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Abstract 

An algorithm called QUICKTREE is developed for find- 
ing a triangulation T of a given undirected graph G 
such that the size of T’s maximal clique is minimum 
and such that no other triangulation of G is a subgraph 
of T. We have tested QUICKTREE on graphs of up to 
100 nodes for which the maximum clique in an optimal 
triangulation is of size 11. This is the first algorithm 
that can optimally triangulate graphs of such size in 
a reasonable time frame. This algorithm is useful for 
constraint satisfaction problems and for Bayesian in- 
ference through the clique tree inference algorithm. 

Introduction 
An undirected graph is triangulated (chordal) if for ev- 
ery cycle C of length greater than 3 the graph contains 
a chord, that is, an edge which connects two non ad- 
jacent vertices of C. Given an undirected graph G, a 
supergraph of G which is triangulated is called a tri- 
angulation of G. The problem we address is to find a 
triangulation T of G such that the size of its maximal 
clique is minimum and such that T is edge-minimal, 
i.e., no other triangulation of G is a subgraph of T. 
Such a triangulation is called an optimal triangulation 
and the size minus 1 of its largest clique is called the 
treewidth of G. 

The AI application which prompted our attention 
to this problem is the updating problem which is to 
compute the posterior probability of a random vari- 
able in a Bayesian network given specific values to 
a set of other random variables (Pe86; LS88; Pe88; 
JLO90). This application is also treated in (BG96). 
Dechter demonstrated that a variety of problems in AI 
can be solved efficiently if a good triangulation is made 
available (De96). These problems are: satisfiability, 
most probable explanations, maximum aposteriori hy- 
pothesis, and maximum expected utility. 

The problem of finding optimal triangulations is im- 
portant in other areas of computer science because 
many NP-complete problems on graphs can be solved 
polynomially if the input graph has a triangulation 
with sufficiently small cliques and if such a triangu- 
lation can be found efficiently (Ar85; ALS91). Some of 
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these problems are: independent set, dominating set, 
graph K-colorability and Hamiltonian circuit. 

Finding an optimal triangulation is NP-complete 
(ACP87). However, for a graph with n vertices and 
a fixed treewidth k there exits an O(n”+2) algorithm 
that finds an optimal triangulation based on (ACP87). 
This algorithm is not practical for moderate sizes of k 
and n (say, k = 10 and n = 100). Another algorithm 
for finding an optimal triangulation has a complexity 
of O(f(k)n) where f(k) is a super-exponential function 
of k (Bo93). Th is algorithm is practical for treewidth 
of size k = 4 at most. For larger values of k there has 
been no algorithm to date that could find an optimal 
triangulation sufficiently fast. 

In this paper, an algorithm called QUICKTREE is 
developed for finding optimal triangulations. We have 
tested QUICKTREE on graphs of up to 100 nodes for 
which the treewidth is 10. This is the first algorithm 
that can optimally triangulate graphs of such size in 
a reasonable time frame. Our method is similar to 
Arnborg et al’s algorithm in the idea of using dynamic 
programming to build up triangulations of larger parts 
from triangulations of smaller parts. It differs in the 
number of small parts that are created (far less) and 
in the way they are combined. 

The paper is organized as follows. In the next sec- 
tion, we provide facts about triangulations and de- 
scribe their close relationship to clique trees and to 
decomposability of graphs. Then we describe the algo- 
rithm for finding an optimal triangulation, followed by 
implementation details and experimental validation. 
We conclude with possible extensions of our results. 

Definitions and basic facts 
A graph G is a pair (V, E), where V is a finite set of 
vertices called the vertex set, and E is a set of pairs 
of vertices (edges) called the edge set. Given a graph 
G, V(G) denotes the vertex set of G. Two vertices u 
and v of G are adjacent if there is an edge (u, w) in 
the edge set of G. The set of vertices of G that are 
adjacent to a vertex v is called the neighborhood of w 
in G. A sequence of distinct vertices [Q, ~1, . . . , ~11 of 
G = (V, E) is called a path from ~0 to 01, provided 
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that (vi- 1, vi) E E for i = 1, . . . , 1. A cycle is a closed 
path,‘i.e. path from v to v, where v is a vertex of G. 
A chordEe& cycle is a cycle [vg , . . . , vi, ve], such that 
vi # vj for i # j and (vi, vj) $ E, if i and j differ by 
more than 1 mod 1 + 1. A connected graph without 
cycles is called a tree. 

