A Distributed System for Genetic Linkage Analysis*

Mark Silberstein, Dan Geiger, and Assaf Schuster

Technion — Israel Institute of Technology
{marks|dang|assaf}@cs.technion.ac.il

Abstract. Linkage analysis is a tool used by geneticists for mapping disease-
susceptibility genes in the study of Mendelian and complex diseases. However
analyses of large inbred pedigrees with extensive missing data are often be-
yond the capabilities of a single computer. We present a distributed system called
SUPERLINK-ONLINE for computing multipoint LOD scores of large inbred pedi-
grees. It achieves high performance via efficient parallelization of the algorithms
in SUPERLINK, a state-of-the-art serial program for these tasks, and through uti-
lization of thousands of resources residing in multiple opportunistic grid envi-
ronments. Notably, the system is available online, which allows computationally
intensive analyses to be performed with no need for either installation of soft-
ware, or maintenance of a complicated distributed environment. The main algo-
rithmic challenges have been to efficiently split large tasks for distributed execu-
tion in a highly dynamic non-dedicated running environment, as well as to utilize
resources in all the available grid environments. Meeting these challenges has
provided nearly interactive response time for shorter tasks while simultaneously
serving massively parallel ones. The system, which is being used extensively by
medical centers worldwide, achieves speedups of up to three orders of magnitude
and allows analyses that were previously infeasible.

1 Introduction

Linkage analysis aims at facilitating the understanding of mechanisms of genetic dis-
eases via identification of the areas on the chromosome where disease-susceptibility
genes are likely to reside. Computation of a logarithm of odds (LOD) is a valuable tool
widely used for the analysis of disease-susceptibility genes in the study of Mendelian
and complex diseases. The computation of the LOD score for large inbred pedigrees
with extensive missing data is often beyond the computation capabilities of a single
computer. Our goal is to facilitate these more demanding linkage computations via par-
allel execution on multiple computers.

We present a distributed system for exact LOD score computations, called
SUPERLINK-ONLINE [1], capable of analyzing inbred families of several hundreds in-
dividuals with extended missing data using single and multiple loci disease models. Our
approach, made possible by recent advances in distributed computing (e.g., [2]), elimi-
nates the need for expensive hardware by distributing the computations over thousands
of non-dedicated PCs and utilizing their idle cycles. Such opportunistic environments,

* This work is supported by the Israeli Ministry of Science.

W. Dubitzky et al. (Eds.): GCCB 2006, LNBI 4360, pp. 110123, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

A Distributed System for Genetic Linkage Analysis 111

referred further as grids, are characterized by the presence of many computers with dif-
ferent capabilities and operating systems, frequent failures, and extreme fluctuations in
the number of computers available. Our algorithm allows a single linkage analysis task
to be recursively split into multiple independent subtasks of required size; each subtask
can be further split into smaller subtasks for performance reasons. The flexibility to
adjust the number of subtasks to the amount of available resources is particularly im-
portant in grids. The subtasks are then executed on grid resources in parallel, and their
results are combined and outputted as if executed on a single computer.

SUPERLINK-ONLINE delivers the newest information technology to geneticists via a
simple Internet interface, which completely hides the complexity of the underlying dis-
tributed system. The system allows for concurrent submission and execution of linkage
tasks by multiple users, generating a stream of parallel and serial tasks with vastly dif-
ferent (though unknown in advance) computational requirements. These requirements
range from a few seconds on a single CPU for some tasks to a few days on thousands
for others. The stream is dynamically scheduled on a set of independently managed
grids with vastly different amounts of resources. In addition, the time spent in a grid on
activities other than actual task execution differs for different grids, and the difference
can reach several orders of magnitude. We refer to such activities — such as resource
allocation or file transfer — as execution overhead. The challenge is to provide nearly
interactive response time for shorter tasks (up to a few seconds), while simultaneously
serving highly parallel heavy tasks in such a multi-grid environment.

Our system implements a novel scheduling algorithm which combines the well-
known Multilevel Feedback Queue (MQ) [3] approach with the new concept of grid
execution hierarchy. All available grids in the hierarchy are sorted according to their
size and overhead: upper levels of the hierarchy include smaller grids with faster re-
sponse time, whereas lower levels consist of one or more large-scale grids with higher
execution overhead. The task stream is scheduled on the hierarchy, so that each task is
executed at the level that matches the task’s computational requirements, or its complex-
ity. The intuition behind the scheduling algorithm is as follows. As the task complexity
increases, so do the computational requirements and the tolerable overhead. Conse-
quently, more complex tasks should be placed at a lower level of the hierarchy, and
parallelized according to the available resources at that level.

