
A pact ical algorithm for finding optimal triangulations

Kirill Shoikhet and Dan Geiger
Computer Science Department

Technion
Haifa 32000, ISRAEL

kirill@cs.technion.ac.il, dang@cs.technion.ac.il

Abstract

An algorithm called QUICKTREE is developed for find-
ing a triangulation T of a given undirected graph G
such that the size of T’s maximal clique is minimum
and such that no other triangulation of G is a subgraph
of T. We have tested QUICKTREE on graphs of up to
100 nodes for which the maximum clique in an optimal
triangulation is of size 11. This is the first algorithm
that can optimally triangulate graphs of such size in
a reasonable time frame. This algorithm is useful for
constraint satisfaction problems and for Bayesian in-
ference through the clique tree inference algorithm.

Introduction
An undirected graph is triangulated (chordal) if for ev-
ery cycle C of length greater than 3 the graph contains
a chord, that is, an edge which connects two non ad-
jacent vertices of C. Given an undirected graph G, a
supergraph of G which is triangulated is called a tri-
angulation of G. The problem we address is to find a
triangulation T of G such that the size of its maximal
clique is minimum and such that T is edge-minimal,
i.e., no other triangulation of G is a subgraph of T.
Such a triangulation is called an optimal triangulation
and the size minus 1 of its largest clique is called the
treewidth of G.

The AI application which prompted our attention
to this problem is the updating problem which is to
compute the posterior probability of a random vari-
able in a Bayesian network given specific values to
a set of other random variables (Pe86; LS88; Pe88;
JLO90). This application is also treated in (BG96).
Dechter demonstrated that a variety of problems in AI
can be solved efficiently if a good triangulation is made
available (De96). These problems are: satisfiability,
most probable explanations, maximum aposteriori hy-
pothesis, and maximum expected utility.

The problem of finding optimal triangulations is im-
portant in other areas of computer science because
many NP-complete problems on graphs can be solved
polynomially if the input graph has a triangulation
with sufficiently small cliques and if such a triangu-
lation can be found efficiently (Ar85; ALS91). Some of

Copyright 01997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

these problems are: independent set, dominating set,
graph K-colorability and Hamiltonian circuit.

Finding an optimal triangulation is NP-complete
(ACP87). However, for a graph with n vertices and
a fixed treewidth k there exits an O(n”+2) algorithm
that finds an optimal triangulation based on (ACP87).
This algorithm is not practical for moderate sizes of k
and n (say, k = 10 and n = 100). Another algorithm
for finding an optimal triangulation has a complexity
of O(f(k)n) where f(k) is a super-exponential function
of k (Bo93). Th is algorithm is practical for treewidth
of size k = 4 at most. For larger values of k there has
been no algorithm to date that could find an optimal
triangulation sufficiently fast.

In this paper, an algorithm called QUICKTREE is
developed for finding optimal triangulations. We have
tested QUICKTREE on graphs of up to 100 nodes for
which the treewidth is 10. This is the first algorithm
that can optimally triangulate graphs of such size in
a reasonable time frame. Our method is similar to
Arnborg et al’s algorithm in the idea of using dynamic
programming to build up triangulations of larger parts
from triangulations of smaller parts. It differs in the
number of small parts that are created (far less) and
in the way they are combined.

The paper is organized as follows. In the next sec-
tion, we provide facts about triangulations and de-
scribe their close relationship to clique trees and to
decomposability of graphs. Then we describe the algo-
rithm for finding an optimal triangulation, followed by
implementation details and experimental validation.
We conclude with possible extensions of our results.

Definitions and basic facts
A graph G is a pair (V, E), where V is a finite set of
vertices called the vertex set, and E is a set of pairs
of vertices (edges) called the edge set. Given a graph
G, V(G) denotes the vertex set of G. Two vertices u
and v of G are adjacent if there is an edge (u, w) in
the edge set of G. The set of vertices of G that are
adjacent to a vertex v is called the neighborhood of w
in G. A sequence of distinct vertices [Q, ~1, . . . , ~11 of
G = (V, E) is called a path from ~0 to 01, provided

BAYES NETWORKS 185

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

that (vi- 1, vi) E E for i = 1, . . . , 1. A cycle is a closed
path,‘i.e. path from v to v, where v is a vertex of G.
A chordEe& cycle is a cycle [vg , . . . , vi, ve], such that
vi # vj for i # j and (vi, vj) $ E, if i and j differ by
more than 1 mod 1 + 1. A connected graph without
cycles is called a tree.