The union of n graphs Gi = (K, Ei), i = 1, . . . , n 
is the graph Uy’r Gi = (Ur’, Vi, Uy’r Ei). The graph 
G’ = (V’, E’) is called a subgruph of G = (V, E) if 
V’ 2 V and E’ C E. A subgraph G’ of G is a proper 
subgraph if G’ # G. The graph G[S], S C V(G), is 
the subgraph of G induced by S, namely its vertex set 
is S and its edge set contains only edges of G with 
both ends in S. The subgraph of G induced by some 
subset of V(G) is called an induced subgraph of G. A 
supergraph of G = (V, E) is a graph G’ = (V, E’), such 
that E c E’. A complete graph or clique is a graph 
with edge set consisting of all possible edges between 
the vertices of the graph. We denote by K[S] the clique 
built on vertices from S. A maximal clique in a graph 
G is a clique G[S] such that there exists no vertex set 
S’ 1 S for which G[S’] is a clique. The set of maximal 
cliques of G is denoted by Kc. 

A graph G is connected if for each pair u, v of its ver- 
tices there exists a path from u to v. If G is not con- 
nected, then a connected subgraph C of G is called a 
(maximal) connected component if there exists no con- 
nected subgraph C’ of G, such that C is a proper sub- 
graph of C’. Given a connected graph G with vertex 
set V = V(G), a subset S c V is called a vertex sepa- 
rator for nonadjacent vertices a and b in V \ S if a and 
b are in different connected components of G[V \ S]. If 
S is a vertex separator for a and b but no proper subset 
of S is a vertex separator of a and b, then S is called a 
minimal vertex separator for a and b or a minimal a, b- 
separator. A subset S c V is called a minimal vertex 
separator if there exists a pair of nonadjacent vertices 
for which S is a minim al vertex separator. Through- 
out, we abbreviate the term vertex separator with the 
term separator. According to the definition of a min- 
imal separator, a minimal separator S of G can be 
properly contained in another minimal separator of 6. 
In this case S is a nested separator in G. We say that a 
separator S of G crosses another separator S’ if there 
are vertices u and v in S’ which are separated by S 
in G. It is easy to see, that if S crosses S’, then S’ 
separates some vertices of S, and therefore S’ crosses 
S. 

A graph is called triangulated or chordal if it does 
not contain a chordless cycle of length greater than 
3. An induced subgraph of a triangulated graph is 
triangulated. A simpliciad vertex of a graph G = 
(h..., vn}, E) is a vertex, such that its neighbor- 
hood induces a clique in G. Every triangulated graph 
G has a simplicial vertex and if G is not a clique, then 
it has two nonadjacent simplicial vertices (Go80). An 
ordering of the vertices CT = [VI, . . . , vn] is called a per- 
fect elimination sequence for G if for every 1 5 i 5 n, 

vi is a simplicial vertex in G[{ vi, . . . , vn}]. Given a con- 
nected graph G, a tree T whose vertex set is the set of 
all maximal cliques of G (i.e. KG), is called a clique- 
tree of G if it satisfies the clique-intersection property: 
for every pair of distinct nodes of T, Z<, Ii E /CG, the 
set I< n Ii” is contained in every node on the path con- 
necting Ii and K’ in T. 

The following theorem lists several well known char- 
acterizations of triangulated graphs (Go80). 

Theorem 1 Let G be a connected graph. Then the 
following conditions are equivalent. 