The proper execution level for a given task is easy to determine if the task complex-
ity is known or simple to compute. Unfortunately, this is not the case for the genetic
linkage analysis tasks submitted to the system. In fact, geneticists usually do not know
whether the results can be obtained in a few seconds, or whether the task will require
several years of CPU time. Provably, for the linkage analysis tasks estimating the exact
complexity of a given task is NP-hard in itself [4].

Our algorithm allows the proper execution level to be quickly determined via fast
estimation of an upper bound on the task complexity. We apply a heuristic algorithm
that yields such an upper bound [5] for a fraction of the running time limit assigned to
a given hierarchy level. If the complexity is within the complexity range of that level
(which is configured before the system is deployed), the task is executed; otherwise it is
moved directly to a lower level. The precision of the complexity estimation algorithm
improves the longer it executes. Consequently, task complexity is reassessed at each

112 M. Silberstein, D. Geiger, and A. Schuster

level prior to the actual task execution. The lower the level, the greater the amount of
resources that are allocated for estimating more precisely its complexity, resulting in a
better matched hierarchy level.

SUPERLINK-ONLINE is a production system which assists geneticists worldwide,
utilizing about 3000 CPUs located in several grids at the Technion in Haifa, and at the
University of Wisconsin in Madison. During the last year the system served over 7000
tasks, consuming about 110 CPU years over all available grids.

The paper is organized as follows. In Section 2 we show the algorithm for scheduling
a stream of linkage analysis tasks on a set of grids. In Section 3 we describe the parallel
algorithm for genetic linkage analysis. The current deployment of the SUPERLINK-
ONLINE system is reported in Section 4, followed by performance evaluation, related
work and future research directions.

2 The Grid Execution Hierarchy Scheduling Algorithm

The algorithm has two complementary components: organization of multiple grids into
a grid execution hierarchy and a set of procedures for scheduling tasks on this hierarchy.

2.1 Grid Execution Hierarchy

The purpose of the execution hierarchy is to classify available grids according to their
performance characteristics, such as execution overhead and amount of resources, so
that each level of the hierarchy provides the best performance for tasks of a specific
complexity range.

Upper levels of the hierarchy include smaller grids with faster response time, whereas
lower levels consist of one or more large-scale grids with higher execution overhead.
The number of levels in the hierarchy depends on the expected distribution of task com-
plexities in the incoming task stream, as explained in Section 4.

Each level of the execution hierarchy is associated with a set of one or more queues.
Each queue is connected to one or more grids at the corresponding level of the hierarchy,
allowing submission of jobs into these grids. A task arriving at a given hierarchy level
is enqueued into one of the queues. It can be either executed on the grids connected
to that queue (after being split into jobs for parallel execution), or migrated to another
queue at the same level by employing simple load balancing techniques. If a task does
not match the current level of the execution hierarchy, as determined by the scheduling
procedure presented in the next subsection, it is migrated to the queue at a lower level
of the hierarchy.

2.2 Scheduling Tasks in Grid Hierarchy

The goal of the scheduling algorithm is to quickly find the proper execution hierarchy
level for a task of a given complexity . Ideally, if we knew the complexity of each task
and the performance of each grid in the system, we could compute the execution time
of a task on each grid, placing that task on the one that provides the shortest execution

A Distributed System for Genetic Linkage Analysis 113

time. In practice, however, neither the task complexity nor the grid performance can be
determined precisely. Thus, the algorithm attempts to schedule a task using approximate
estimates of these parameters, dynamically adjusting the scheduling decisions if these
estimates turn out to be incorrect.

We describe the algorithm in steps, starting with the simple version, which is then
enhanced. Due to space limitations we omit some details available elsewhere [6].

Simple MQ with grid execution hierarchy. Each queue in the system is assigned a
maximum time that a task may execute in the queue (execution time)T,'. The queue
configured to serve the shortest tasks is connected to the highest level of the execu-
tion hierarchy, the queue for somewhat longer tasks is connected to the next level, and
SO on.

A task is first submitted to the top level queue. If the queue limit 7% is violated, a task
is preempted, check-pointed and restarted in the next queue (the one submitting tasks
to the next hierarchy level).

Such an algorithm ensures that any submitted task will eventually reach the hierarchy
level that provides enough resources for longer tasks and fast response time for shorter
tasks. In fact, this is the original MQ algorithm applied to a grid hierarchy.

However, the algorithm fails to provide fast response time to short tasks if a long task
is submitted to the system prior to a short one. Recall that the original MQ is used in
time-shared systems, and tasks within a queue are scheduled using preemptive round-
robin, thus allowing fair sharing of the CPU time [3]. In our case, however, tasks within
a queue are served in FCFS manner (though later tasks are allowed to execute if a task
at the head of the queue does not occupy all available resources). Consequently, a long
task executed in a queue for short tasks may make others wait until its own time limit is
exhausted.

