaches 13,000 jobs. The
BOT tail was detected, and the new jobs were sent to the grids,
which were already occupied by R2.
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Figure 10: Influence of replication policy in a mixture of com-
munity and collaborative grids and multiple BOTs.

Summary. The main goal of the extensive large-scale experiments
performed in this work is to highlight the importance of the flexi-
bility of policy specification. This is illustrated in the last three
experiments, where the results of using similar policies in different
settings emphasize the necessity of policy adjustment.

Moreover, the experiments show that some non-trivial policies
yield better turnaround time, which is often the user’s main con-
cern. Namely, preferring reliable resources in the tail phase is
worthwhile for both longer and shorter BOTs, whereas constraining
the resources during the entire run reduces the effective throughput
for the former. Static bundling of multiple jobs may increase BOT
turnaround time due to the increased probability of job failures.
Dynamic bundling based on the host failure rate achieves better re-
sults, though behaves significantly worse than no bundling at all if
the bundle size is not tailored to the actual grid characteristics.

Our experiments also confirm that proper replication policy im-
proves turnaround time but wastes resources. When the gap be-
tween the required and actual turnaround times of jobs invoked on
grid resources is large, more replicas are created. This is the case
for community grids. But replicating a job without considering
the reputation of the machines already running other replicas re-
sults in less efficient resource use and even increases the turnaround
time. Furthermore, allowing replication in the multi-BOT case ef-
fecitvely delays the other BOTs in the queue. However, while unde-
sirable in multi-user or pay-as-you-use environment, these artifacts
of replication are less of a concern if the timely completion of a
certain BOT is required.

8. CONCLUSIONS
We presented GridBot, a policy-driven mechanism for efficient

execution of BOTs on a platform unifying multiple grids of differ-
ent types. We demonstrated the flexibility and scalability of Grid-
Bot by executing numerous real BOTs, with hundreds to millions
of jobs each, on thousands of CPUs from multiple large-scale col-
laborative and community grids. None of the policies used in the
experiments behaves equally well in all the settings. Hence, the
ability of GridBot to accommodate an arbitrary dynamic policy is
essential for efficient execution of BOTs under dynamic environ-
mental conditions and changing user preferences.

We believe that production grid systems can benefit from adding
BOT replication and scheduling mechanisms. For example, extend-
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ing Condor with such mechanisms seems to fit naturally in the ex-
isting system design.

Lessons learned.GridBot reemphasizes the benefits of using over-
lay computing for executing jobs over grids. In addition to the per-
formance benefits for the grid user, bypassing the grid queues sig-
nificantly reduces the load on the grid gateways, thus increasing the
overall system performance. However the overlay may also have
negative effects on the grids. Working closely with grid adminis-
trators in the design of GridBot, we learned a number of important
lessons in this regard.

The overlay execution client might occupy the remote resource
forever if not terminated by the grid system. While having little
effect in systems with preemptive scheduling, this behavior may
lead to starvation of the other grid jobs in preemption-free environ-
ments, and to the underutilization of grid resources. Furthermore,
the discrepancy between the information available to the overlay
constructor layer and the one used by the scheduler may lead to
the resources being occupied but not used. Another problem arises
from the “infinite supply” of overlay execution clients, which are
continuously being pushed to the grids to maintain the overlay in-
stead of those clients which were terminated or evicted. It is thus
essential to avoid queue overload on the grid gateways by limiting
the number of submitted jobs. Furthermore, without active runtime
monitoring of the load, even a single permanently failing resource
may render the grid gateway unusable if the execution clients are
submitted blindly and destined to failure. Finally, the open com-
munication channel created by the overlay directly into the grid
resources allows easy bypass of the grid security mechanisms. Not
only does the security of the whole grid system become dependent
on that of the overlay infrastructure, but the identity of the users
running the jobs via the overlay is hidden from the grid accounting
system.

Another important component of GridBot is job replication.
However, as has been shown in the experiments, an incorrect repli-
cation policy may significantly increase the workload and decrease
system efficiency. While GridBot implements mechanisms to avoid
excessive replication, the impact of replication policies on the per-
formance of the entire grid still have to be investigated.

Future work. Our recent [32] and future work focuses on the
inclusion of GPU farms and GPU grids in our framework, as well
as extending the overlay constructor to allow efficient use of pay-
as-you-use cloud infrastructures in conjunction with other grids.
In collaboration with the Tokyo Institute of Technology, GridBot is
being enhanced to integrate the TSUBAME supercomputer into the
same scheduling framework with other grids: this enhancement is
facilitated by the flexible scheduling mechanisms presented in this
paper.
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