The union of n graphs Gi = (K, Ei), i = 1, . . . , n
is the graph Uy’r Gi = (Ur’, Vi, Uy’r Ei). The graph
G’ = (V’, E’) is called a subgruph of G = (V, E) if
V’ 2 V and E’ C E. A subgraph G’ of G is a proper
subgraph if G’ # G. The graph G[S], S C V(G), is
the subgraph of G induced by S, namely its vertex set
is S and its edge set contains only edges of G with
both ends in S. The subgraph of G induced by some
subset of V(G) is called an induced subgraph of G. A
supergraph of G = (V, E) is a graph G’ = (V, E’), such
that E c E’. A complete graph or clique is a graph
with edge set consisting of all possible edges between
the vertices of the graph. We denote by K[S] the clique
built on vertices from S. A maximal clique in a graph
G is a clique G[S] such that there exists no vertex set
S’ 1 S for which G[S’] is a clique. The set of maximal
cliques of G is denoted by Kc.

A graph G is connected if for each pair u, v of its ver-
tices there exists a path from u to v. If G is not con-
nected, then a connected subgraph C of G is called a
(maximal) connected component if there exists no con-
nected subgraph C’ of G, such that C is a proper sub-
graph of C’. Given a connected graph G with vertex
set V = V(G), a subset S c V is called a vertex sepa-
rator for nonadjacent vertices a and b in V \ S if a and
b are in different connected components of G[V \ S]. If
S is a vertex separator for a and b but no proper subset
of S is a vertex separator of a and b, then S is called a
minimal vertex separator for a and b or a minimal a, b-
separator. A subset S c V is called a minimal vertex
separator if there exists a pair of nonadjacent vertices
for which S is a minim al vertex separator. Through-
out, we abbreviate the term vertex separator with the
term separator. According to the definition of a min-
imal separator, a minimal separator S of G can be
properly contained in another minimal separator of 6.
In this case S is a nested separator in G. We say that a
separator S of G crosses another separator S’ if there
are vertices u and v in S’ which are separated by S
in G. It is easy to see, that if S crosses S’, then S’
separates some vertices of S, and therefore S’ crosses
S.

A graph is called triangulated or chordal if it does
not contain a chordless cycle of length greater than
3. An induced subgraph of a triangulated graph is
triangulated. A simpliciad vertex of a graph G =
(h..., vn}, E) is a vertex, such that its neighbor-
hood induces a clique in G. Every triangulated graph
G has a simplicial vertex and if G is not a clique, then
it has two nonadjacent simplicial vertices (Go80). An
ordering of the vertices CT = [VI, . . . , vn] is called a per-
fect elimination sequence for G if for every 1 5 i 5 n,

vi is a simplicial vertex in G[{ vi, . . . , vn}]. Given a con-
nected graph G, a tree T whose vertex set is the set of
all maximal cliques of G (i.e. KG), is called a clique-
tree of G if it satisfies the clique-intersection property:
for every pair of distinct nodes of T, Z<, Ii E /CG, the
set I< n Ii” is contained in every node on the path con-
necting Ii and K’ in T.

The following theorem lists several well known char-
acterizations of triangulated graphs (Go80).

Theorem 1 Let G be a connected graph. Then the
following conditions are equivalent.

1. G is trianguzated
2. G has a perfect elimination sequence
3. There exists a clique-tree of G
4. Every minimal separator of G induces a complete

subgraph of G

A triangulation of a graph G is a triangulated graph
which is a supergraph of G. A triangulation T of G is
minimal if there exists no proper subgraph of T, which
is a triangulation of G. The width of a triangulated
graph T is maxKExT (]K] - l), where /CT is the set of
maximal cliques of T. The treewidth of a graph G is
the minimal width over all triangulations of G. An op-
timal triangulation of G is a minimal triangulation T
of width Ic where Ic is the treewidth of G. The problem
addressed herein is to construct an optimal triangula-
tion of a given graph G.