Quick evaluation of the expected running times of a task in a given queue can prevent
the task from being executed at the wrong hierarchy level. Tasks expected to consume
too much time in a given queue are migrated to the lower level queue without being
executed. This is described in the next subsection.

Avoiding hierarchy level mismatch. Each queue is associated with a maximum al-
lowed task complexity C', derived from the maximum allowed execution time 7, by
optimistically assuming linear speedup, availability of all resources at all times, and
resource performance equal to the average in the grid. The optimistic approach seems
reasonable here, because executing a longer task in an upper level queue is preferred
over moving a shorter task to a lower level queue, which could result in unacceptable
overhead. The following naive relationship between a complexity limit C, and a time
limit 7, reflects these assumptions:

Ce:Te'(N'P'ﬁ)v (l)

where N is the maximum number of resources that can be allocated for a given task,
P is the average resource performance, and (is the efficiency coefficient of the

! For simplicity we do not add the queue index to the notations of queue parameters, although
they can be set differently for each queue.

114 M. Silberstein, D. Geiger, and A. Schuster

application on a single CPU, defined as a portion of CPU-bound operations in the over-
all execution.

For each task arriving to the queue, task’s complexity is first estimated”. Allocating
a small portion o < 1 of T, for complexity estimation often allows quick detection of
a task that does not fit in the queue. The task is migrated to the lower level queue if its
complexity estimate is higher than C..

However, the upper bound on the task’s complexity might be much larger than the
actual value. Consequently, if the task is migrated directly to the level in the hierarchy
that serves the complexity range in which this estimate belongs, it may be moved to
too low a level, thus decreasing the application’s performance. Therefore, the task is
migrated to the next level, where the complexity estimation algorithm is given more
resources and time to execute, resulting in a more precise estimate.

The queue complexity mismatch detection improves the performance of both shorter
and longer tasks. On the one hand, the computational requirements of longer tasks are
quickly discovered, and the tasks are moved to the grid hierarchy level with enough
computational resources avoiding the overhead of the running task migration. On the
other hand, longer tasks neither delay nor compete with the shorter ones, reducing the
response time and providing nearly interactive user experience. In practice, however,
a task may stay in the queue longer than initially predicted because of the too opti-
mistic grid performance estimates. Thus, the complexity mismatch detection is com-
bined with the enforcement of the queue time limit described in the previous subsec-
tion, by periodically monitoring the queue and migrating tasks which violate the queue
time limit.

2.3 Handling Multiple Grids at the Same Level of the Execution Hierarchy

The problem of scheduling in such a configuration is equivalent to the well-studied
problem of load sharing in multi-grids. It can be solved in many ways, including using
the available meta-schedulers, such as [7], or flocking [2]. If no existing load shar-
ing technologies can be deployed between the grids, we implement load sharing as
follows.

Our implementation is based on a push migration mechanism (such as in [8]) be-
tween queues, where each queue is connected to a separate grid. Each queue periodi-
cally samples the availability of resources in all grids at its level of the execution hi-
erarchy. This information, combined with the data on the total workload complexity in
each queue, allows the expected completion time of tasks to be estimated. If the current
queue is considered suboptimal, the task is migrated. Conflicts are resolved by reassess-
ing the migration decisions at the moment the task is moved to the target queue. Several
common heuristics are implemented to reduce sporadic migrations that may occur as a
result of frequent fluctuations in grid resource availability [9]. Such heuristics include,
for example, averaging of momentary resource availability data with the historical data,
preventing migration of tasks with a small number of pending execution requests, and
others.

% The complexity estimation can be quite computationally demanding for larger tasks, and in
which case it is executed using grid resources.

A Distributed System for Genetic Linkage Analysis 115

3 Parallel Algorithm for the Computation of LOD Score

LOD score computation can be represented as the problem of computing an expression
of the form

ZZ...Zﬁmxi), @)

1 o Tn =1

where X = {21, x2,...,2,|x; € N}isa set of non-negative discrete variables, ®;(X;)
is a function N¥ — R from the subset X; C X of these variables of size k to the reals,
and m is the total number of functions to be multiplied. Functions are specified by a
user as an input. For more details we refer the reader to [10].

3.1 Serial Algorithm

The problem of computing Eq. 2 is known to be NP-complete [11]. One possible algo-
rithm for computing this expression is called variable elimination [12].

The complexity of the algorithm is fully determined by the order in which variables
are eliminated. For example, two different orders may result in running time ranging
from few seconds to several hours. Finding an optimal elimination order is NP-complete
[13]. A close-to-optimal order can be found using the stochastic greedy algorithm pro-
posed in [5]. The algorithm can be stopped at any point, and it produces better results
the longer it executes, converging faster for smaller problems. The algorithm yields
a possible elimination order and an upper bound on the problem complexity, i.e., the
number of operations required to carry out the computations if that order is used. It is
this feature of the algorithm that is used during the scheduling phase to quickly estimate
the complexity of a given problem prior to execution.