1. G is trianguzated 
2. G has a perfect elimination sequence 
3. There exists a clique-tree of G 
4. Every minimal separator of G induces a complete 

subgraph of G 

A triangulation of a graph G is a triangulated graph 
which is a supergraph of G. A triangulation T of G is 
minimal if there exists no proper subgraph of T, which 
is a triangulation of G. The width of a triangulated 
graph T is maxKExT (]K] - l), where /CT is the set of 
maximal cliques of T. The treewidth of a graph G is 
the minimal width over all triangulations of G. An op- 
timal triangulation of G is a minimal triangulation T 
of width Ic where Ic is the treewidth of G. The problem 
addressed herein is to construct an optimal triangula- 
tion of a given graph G. 

If S is a separator of G = (V, E), the graph G[V \ S] 
contains several connected components having distinct 
vertex sets VI, . . . , & where 1 2 2. The graphs Fi = 
G[K u S] u K’S] are called the fragments of G ob- 
tained by S or S-fragments of G. An S-fragment Fi is 
obtained from G[Vi U S] by adding all possible edges 
between vertices of S such that Fi[S] is a clique. Let 
S be a minimal separator of G of size at most Ic and 
FL. . . , Fl be the fragments of G obtained by S. The 
graph Uf=, T(f’i), h w ere T(Fi) is an optimal triangula- 
tion of Fi, is called the S-composite graph of G. We re- 
fer to the operation of obtaining an S-composite graph 
of G as simple composition. Arnborg et al. (ACP87) 
use simple composition in order to construct a trian- 
gulation T of a given graph G such that all maximal 
cliques of T are of size Ic + 1. Such triangulations are 
called k-trees. 

The triangulation algorithm 
In order to construct an optimal triangulation of G 
by dynamic programming, we produce fragments of G 
obtained by the minimal separators of size at most Ic 
and we generate some special cliques of G. Then we 
repeatedly combine optimal triangulations of smaller 
parts to obtain optimal triangulations of larger ones. 
We now define the combination operation which we 
call simultaneous composition. 

Let S= {Si,..., Sl} be a set of minimal separators 
of a graph G. The kernel of S, denoted by Ii’s, is 
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the graph induced from G by Ua Si with additional 
edges that make each Si a clique, i.e., it is the graph 
G[Ui $1 U Ui K[Si]. Let Fi be the set of Si-fragments 
of G whose vertex sets do not contain any Sj for j # i. 
The union of Fi over all i is called the fragment set of 
S and is denoted by Fs. 

A set S = (S1 9 . . . , Sl} of minimal separators of size 
at most Ic of G is called a k-regular set of separators if 
the following four conditions are satisfied: 

(i) The kernel KS is a clique. 

(ii) For each i at least one ,$-fragment of G is included 
in the fragment set Fs. 

(iii) Every vertex of G is either a vertex in the maxi- 
mal clique containing KS in the graph G U Iis or a 
vertex of a fragment in Fs. 

(iv) If a vertex v of G is contained in fragments 
Fl,... , Fh, K > I, where Fi is an $-fragment in 
Fs, and ZI is not in Ui Si, then there exist a min- 
imal separator S of G and an S-fragment F, such 
that S c na”=, Si and V(F) \ S = V(Fi) \ Si for all 
lLi<h. 

The maximal clique containing KS in the graph 
GU KS is called the base clique of S and is denoted by 
Bs. Let IS denote a set of optimal triangulations of 
the fragments in ?-s such that Ti E 7s is an optimal 
triangulation of Fi E Fs. The set 7s is called legal if 
for every pair of fragments Fi and Fj in FS for which 
V(Fi) \ Si = V(Fj) \ Sj = W, the corresponding tri- 
angulations Ti and Tj induce the same graph on W 
(i.e., Ti[W] = Tj [WI). The graph Bs U (UTETs T) is 
called an S-composite graph of G, whenever 7s is legal. 
We refer to the operation of obtaining an S-composite 
graph of G as simultaneous composition. For 1 = 1 
simple and simultaneous composition coincide and the 
base clique is just K[S]. Note that a /c-regular set S of 
separators of G does not contain a separator Si which 
is a subset of another separator Sj in S lest every Sj- 
fragment of G would contain Si and excluded from FS 
(contradicting condition (ii)). 