If S is a separator of G = (V, E), the graph G[V \ S]
contains several connected components having distinct
vertex sets VI, . . . , & where 1 2 2. The graphs Fi =
G[K u S] u K’S] are called the fragments of G ob-
tained by S or S-fragments of G. An S-fragment Fi is
obtained from G[Vi U S] by adding all possible edges
between vertices of S such that Fi[S] is a clique. Let
S be a minimal separator of G of size at most Ic and
FL. . . , Fl be the fragments of G obtained by S. The
graph Uf=, T(f’i), h w ere T(Fi) is an optimal triangula-
tion of Fi, is called the S-composite graph of G. We re-
fer to the operation of obtaining an S-composite graph
of G as simple composition. Arnborg et al. (ACP87)
use simple composition in order to construct a trian-
gulation T of a given graph G such that all maximal
cliques of T are of size Ic + 1. Such triangulations are
called k-trees.

The triangulation algorithm
In order to construct an optimal triangulation of G
by dynamic programming, we produce fragments of G
obtained by the minimal separators of size at most Ic
and we generate some special cliques of G. Then we
repeatedly combine optimal triangulations of smaller
parts to obtain optimal triangulations of larger ones.
We now define the combination operation which we
call simultaneous composition.

Let S= {Si,..., Sl} be a set of minimal separators
of a graph G. The kernel of S, denoted by Ii’s, is

186 CONSTRAINT SATISFACTION & SEARCH

the graph induced from G by Ua Si with additional
edges that make each Si a clique, i.e., it is the graph
G[Ui $1 U Ui K[Si]. Let Fi be the set of Si-fragments
of G whose vertex sets do not contain any Sj for j # i.
The union of Fi over all i is called the fragment set of
S and is denoted by Fs.

A set S = (S1 9 . . . , Sl} of minimal separators of size
at most Ic of G is called a k-regular set of separators if
the following four conditions are satisfied:

(i) The kernel KS is a clique.

(ii) For each i at least one ,$-fragment of G is included
in the fragment set Fs.

(iii) Every vertex of G is either a vertex in the maxi-
mal clique containing KS in the graph G U Iis or a
vertex of a fragment in Fs.

(iv) If a vertex v of G is contained in fragments
Fl,... , Fh, K > I, where Fi is an $-fragment in
Fs, and ZI is not in Ui Si, then there exist a min-
imal separator S of G and an S-fragment F, such
that S c na”=, Si and V(F) \ S = V(Fi) \ Si for all
lLi<h.

The maximal clique containing KS in the graph
GU KS is called the base clique of S and is denoted by
Bs. Let IS denote a set of optimal triangulations of
the fragments in ?-s such that Ti E 7s is an optimal
triangulation of Fi E Fs. The set 7s is called legal if
for every pair of fragments Fi and Fj in FS for which
V(Fi) \ Si = V(Fj) \ Sj = W, the corresponding tri-
angulations Ti and Tj induce the same graph on W
(i.e., Ti[W] = Tj [WI). The graph Bs U (UTETs T) is
called an S-composite graph of G, whenever 7s is legal.
We refer to the operation of obtaining an S-composite
graph of G as simultaneous composition. For 1 = 1
simple and simultaneous composition coincide and the
base clique is just K[S]. Note that a /c-regular set S of
separators of G does not contain a separator Si which
is a subset of another separator Sj in S lest every Sj-
fragment of G would contain Si and excluded from FS
(contradicting condition (ii)).

Lemma 2 Let G = (V, E) be a connected graph of
treewidth k and let S = (5’1, . . . , Sl} be a k-regular set
of separators of G. If the base clique of S is of size at
most k + 1, then every S-composite graph of G is an
optimal triangulation of G.

Proof: Let BS be the base clique of S = {Sr , . . . , Sl},
IV(&)1 L k + 1, and Fs be the fragment set of S.
Let H be an S-composite graph of 6, that is, H =

Bs u (UTETS T>’ where 7s is legal. The graph H is a
supergraph of G because every vertex of G is contained
either in the base of S or in a fragment in F, and the
edge set of H is a superset of the edge set of G. We
now prove that H is triangulated and then that H is
an optimal triangulation of G.