The above algorithm is implemented in SUPERLINK, which is the state-of-the-art
program for performing LOD score computations of large pedigrees.

3.2 Parallel Algorithm

The choice of a parallelization strategy is guided by two main requirements. First, sub-
tasks are not allowed to communicate or synchronize their state during the execution.
This factor is crucial for performance of parallel applications in a grid environment,
where communication between computers is usually slow, or even impossible due to
security constraints. Second, parallel applications must tolerate frequent failures of
computers during the execution by minimizing the impact of failures on the overall
performance.

The algorithm for finding an elimination order consists of a large number of indepen-
dent iterations. This structure of the algorithm allows to parallelize it by distributing the
iterations over different CPUs using the master-worker paradigm, where master process
maintains a queue of independent jobs which are subsequently pulled and executed by
worker processes running in parallel on multiple CPUs. At the end of the execution the
order with the lowest complexity is chosen.

Parallelization of the variable elimination algorithm also fits the master-worker
paradigm and is performed as follows. We represent the first summation over z; in

116 M. Silberstein, D. Geiger, and A. Schuster

Eq.2 as a sum of the results of the remaining computations, performed for every value
of x;. This effectively splits the problem into a set of independent subproblems having
exactly the same form as the original one, but with the complexity reduced by a factor
approximately equal to the number of values of x1. We use this principle recursively
to create subproblems of a desired complexity, increasing the number of variables used
for parallelization. Each subproblem is then executed independently, with the final re-
sult computed as the sum of all partial results.

The choice of the number of subtasks and their respective granularity is crucial for ef-
ficiency of the parallelization. The inherent overheads of distributed environments, such
as scheduling and network delays, often become a dominating factor inhibiting mean-
ingful performance gains, suggesting that long-running subtasks should be preferred.
On the other hand, performance degradation as a result of computer failures will be
lower for short subtasks, suggesting to reduce the amount of computations per subtask.
Furthermore, decreasing the amount of computations per subtask increases the number
of subtasks generated for computing a given problem, improving load balancing and
utilization of available computers.

Our algorithm controls the subtask granularity by specifying maximum allowable
complexity threshold C'. Specifying lower values of C' increases the number of subtasks,
decreasing the subtask complexity and consequently its running time. The value of C'
for a given problem is determined as follows. We initially set C' so that a subtask’s
running time does not exceed the average time it can execute without interruption on a
computer in the Grid environment being used. If such value of C' yields that the number
of subtasks is below the number of available computers, then C'is iteratively reduced to
allow division into more subtasks. The lower bound on C' is set so that overheads due
to scheduling and network delays constitute less than 1% of the subtask’s running time.

3.3 Implementation of the Parallel Algorithm for Execution in Grid Hierarchy

Parallel tasks are executed in a distributed environment via Condor [2], which is a gen-
eral purpose distributed batch system, capable of utilizing idle cycles of thousands of
CPUs?>. Condor hides most of the complexities of job invocation in an opportunistic
environment. In particular, it handles job failures that occur because of changes in the
system state. Such changes include resource failures, or a situation in which control
of a resource needs to revert to its owner. Condor also allows resources to be selected
according to the user requirements via a matching mechanism.

There are three stages in running master-worker applications in Condor: the par-
allelization of a task into a set of independent jobs, their parallel execution via Con-
dor, and the generation of final results upon their completion. In our implementation,
this flow is managed by the Condor flow execution engine, called DAGman, which
invokes jobs according to the execution dependencies between them, specified as a di-
rected acyclic graph (DAG). The complete genetic linkage analysis task comprises two
master-worker applications, namely, parallel ordering estimation and parallel variable
elimination. To integrate these two applications into a single execution flow, we use an
outer DAG composed of two internal DAGs, one for each parallel application.

3 Use of Condor is nor assumed, neither required by the algorithm. Moreover, the system is
being expanded to use other grid batch systems without making any change to the algorithm.

A Distributed System for Genetic Linkage Analysis 117

DAGman is capable of saving a snapshot of the flow state, and then restarting exe-
cution from this snapshot at a later time. We use this feature for migration of a task to
another queue as follows: the snapshot functionality is triggered, all currently executing
subtasks are preempted, the intermediate results are packed, and the task is transferred
to another queue where it is restarted.

4 Deployment of SUPERLINK-ONLINE

The current deployment of the SUPERLINK-ONLINE portal is presented in Figure 1.