Lemma 2 Let G = (V, E) be a connected graph of 
treewidth k and let S = (5’1, . . . , Sl} be a k-regular set 
of separators of G. If the base clique of S is of size at 
most k + 1, then every S-composite graph of G is an 
optimal triangulation of G. 

Proof: Let BS be the base clique of S = {Sr , . . . , Sl}, 
IV(&)1 L k + 1, and Fs be the fragment set of S. 
Let H be an S-composite graph of 6, that is, H = 

Bs u (UTETS T>’ where 7s is legal. The graph H is a 
supergraph of G because every vertex of G is contained 
either in the base of S or in a fragment in F, and the 
edge set of H is a superset of the edge set of G. We 
now prove that H is triangulated and then that H is 
an optimal triangulation of G. 

Let C be a cycle of H of length greater than 3. 
Clearly, if C is completely in the base clique Bs then it 

has a chord. If it is included in T(F) for some fragment 
F in 2-s) then it also has a chord because T(F) is tri- 
angulated. If it is partially included in a triangulation 
T(F) of an $-fragment F, then it must contain two 
vertices of Si which are not adjacent in C. These ver- 
tices are connected because Si is a clique in H. Hence 
C has a chord and H is triangulated. 

Finally we show that H is an optimal triangulation 
of G. Consider an edge in H that is not an edge in Bs . 
Clearly, no such edge can be removed from any T(F) 
because these graphs are all minimal and either dis- 
joint or completely equal except on Bs. Now consider 
an edge e in Bs. If e is an edge in G, it clearly cannot 
be removed. If e is a fill-in edge, then it connects two 
vertices of some separator Si in S. Since for each i at 
least one Si-fragment is in Fs, Si is a separator in H 
(which separates a vertex in an $-fragment in Fs from 
a vertex outside this fragment). Each Si in S is actu- 
ally a minimal separator of H because it is a minimal 
separator of G and a separator of H. Consequently, 
e cannot be removed from H because if e is removed, 
Si remains a minimal separator, which contradicts the 
property that each minimal separator in a triangulated 
graph induces a complete graph. Thus H is a minimal 
triangulation of G. It is an optimal triangulation be- 
cause the size of BS is at most k + 1 and each T(F) 
for F E FS is an optimal triangulation. 0 

The triangulation algorithm shown in Figure 1 ap- 
plies simultaneous composition on a set of fragments 
until an optimal triangulation is obtained or the com- 
position operation cannot be applied in which case the 
algorithm outputs a valid statement that the treewidth 
is larger than k. The algorithm consists of several 
phases. The first phase generates the set of minimal 
vertex separators of size at most k of the given graph. 
The second phase constructs the set of first and sec- 
ond level fragments of the graph. The third phase (ini- 
tialization) marks each triangulated fragment F with 
T(F) # 0. The final phase (dynamic programming) 
combines in increasing order of size optimal triangula- 
tions of smaller fragments to obtain optimal triangu- 
lations of larger ones. 

The algorithm defines the following concepts and no- 
tations. Given a connected graph G and a set Cof 
minimal separators of G, the fragments of G obtained 
by separators in C, are called first-level fragments of G 
by C. An S-fragment F’ of a first-level fragment F of 
G is called a second-level fragment of G if S is a min- 
imal separator of G (and hence of F) and if F’ is not 
a first-level fragment of G. The set of minimal separa- 
tors of G of size at most k is denoted by SC. Let FG 
denote the union of the following two sets. The first 
set is the set of first-level fragments of G obtained by 
separators in SG. The second set is the set of second- 
level fragments of G obtained by separators in SG such 
that each fragment in this set is a clique. 

The next two theorems show that whenever the algo- 
rithm outputs a graph, it is an optimal triangulation of 
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G and whenever the algorithm fails to output a graph 
(T(G) = S), th ere exists no triangulation of width k of 
G. 