Let C be a cycle of H of length greater than 3.
Clearly, if C is completely in the base clique Bs then it

has a chord. If it is included in T(F) for some fragment
F in 2-s) then it also has a chord because T(F) is tri-
angulated. If it is partially included in a triangulation
T(F) of an $-fragment F, then it must contain two
vertices of Si which are not adjacent in C. These ver-
tices are connected because Si is a clique in H. Hence
C has a chord and H is triangulated.

Finally we show that H is an optimal triangulation
of G. Consider an edge in H that is not an edge in Bs .
Clearly, no such edge can be removed from any T(F)
because these graphs are all minimal and either dis-
joint or completely equal except on Bs. Now consider
an edge e in Bs. If e is an edge in G, it clearly cannot
be removed. If e is a fill-in edge, then it connects two
vertices of some separator Si in S. Since for each i at
least one Si-fragment is in Fs, Si is a separator in H
(which separates a vertex in an $-fragment in Fs from
a vertex outside this fragment). Each Si in S is actu-
ally a minimal separator of H because it is a minimal
separator of G and a separator of H. Consequently,
e cannot be removed from H because if e is removed,
Si remains a minimal separator, which contradicts the
property that each minimal separator in a triangulated
graph induces a complete graph. Thus H is a minimal
triangulation of G. It is an optimal triangulation be-
cause the size of BS is at most k + 1 and each T(F)
for F E FS is an optimal triangulation. 0

The triangulation algorithm shown in Figure 1 ap-
plies simultaneous composition on a set of fragments
until an optimal triangulation is obtained or the com-
position operation cannot be applied in which case the
algorithm outputs a valid statement that the treewidth
is larger than k. The algorithm consists of several
phases. The first phase generates the set of minimal
vertex separators of size at most k of the given graph.
The second phase constructs the set of first and sec-
ond level fragments of the graph. The third phase (ini-
tialization) marks each triangulated fragment F with
T(F) # 0. The final phase (dynamic programming)
combines in increasing order of size optimal triangula-
tions of smaller fragments to obtain optimal triangu-
lations of larger ones.

The algorithm defines the following concepts and no-
tations. Given a connected graph G and a set Cof
minimal separators of G, the fragments of G obtained
by separators in C, are called first-level fragments of G
by C. An S-fragment F’ of a first-level fragment F of
G is called a second-level fragment of G if S is a min-
imal separator of G (and hence of F) and if F’ is not
a first-level fragment of G. The set of minimal separa-
tors of G of size at most k is denoted by SC. Let FG
denote the union of the following two sets. The first
set is the set of first-level fragments of G obtained by
separators in SG. The second set is the set of second-
level fragments of G obtained by separators in SG such
that each fragment in this set is a clique.

The next two theorems show that whenever the algo-
rithm outputs a graph, it is an optimal triangulation of

BAYES NETWORKS 187

G and whenever the algorithm fails to output a graph
(T(G) = S), th ere exists no triangulation of width k of
G.

Theorem 3 Let G be a connected graph of treewidth
k and let F be a fragment in FG. If T(F) # 0, where
T(F) is defined by the algorithm, then T(F) is an op-
timal triangulation of F.

Proof: Let T(F) b e e ne in the initialization phase d fi d
of the algorithm. If F E FG is a clique, then T(F) = F
is an optimal triangulation of F. Lemma 2 shows that
compositions of optimal triangulations by separators in
SC;, as performed by the dynamic programming phase,
produce optimal triangulations. Since the only change
in T(F) is a result of composition operations, T(F) is
an optimal triangulation of F unless T(F) = 0. •I

Theorem 4 If G is a connected graph of treewidth k,
then, when the algorithm terminates, T(G) is an opti-
mal triangulation of G. If the treewidth is larger than
k, then the algorithm outputs this fact.

Implementation
In this section we describe how we have implemented
phase one and how we find k-regular sets of separators
in the dynamic programming phase.