We configure three levels of the execution hierarchy, for the following reasons. About
60% of the tasks take a few minutes or less, and about 28% take less than three hours,
as reflected by the histogram in Figure 4, generated from the traces of about 2000 tasks
executed by the system. This suggests that two separate levels, Level 1 and Level 2,
should be allocated for these dominating classes, leaving Level 3 for the remaining
longer tasks. Yet, the current system is designed to be configured with any number of
levels to accommodate more grids as they become available.

Each queue resides on a separate machine, connected to one or several grids. Uti-
lization of multiple grids via the same submission machine is enabled by the Condor
flocking mechanism, which automatically forwards job execution requests to the next
grid in the list of available (flocked) grids, if these jobs remain idle after previous re-
source allocation attempts in the preceding grids.

Queue QI is connected to the dedicated dual CPU server and invokes tasks directly
without parallelization. Queue Q2 resides on a submission machine connected to the
flock of two Condor pools at the Technion. However, due to the small number of re-
sources at Q2, we increased the throughput at Level 2 of the execution hierarchy by
activating load sharing between Q2 and Q3, which is connected to the flock of three
Condor pools at the University of Wisconsin in Madison. The tasks arrive to Q3 only
from Q2. Queue Q4 is also connected to the same Condor pools in Madison as Q3, and
may receive tasks from both Q2 and Q3.

In fact, Q3 exhibits rather high invocation latencies and does not fit Level 2 of the
execution hierarchy well. Alternatively, Q3 could have been set as an additional level
between Q2 and Q4, and the queue time limit of Q2 could have been adjusted to handle
smaller tasks. However, because both queues can execute larger tasks efficiently, such
partitioning would have resulted in unnecessary fragmentation of resources. Migration
allows for a more flexible setup, which takes into account load, resource availability
and overheads in both queues, and moves a whole task from Q2 to Q3 only if this
yields better task performance. Typically, small tasks are not migrated, while larger
tasks usually benefit from execution in a larger grid as they are allocated more execution
resources. This configuration results in better performance for smaller tasks than does
flocking between these two grids, as it ensures their execution on the low-overhead
grid.

To ensure that larger tasks of Q4 do not delay smaller tasks of Q3, jobs of tasks in
Q3 are assigned higher priority and may preempt jobs from Q4. Starvation is avoided
via internal Condor dynamic priority mechanisms [2].

118 M. Silberstein, D. Geiger, and A. Schuster

Technion 82

~200 CPUs % total tasks

Hl % total system CPU time

ock of two

(Technion Condor
pools

(olacated™),
(sorver \J
0,

Mt/

— 1
Ql a4
b
:':rve-ﬂil}--- O - 2==- ;EED
1
-

lock of three
(UW Condor
pools

Comm)

ED:I Task queue

= = Task flow

— Job flow UW-Madison Level 1 Level 2 Level 3
~ 2500 CPUs S
Execution hierarchy
Fig. 1. SUPERLINK-ONLINE deployment Fig. 2. Tasks handled versus the overall sys-

tem CPU time (per level)

5 Results

We evaluate two different aspects of the performance of the SUPERLINK-ONLINE sys-
tem. First, we show the speedups in the running time achieved by the parallel algorithm
implementation over the serial state-of-the-art program for linkage analysis on a set of
challenging inputs. Next, we demonstrate the performance of the scheduling algorithm
by analyzing the traces of about 2,000 tasks served by SUPERLINK-ONLINE during
second half of 2005.

5.1 Parallel Algorithm Performance

We measured the total run time of computing the LOD score for a few real-life chal-
lenging inputs. The results reflect the time a sole user would wait for a task to complete,
from submission to the SUPERLINK-ONLINE system via a web interface until an e-mail
notification about task completion is sent back. Results are summarized in Table 1.

We also compared the running time with that of the newest serial version of SU-
PERLINK, invoked on Intel Pentium Xeon 64bit 3.0 Ghz, 2GB RAM. The entries of
the running time exceeding two days were obtained by measuring the portion of the
problem completed within two days, as made available by SUPERLINK, and extrapolat-
ing the running time assuming similar progress. The time saving of the online system
versus a single computer ranged from a factor of 10 to 700. The results (in particular,
rows 5,7,9,10) demonstrate the system capabilities to perform the analyses which are
infeasible by SUPERLINK, considered a state-of-the-art program for linkage analysis on
such inputs.