Theorem 3 Let G be a connected graph of treewidth 
k and let F be a fragment in FG. If T(F) # 0, where 
T(F) is defined by the algorithm, then T(F) is an op- 
timal triangulation of F. 

Proof: Let T(F) b e e ne in the initialization phase d fi d 
of the algorithm. If F E FG is a clique, then T(F) = F 
is an optimal triangulation of F. Lemma 2 shows that 
compositions of optimal triangulations by separators in 
SC;, as performed by the dynamic programming phase, 
produce optimal triangulations. Since the only change 
in T(F) is a result of composition operations, T(F) is 
an optimal triangulation of F unless T(F) = 0. •I 

Theorem 4 If G is a connected graph of treewidth k, 
then, when the algorithm terminates, T(G) is an opti- 
mal triangulation of G. If the treewidth is larger than 
k, then the algorithm outputs this fact. 

Implementation 
In this section we describe how we have implemented 
phase one and how we find k-regular sets of separators 
in the dynamic programming phase. 

Kloks and Kratsch present an algorithm that gener- 
ates the minimal a, b-separators of an undirected graph 
G. Finding all minimal separators of G is then done by 
examining all possible pairs of vertices {a, b} in O( Rn5) 
steps where R is the number of minimal separators of 
G (KK94; K195). W e use this algorithm to generate the 
minimal separators of G and then we extract all sepa- 
rators of size at most k. We introduced two heuristic 
changes that improve the usual running time. First, 
if we find a minimal a, b-separator S of G such that 
G[S] is a clique, then we ignore all pairs of vertices 
that are separated by S because their separators will 
be found by examining other pairs. Second, we order 
the pairs of vertices by decreasing mutual distance in 
G. This heuristic produces more minimal separators 
which induce cliques in early stages of the algorithm. 

The way we currently find k-regular sets of F is by 
examining the maximal cliques of a graph which we 
call the validity graph. The validity graph H for an So- 
fragment F of G is an undirected graph (C, E). Each 
vertex in H is some minimal separator of F. A sep- 
arator S is in C if and only if ]SUSe] 5 k+ 1. For 
every minimal separator S of F we define the cover set 
of S to be the set of all vertices of already triangulated 
S-fragments of F, except the vertices of S itself. The 
graph H contains an edge between Si and Sj if and 
only if the following three conditions hold: (1) Sj does 
not cross S;, (2) ]Si U Sj U Se] 5 k + 1, and (3) the 
intersection of the cover sets of Si and of Sj is either 
empty or equal to the cover set of a separator S’ which 
is nested in both Si and Sj. Each k-regular set of F is 
a maximal clique in the validity graph of F. 

Algorithm QUICKTREE 

Input: A connected graph G = (V, E) and an integer 
k > 1. 
Output: A minimal triangulation of G or a valid 
statement that G has a treewidth > k. 

{Phase 1: Build a set SG of minimal separators of G 
which are suficient for finding a minimal triangulation 
of width at most k if such exists} 

SG +-- {Sl S is a minimal separator of G of size 5 k} 

(Phase 2: Build a set 3-G of fragments) 
-TG + 8 
for each S in SG add the fragments of G 

obtained by S into FG 
{ These are called first-level fragments of G) 
for each fragment F in FG do 

for each S in SG 
compute the fragments of F obtained by S 
if an S-fragment F’ of F is a clique and FP is not 

in FG then add F’ to FG 
(These are called second-level fragments of G) 

{Initialization of T( F) - an optimal triangulation of a 
fragment F unless 8) 

for each fragment F in FG do 
if F is a clique of size > k + 1 then 

return “G has a treewidth > k” 
if F is a clique then T(F) +-- F 
else T(F) + 8 

(The dynamic programming phase: Composing frag- 
ments from smallest to largest to create an optimal 
triangulation} 

sort the fragments in FG in increasing order of size: 
{Fl,...,Fm} 
foreachFiinFG,l<i<mdo 