Kloks and Kratsch present an algorithm that gener-
ates the minimal a, b-separators of an undirected graph
G. Finding all minimal separators of G is then done by
examining all possible pairs of vertices {a, b} in O(Rn5)
steps where R is the number of minimal separators of
G (KK94; K195). W e use this algorithm to generate the
minimal separators of G and then we extract all sepa-
rators of size at most k. We introduced two heuristic
changes that improve the usual running time. First,
if we find a minimal a, b-separator S of G such that
G[S] is a clique, then we ignore all pairs of vertices
that are separated by S because their separators will
be found by examining other pairs. Second, we order
the pairs of vertices by decreasing mutual distance in
G. This heuristic produces more minimal separators
which induce cliques in early stages of the algorithm.

The way we currently find k-regular sets of F is by
examining the maximal cliques of a graph which we
call the validity graph. The validity graph H for an So-
fragment F of G is an undirected graph (C, E). Each
vertex in H is some minimal separator of F. A sep-
arator S is in C if and only if]SUSe] 5 k+ 1. For
every minimal separator S of F we define the cover set
of S to be the set of all vertices of already triangulated
S-fragments of F, except the vertices of S itself. The
graph H contains an edge between Si and Sj if and
only if the following three conditions hold: (1) Sj does
not cross S;, (2)]Si U Sj U Se] 5 k + 1, and (3) the
intersection of the cover sets of Si and of Sj is either
empty or equal to the cover set of a separator S’ which
is nested in both Si and Sj. Each k-regular set of F is
a maximal clique in the validity graph of F.

Algorithm QUICKTREE

Input: A connected graph G = (V, E) and an integer
k > 1.
Output: A minimal triangulation of G or a valid
statement that G has a treewidth > k.

{Phase 1: Build a set SG of minimal separators of G
which are suficient for finding a minimal triangulation
of width at most k if such exists}

SG +-- {Sl S is a minimal separator of G of size 5 k}

(Phase 2: Build a set 3-G of fragments)
-TG + 8
for each S in SG add the fragments of G

obtained by S into FG
{ These are called first-level fragments of G)
for each fragment F in FG do

for each S in SG
compute the fragments of F obtained by S
if an S-fragment F’ of F is a clique and FP is not

in FG then add F’ to FG
(These are called second-level fragments of G)

{Initialization of T(F) - an optimal triangulation of a
fragment F unless 8)

for each fragment F in FG do
if F is a clique of size > k + 1 then

return “G has a treewidth > k”
if F is a clique then T(F) +-- F
else T(F) + 8

(The dynamic programming phase: Composing frag-
ments from smallest to largest to create an optimal
triangulation}

sort the fragments in FG in increasing order of size:
{Fl,...,Fm}
foreachFiinFG,l<i<mdo

{Exit condition)
if there exists a separator S in SG such that

for each fragment F of G obtained by S, T(F) # 0
then return UFE3 T(F), where F is the set of

fragments of G obtained by S.
(An optimal triangulation of G has been found via sim-
ple composition)

if Fi is triangulated then set T(Fi) + Fi and
continue with Fi+l

FIND a k-regular set C = { Si , . . . , Si} E SG of
separators of Fi such that T(F) # 0 for
each F in the fragment set & of C

if such C is found
then T(4) t E U [Up,,, T(F)]

(An optimal triangulation of Fi has been found via si-
multaneous composition)
return “G has a treewidth greater than k”

Figure 1: The triangulation algorithm

188 CONSTRAINT SATISFACTION & SEARCH

Experimental validation
We tested QUICKTREE on graphs with 50, 75 and 100
nodes for which the treewidth is at most 10 (i.e., the
maximum clique size in an optimal triangulation is at
most 11). The graphs were generated by creating a
random clique tree in which every maximal clique has
the same size and then randomly dropping 30%, 40%
or 50% of the edges. This way we created graphs for
which the maximal clique size in an optimal triangu-
lation is bounded. We applied QUICKTREE on the
resulting graphs.