In a large multiuser Grid environment used by SUPERLINK-ONLINE, the number of
computers employed in computations of a given task may fluctuate during the execution
between only few to several hundreds. Table 1 presents the average and the maximum
number of computers used during execution. We believe that the performance can be
improved significantly if the system is deployed in a dedicated environment. Running
times of SUPERLINK-ONLINE include network delays and resource failures (handled

A Distributed System for Genetic Linkage Analysis 119

Table 1. SUPERLINK-ONLINE vs. serial SUPERLINK V1.5

Running time #CPU used
SUPERLINK SUPERLINK-

Input VL5 ONLINE Average Maximum
1 5000sec 1050sec 10 10
2 5600sec 520sec 11 11
3 20hours 2hours 23 30
4 450min 47min 82 83
5 ~300hours 7.1hours 38 91
6 297min 27min 82 100
7 “138days 6.2hours 349 450
8 ~2092sec 1100sec 7 8
9 ~231hours 3hours 139 500
10 ~160days 8hours 310 360

automatically by the system). The column average is computed from the number of
computers sampled every 5 minutes during the run.

Example of a previously infeasible analysis. We replicated the analysis performed
for studying the Cold Induced Sweating Syndrome in a Norwegian family [14]. The
pedigree consists of 93 individuals, two of which affected, and only four were typed.
The original analysis was done using FASTLINK [15]. The maximum LOD score of 1.75
was reported using markers D19S895, D19S566 and D19S603, with the analysis limited
to only three markers due to computational constraints*. According to the authors, using
more markers for the analysis was particularly important in this study as “in the absence
of ancestral genotypes, the probability that a shared segment is inherited IBD from
a common ancestor increases with the number of informative markers contained in
the segment; that is, a shared segment containing only three markers has a significant
probability of being simply identical by state, whereas a segment containing a large
number of shared markers is much more likely to be IBD from a common ancestor. Thus,
the four-point LOD score on the basis of only three markers from within an interval
containing 13 shared markers, is an underestimate of the true LOD score”. Study of
another pedigree as well as application of additional statistical methods were employed
to confirm the significance of the findings.

Using SUPERLINK-ONLINE we computed six point LOD score with the markers
D19S895, M4A, D19S566, D19S443 and D19S603, yielding the LOD=3.10 at marker
D19S895, which would facilitate the linkage conclusion based on the study of this pedi-
gree alone.

5.2 Performance of the Grid Execution Hierarchy Scheduling Algorithm

We analyzed the traces of 2300 tasks, submitted to the SUPERLINK-ONLINE system
via Internet by users worldwide for the period between the 1st of June and the 31st of
December 2005. During this time, the system utilized about 460,000 CPU hours (52.5

4 LOD score above 3.3 is considered an indication of linkage.

120 M. Silberstein, D. Geiger, and A. Schuster

Accumulated runtime
@ ¥ Accumulated overhead
¥% W8 Condor evictions
I W Condor queueing

2

%

%Total Tasks
w
o

%

\“\\W\‘

Total time in system(sec)
2

50
40
20
10
0 . -, .

2379
o712
Ql Q2 @ 4 <3m 3m-30m 30m-3h 3h-10h 10h-30h >30h
Queue Task runtime
Fig. 3. Average accumulated time (from arrival Fig. 4. Distribution of real task runtimes as
to termination) of tasks in each queue registered by the system

CPU years) over all Condor pools connected to it (according to the Condor account-
ing statistics). This time reflects the time that would have been spent if all tasks were
executed on single CPU. About 70% of the time was utilized by 1971 successfully com-
pleted tasks. Another 3% was wasted because of system failures and user-initiated task
removals. The remaining 27% of the time was spent executing tasks which failed to
complete within the queue time limit of Q4, and were forcefully terminated. However,
this time should not be considered as lost since users were able to use partial results.
Still, for clarity, we do not include these tasks in the analysis.

We compared the total CPU time required to compute tasks by each level of the exe-
cution hierarchy relative to the total system CPU consumption by all levels together. As
expected, the system spent most of its time handling the tasks at Level 3, comprising
82% of the accumulated running time of the system (see Figure 2). The tasks at Level
2 consumed only 17.7% of the total system bandwidth, and only 0.3% of the time was
consumed by the tasks at Level 1. If we consider the total number of tasks served by
each level, the picture is reversed: the first two levels served significantly more tasks
than the lower level. This result proves that the system was able to provide short re-
sponse time to the tasks which were served at the upper levels of the hierarchy.

This conclusion is further supported by the graph in Figure 3, which depicts the
average accumulated time of tasks in each queue, computed from the time a task is
submitted to the system until it terminates. This time includes accumulated overheads,
which are computed by excluding the time of actual computations from the total time.
As previously, the graph shows only the tasks which completed successfully. Observe
that very short tasks which require less than three minutes of CPU time and are served
by Q1 stay in the system only 72 seconds on average regardless of the load in the other
queues.This is an important property of the scheduling algorithm.

The graph also shows average accumulated overhead for tasks in each queue, which
is the time a task spent in the system performing any activity other than the actual
computations.