{Exit condition) 
if there exists a separator S in SG such that 

for each fragment F of G obtained by S, T(F) # 0 
then return UFE3 T(F), where F is the set of 

fragments of G obtained by S. 
(An optimal triangulation of G has been found via sim- 
ple composition) 

if Fi is triangulated then set T(Fi) + Fi and 
continue with Fi+l 

FIND a k-regular set C = { Si , . . . , Si} E SG of 
separators of Fi such that T(F) # 0 for 
each F in the fragment set & of C 

if such C is found 
then T(4) t E U [Up,,, T(F)] 

(An optimal triangulation of Fi has been found via si- 
multaneous composition) 
return “G has a treewidth greater than k” 

Figure 1: The triangulation algorithm 
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Experimental validation 
We tested QUICKTREE on graphs with 50, 75 and 100 
nodes for which the treewidth is at most 10 (i.e., the 
maximum clique size in an optimal triangulation is at 
most 11). The graphs were generated by creating a 
random clique tree in which every maximal clique has 
the same size and then randomly dropping 30%, 40% 
or 50% of the edges. This way we created graphs for 
which the maximal clique size in an optimal triangu- 
lation is bounded. We applied QUICKTREE on the 
resulting graphs. 

Table 1 shows the run time in seconds needed to tri- 
angulate a graph when 30% of the edges are dropped. 
The entry for a 75/7 graph is the time to process a 
graph with 75 nodes and treewidth 7. The time is 
divided into two parts: Tr-the time to generate all 
minimal separators and Tz-the time to find a triangu- 
lation. Each entry in every table is based on an average 
of 3 graphs The program is written in C++ includ- 
ing the Standard Template Library and was compiled 
by g++ version 2.7.2. We run our experiments of ta- 
bles 1 and 2 on a 50MHz Sun Sparc20 server with 122M 
RAM. Tables 3 and 4 were produced on a 100MHz 
HP/725 workstation with 114M RAM. 

50 75 100 I 
30% Tl 7-z Tl T2 Tl Tz 

5 85.8 1.96 99 5.9 1500 13.6 
7 235 2.22 841 6.2 2694 12 

1 10 11 I, 317 2.65 I 1 11887 10.4 I 1 

Table 1 

Table 1 shows that the bottleneck of the algorithm is 
the first phase. This phase of the algorithm is polyno- 
mial in the number of minimal separators; it requires 
0(Rn5) steps where R is the number of minimal sep- 
arators and n is the number of nodes. Unfortunately, 
these terms are quite big in large graphs. The remain- 
ing algorithm runs very fast which could be surprising 
because it uses a procedure FIND which in the worst 
case is exponential in the size of the largest validity 
graph. The value of Tl in the 75/10 graphs is the av- 
erage of 4998,578O and 24,883 seconds. The number of 
minimal separators found in these graphs, denoted by 
R, has been 1412,1377,4167, respectively, which par- 
tially explains the running time differences. The num- 
ber of minimal separators smaller than Ic as needed 
for the dynamic programming phase for these graphs, 
denoted by Rk, has merely been 92,86 and 91, respec- 
tively; less than 7% of the separators generated. 

Graphs of size lOO/lO with 30% dropout of edges 
take over 10 hours due to the large number of minimal 
separators generated by Phase 1. This class of graphs 
is the current practical limit of our implementation us- 
ing 1OOMHz machines with 120M RAM. Graphs of size 
lOO/lO with a 20% dropout of edges yield Tl = 7188 
and Tz = 7. 

Table 2 shows that the total number of maximal 
cliques FIND encounters (denoted by Cliq) in all the 

validity graphs of a single run is low and that the num- 
ber of nodes in the largest validity graph (denoted by 
Nod) is low as well. 

Table 2 
It is clear that QUICKTREE runs fast on graphs with 

small number of minimal separators. When we remove 
more edges from the initial k-tree we produce graphs 
with higher number of minimal separators. Table 3 
shows how the running time deteriorates when more 
edges are dropped starting with a graph of 75 nodes 
and treewidth of 7. 