Table 1 shows the run time in seconds needed to tri-
angulate a graph when 30% of the edges are dropped.
The entry for a 75/7 graph is the time to process a
graph with 75 nodes and treewidth 7. The time is
divided into two parts: Tr-the time to generate all
minimal separators and Tz-the time to find a triangu-
lation. Each entry in every table is based on an average
of 3 graphs The program is written in C++ includ-
ing the Standard Template Library and was compiled
by g++ version 2.7.2. We run our experiments of ta-
bles 1 and 2 on a 50MHz Sun Sparc20 server with 122M
RAM. Tables 3 and 4 were produced on a 100MHz
HP/725 workstation with 114M RAM.

50 75 100 I
30% Tl 7-z Tl T2 Tl Tz

5 85.8 1.96 99 5.9 1500 13.6
7 235 2.22 841 6.2 2694 12

1 10 11 I, 317 2.65 I 1 11887 10.4 I 1

Table 1

Table 1 shows that the bottleneck of the algorithm is
the first phase. This phase of the algorithm is polyno-
mial in the number of minimal separators; it requires
0(Rn5) steps where R is the number of minimal sep-
arators and n is the number of nodes. Unfortunately,
these terms are quite big in large graphs. The remain-
ing algorithm runs very fast which could be surprising
because it uses a procedure FIND which in the worst
case is exponential in the size of the largest validity
graph. The value of Tl in the 75/10 graphs is the av-
erage of 4998,578O and 24,883 seconds. The number of
minimal separators found in these graphs, denoted by
R, has been 1412,1377,4167, respectively, which par-
tially explains the running time differences. The num-
ber of minimal separators smaller than Ic as needed
for the dynamic programming phase for these graphs,
denoted by Rk, has merely been 92,86 and 91, respec-
tively; less than 7% of the separators generated.

Graphs of size lOO/lO with 30% dropout of edges
take over 10 hours due to the large number of minimal
separators generated by Phase 1. This class of graphs
is the current practical limit of our implementation us-
ing 1OOMHz machines with 120M RAM. Graphs of size
lOO/lO with a 20% dropout of edges yield Tl = 7188
and Tz = 7.

Table 2 shows that the total number of maximal
cliques FIND encounters (denoted by Cliq) in all the

validity graphs of a single run is low and that the num-
ber of nodes in the largest validity graph (denoted by
Nod) is low as well.

Table 2
It is clear that QUICKTREE runs fast on graphs with

small number of minimal separators. When we remove
more edges from the initial k-tree we produce graphs
with higher number of minimal separators. Table 3
shows how the running time deteriorates when more
edges are dropped starting with a graph of 75 nodes
and treewidth of 7.

Table 3
The entry Frag in Table 3 measures the number

of fragments produced for the dynamic programming
phase. The entries R and Rk measure, respectively, the
number of minimal separators and the number of min-
imal separators of size less than Ic where Ic = 7. Note
again that RI, is smaller than R; Many minimalsepara-
tors are generated in the first phase of QUICKTREE but
are not needed for the dynamic programming phase. A
second reason for the high values of Tl is that the al-
gorithm runs over all pairs of vertices and for each pair
{a, b} produces all minimal a, b-separators. However,
after a few pairs, the algorithm usually finds most of
the minimal separators and the remaining run time
is just used to verify that indeed all minimal separa-
tors have been generated. Table 4 shows the num-
ber of Good-Pairs-pairs that generated at least one
new minimal separator. All-Pairs denote the number
of pairs we used which guarantee that all minimal sep-
arators have been generated. For Table 4, 30% of the
edges were dropped.

Table 4
Table 4 suggests that if there is no needed guarantee

of optimal triangulation, then Phase 1 can be run on
a fraction of the possible pairs of vertices and then
the dynamic programming phase can be applied. For
example, on 3 graphs with 75 nodes and treewidth 7,
we selected the top 20% of pairs that had a maximal
mutual distance and got close to optimal triangulations
(twice the optimal treewidth 7 and once 9 instead of
7). The average running time was reduced from 675 to
373 seconds.