A Distributed System for Genetic Linkage Analysis 121

The form of the graph requires explanation. Assuming a uniform distribution of task
runtimes and availability of an appropriate grid for each task, the task accumulated
time is expected to increase linearly towards lower levels of the hierarchy. However
in practice these assumptions do not hold. There are exponentially more shorter tasks
requiring up to 3 minutes on single CPU (see Figure 4). This induces a high load on
Ql, forcing short tasks to migrate to Q2 and thus reducing the average accumulated time
of tasks in Q2. This time is further reduced by the load sharing between Q2 and Q3,
which causes larger tasks to migrate from Q2 to Q3. Thus, shorter tasks are served by
Q2, while longer ones are executed in Q3, resulting in the observed difference between
the accumulated times in these queues. To explain the observed steep increase in the
accumulated time in Q4, we examined the distribution of running times in this queue.
We found that shorter tasks (while exceeding Q3’s allowed task complexity limit) were
delayed by longer tasks that preceded them. Indeed, over 70% of the overhead in that
queue is due to the time the tasks were delayed because of other tasks executing in
that queue. Availability of additional grids for the execution of higher complexity tasks
would allow for the queueing and turnaround time to be reduced.

6 Related Work and Conclusions

In this work we presented the SUPERLINK-ONLINE system, which delivers the power
of grid computing to geneticists worldwide, and allows them to perform previously
infeasible analyses in their quest for disease-provoking genes. We described our parallel
algorithm for genetic linkage analysis, suitable for execution in grids, and the method
for organizing multiple grids and scheduling user-submitted linkage analysis tasks in
such a multi-grid environment.

Future work will include on-the-fly adaptation of the hierarchy to the changing prop-
erties of the grids, designing a cost model to take into account locality of applications
and execution platforms, improving the efficiency of the parallel algorithm, as well as
connection to other grids, such as EGEE-2.

Related work. Parallelization of linkage analysis has been reported in [15-22]. How-
ever, the use of these programs by geneticists has been quite limited due to their de-
pendency on the availability of high performance execution environments, such as a
cluster of high performance dedicated machines or a supercomputer, and due to their
operational complexity.

Execution of parallel tasks in grid environments has been thoroughly studied by
grid researchers (e.g., [23-28]). In particular, [28] addressed the problem of resource
management for short-lived tasks on desktop grids, demonstrating the suitability of
grid platforms for execution of short-lived applications. Various scheduling approaches
have been reported in many works(e.g. meta-schedulers [7,29][30, 31], streams of tasks
scheduling [32], steady-state scheduling [33] and others), however some of the are ei-
ther not applicable in a real environment due to unrealistic assumptions. Others, such
as [9] and [8], inspired the implementation of some system components.

122

M. Silberstein, D. Geiger, and A. Schuster

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Superlink-online: Superlink-online genetic linkage analysis system.

http://bioinfo.cs.technion.ac.il/superlink-online (2006)

. Thain, D., Livny, M.: Building reliable clients and servers. In Foster, I., Kesselman, C., eds.:

The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San-Francisco
(2003)

. Kleinrock, L., Muntz, R.: Processor sharing queueing models of mixed scheduling disci-

plines for time shared systems. Journal of ACM 19 (1972) 464482

. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees. Bioin-

formatics 18(Suppl. 1) (2002) S189-S198

. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for general

pedigrees. Human Heredity 59 (2005) 41-60

. Silberstein, M., Geiger, D., Schuster, A., Livny, M.: Scheduling of mixed workloads in

multi-grids: The grid execution hierarchy. In: 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC-15 2006). (2006)

. CSF: Community scheduler framework.

http://www.globus.org/toolkit/docs/4.0/contributions/csf (2006)

. England, D., Weissman, J.: Costs and benefits of load sharing in the computational grid. In

Feitelson, D.G., Rudolph, L., eds.: 10th Workshop on Job Scheduling Strategies for Parallel
Processing. (2004)

. Vadhiyar, S., Dongarra, J.: Self adaptivity in grid computing. Concurrency and Computation:

Practice and Experience 17(2-4) (2005) 235-257

Friedman, N., Geiger, D., Lotner, N.: Likelihood computation with value abstraction. In:
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI), Morgan
Kaufmann (2000) 192-200

Cooper, G.: The computational complexity of probabilistic inference using bayesian belief
networks. Artificial Intelligence 42 (1990) 393-405

Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference. In Jordan,
M., ed.: Learning in Graphical Models. Kluwer Academic Press. (1998) 75-104

Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree.
SIAM Journal of Algorithms and Discrete Methods 8 (1987) 277-284

Knappskog, P., Majewski, J., Livneh, A., Nilsen, P., Bringsli, J., Ott, J., Boman, H.: Cold-
Induced Sweating Syndrome is caused by mutations in the CRLF1 Gene. American Journal
of Human Genetics 72(2) (2003) 375-383