Table 3 
The entry Frag in Table 3 measures the number 

of fragments produced for the dynamic programming 
phase. The entries R and Rk measure, respectively, the 
number of minimal separators and the number of min- 
imal separators of size less than Ic where Ic = 7. Note 
again that RI, is smaller than R; Many minimalsepara- 
tors are generated in the first phase of QUICKTREE but 
are not needed for the dynamic programming phase. A 
second reason for the high values of Tl is that the al- 
gorithm runs over all pairs of vertices and for each pair 
{a, b} produces all minimal a, b-separators. However, 
after a few pairs, the algorithm usually finds most of 
the minimal separators and the remaining run time 
is just used to verify that indeed all minimal separa- 
tors have been generated. Table 4 shows the num- 
ber of Good-Pairs-pairs that generated at least one 
new minimal separator. All-Pairs denote the number 
of pairs we used which guarantee that all minimal sep- 
arators have been generated. For Table 4, 30% of the 
edges were dropped. 

Table 4 
Table 4 suggests that if there is no needed guarantee 

of optimal triangulation, then Phase 1 can be run on 
a fraction of the possible pairs of vertices and then 
the dynamic programming phase can be applied. For 
example, on 3 graphs with 75 nodes and treewidth 7, 
we selected the top 20% of pairs that had a maximal 
mutual distance and got close to optimal triangulations 
(twice the optimal treewidth 7 and once 9 instead of 
7). The average running time was reduced from 675 to 
373 seconds. 
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Discussion 
In many applications the treewidth of a triangula- 
tion is just an approximation to the real optimization 
problem. For example, for the updating problem in 
Bayesian networks, one needs to find a triangulation 
that minimizes the sum Ca 2w(Ct) where w is a posi- 
tive additive weight function on the vertices of G (Kj90; 
BG96). This sum takes into account the size of the 
state space of every variable in the given Bayesian net- 
work. The triangulation algorithm presented herein 
can be modified to accommodate such variants. Cur- 
rently, the algorithm stops whenever an optimal trian- 
gulation is generated. However, if we let the algorithm 
run until all fragments have been examined, then all 
optimal triangulations will be generated. Among these 
optimal triangulations one can select a triangulation 
with the smallest required sum. Since the dominant 
term in the sum is minimized, this method should of- 
ten yield triangulations with close to optimal sums. 

Our experiments show that the bottleneck of QUICK- 
TREE is phase 1 which generates all minimal separators 
of size at most Ic. There are several ways to improve. 
First, our work leaves open the problem of generating 
all minimal separators of size at most k of G in time 
G(&cPolY(4) h w ere Rk: is the number such minimal 
separators. Such an algorithm could improve QUICK- 
TREE because R and Rk differ considerably as shown 
by our experiments. Second, one can possibly find all 
minimal separators without running over as many pairs 
as we use. Finally, since the dynamic programming 
phase is very fast, it is possible to generate a set of 
minimal separators, apply dynamic programming and 
continue this cycle until a satisfactory triangulation is 
at hand. 

QUICKTREE finds a k-regular set by examining all 
maximal cliques of the validity graph. We believe that 
with minor changes to the definition of a validity graph, 
k-regular sets will be in one-to-one correspondence 
with maximal cliques and so could be found more easily 
in time polynomial in the number of minimal separa- 
tors. A similar relationship between maximal cliques of 
a (larger) graph of separators and minimal triangula- 
tions is established in (PS95) where such a polynomial 
algorithm is derived for d-trapezoid graphs. This pos- 
sible amendment will resolve a theoretical problem but 
will hardly affect the running time of our algorithm. 

QUICKTREE produces as an output a triangu- 
lated graph and a perfect elimination sequence. 
Consequently, it can be added as a preproces- 
sor to many existing inference routines with mi- 
nor changes. Our code is still under development; 
It will be made available along with a more de- 
tailed paper that describes the implementation at: 
http://www.cs.technion.ac.il/Ndang/. 
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