Miller, P., Nadkarni, P., Gelernter, G., Carriero, N., Pakstis, A., Kidd, K.: Parallelizing ge-
netic linkage analysis: a case study for applying parallel computation in molecular biology.
Computing and Biomedical Research 24(3) (1991) 234-248

Dwarkadas, S., Schiffer, A., Cottingham, R., Cox, A., Keleher, P., Zwaenepoel, W.: Paral-
lelization of general linkage analysis problems. Human Heredity 44 (1994) 127-141
Matise, T., Schroeder, M., Chiarulli, D., Weeks, D.: Parallel computation of genetic likeli-
hoods using CRI-MAP, PVM, and a network of distributed workstations. Human Heredity
45 (1995) 103-116

Gupta, S., Schiffer, A., Cox, A., Dwarkadas, S., Zwaenepoel, W.: Integrating parallelization
strategies for linkage analysis. Computing and Biomedical Research 28 (1995) 116-139
Rai, A., Lopez-Benitez, N., Hargis, J., Poduslo, S.: On the parallelization of Linkmap from
the LINKAGE/FASTLINK package. Computing and Biomedical Research 33(5) (2000)
350-364

Kothari, K., Lopez-Benitez, N., Poduslo, S.: High-performance implementation and analysis
of the linkmap program. Computing and Biomedical Research 34(6) (2001) 406414

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A Distributed System for Genetic Linkage Analysis 123

Conant, G., Plimpton, S., Old, W., Wagner, A., Fain, P., Pacheco, T., Heffelfinger, G.: Parallel
Genehunter: implementation of a linkage analysis package for distributed-memory architec-
tures. Journal of Parallel and Distributed Computing 63(7-8) (2003) 674—682

Dietter, J., Spiegel, A., an Mey, D., Pflug, H.J., al Kateb, H., Hoffmann, K., Wienker, T.,
Strauch, K.: Efficient two-trait-locus linkage analysis through program optimization and
parallelization: application to hypercholesterolemia. European Journal of Human Genetics
12 (2005) 542-50

Berman, F., Wolski, R.: Scheduling from the perspective of the application. In: 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC’03), Wash-
ington, DC, USA, IEEE Computer Society (1996) 100-111

Yang, Y., Casanova, H.: Rumr: Robust scheduling for divisible workloads. In: 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC’03), Wash-
ington, DC, USA, IEEE Computer Society (2003) 114

Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes,
J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, S., Su, A., Zagorodnov, D.: Adap-
tive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed
Systems 14(4) (2003) 369-382

Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for master-worker
applications on the computational grid. In: GRID 2000. (2000) 214-227

Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on heterogeneous
platforms. Parallel Computing 29(9) (2003) 1121-1152

Kondo, D., Chien, A.A., Casanova, H.: Resource management for rapid application
turnaround on enterprise desktop grids. In: ACM/IEEE Conference on Supercomputing
(SC’04), Washington, DC, USA, IEEE Computer Society (2004) 17

MOAB Grid Suite: Moab grid suite.

http://www.clusterresources.com/pages/ products/moab-grid-suite.php (2006)

Dail, H., Sievert, O., Berman, F., Casanova, H., YarKhan, A., Vadhiyar, S., Dongarra, J., Liu,
C., Yang, L., Angulo, D., Foster, I.: Scheduling in the grid application development software
project. Grid Resource Management: State-of-the-art and Future Trends (2004) 73-98
Vadhiyar, S., Dongarra, J.: A metascheduler for the grid. In: 11th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC’02), Washington, DC, USA,
IEEE Computer Society (2002)

Sabin, G., Kettimuthu, R., Rajan, A., Sadayappan, P.: Scheduling of parallel jobs in a hetero-
geneous multi-site environment. In Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., eds.:
Job Scheduling Strategies for Parallel Processing. Springer Verlag (2003) 87-104

Marchal, L., Yang, Y., Casanova, H., Robert, Y.: Steady-state scheduling of multiple divisible
load applications on wide-area distributed computing platforms. International Journal of
High Performance Computing Applications (2006, to appear)

	Introduction
	The Grid Execution Hierarchy Scheduling Algorithm
	Grid Execution Hierarchy
	Scheduling Tasks in Grid Hierarchy
	Handling Multiple Grids at the Same Level of the Execution Hierarchy

	Parallel Algorithm for the Computation of LOD Score
	Serial Algorithm
	Parallel Algorithm
	Implementation of the Parallel Algorithm for Execution in Grid Hierarchy

	Deployment of SUPERLINK-ONLINE
	Results
	Parallel Algorithm Performance
	Performance of the Grid Execution Hierarchy Scheduling Algorithm

	Related Work and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