BAYES NETWORKS 189

Discussion
In many applications the treewidth of a triangula-
tion is just an approximation to the real optimization
problem. For example, for the updating problem in
Bayesian networks, one needs to find a triangulation
that minimizes the sum Ca 2w(Ct) where w is a posi-
tive additive weight function on the vertices of G (Kj90;
BG96). This sum takes into account the size of the
state space of every variable in the given Bayesian net-
work. The triangulation algorithm presented herein
can be modified to accommodate such variants. Cur-
rently, the algorithm stops whenever an optimal trian-
gulation is generated. However, if we let the algorithm
run until all fragments have been examined, then all
optimal triangulations will be generated. Among these
optimal triangulations one can select a triangulation
with the smallest required sum. Since the dominant
term in the sum is minimized, this method should of-
ten yield triangulations with close to optimal sums.

Our experiments show that the bottleneck of QUICK-
TREE is phase 1 which generates all minimal separators
of size at most Ic. There are several ways to improve.
First, our work leaves open the problem of generating
all minimal separators of size at most k of G in time
G(&cPolY(4) h w ere Rk: is the number such minimal
separators. Such an algorithm could improve QUICK-
TREE because R and Rk differ considerably as shown
by our experiments. Second, one can possibly find all
minimal separators without running over as many pairs
as we use. Finally, since the dynamic programming
phase is very fast, it is possible to generate a set of
minimal separators, apply dynamic programming and
continue this cycle until a satisfactory triangulation is
at hand.

QUICKTREE finds a k-regular set by examining all
maximal cliques of the validity graph. We believe that
with minor changes to the definition of a validity graph,
k-regular sets will be in one-to-one correspondence
with maximal cliques and so could be found more easily
in time polynomial in the number of minimal separa-
tors. A similar relationship between maximal cliques of
a (larger) graph of separators and minimal triangula-
tions is established in (PS95) where such a polynomial
algorithm is derived for d-trapezoid graphs. This pos-
sible amendment will resolve a theoretical problem but
will hardly affect the running time of our algorithm.

QUICKTREE produces as an output a triangu-
lated graph and a perfect elimination sequence.
Consequently, it can be added as a preproces-
sor to many existing inference routines with mi-
nor changes. Our code is still under development;
It will be made available along with a more de-
tailed paper that describes the implementation at:
http://www.cs.technion.ac.il/Ndang/.

References
Arnborg S., Effi cient algorithms for combinatorial prob-
lems on graphs with bounded decomposability, BIT 25,
pp. 2-23, 1985.

Arnborg S., Corneil D.G., and Proskurowski A. Complex-
ity of finding embeddings in a k-tree, SIAM J. Alg. Disc.
Meth. 8, pp. 277-284, 1987.

Acknowledgment
We thank Hans Bodhender, Petra Scheffler, and Seffi
Naor for pointers they provided us about treewidth.

Arnborg S., Lagergren J., and Seese D., Easy problems
for tree-decomposable graphs, J. of Alg. 12, pp. 308-340,
1991.

Arnborg S. and Proskurowski A. Characterization and
recognition of partial 3-trees, SIAM J. Alg. Disc. Meth.
7, pp. 305-314, 1986.

Becker A. and Geiger D., A sufficiently fast algorithm for
finding close to optimal junction trees, Artificial Intelli-
gence, to appear. An earlier version in Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann, pp. 81-89, 1996.

Blair J.R.S. and Peyton B., An Introduction to chordal
graphs and clique trees, in Graph theory and sparse ma-
trix computation, Eds. George A., Gilbert J.R., Liu J.,
Springer-Verlag, NY, l-29, 1993.

Bodlaender H.L., A linear time algorithm for finding tree-
decompositions of small treewidth, Proceedings of the
25th ACM STOC, pp. 226-234.

Dechter R., Bucket elimination: A unifying framework for
probabilistic inference, In Proceedings of the Twelfth Con-
ference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann, pp. 211-219, 1996.

Golombic M., Algorithmic graph theory and perfect
graphs, Academic Press, New York 1980.

Jensen F. V., Lauritzen S.L., and Olesen K.G., Bayesian
updating in causal probabilistic networks by local com-
putations, Computational Statistics Quarterly 4 (1990),
269-282.

Kjrerulff U., Triangulation of graph-algorithms giving
small total state space. Technical Report R 90-09, De-
partment of Mathematics and Computer Science, Aalborg
university, Denmark, March 1990.

Kloks T., Treewidth, Springer-Verlag, Lecture notes in
Computer Science #842, 1995.

Kloks T. and Kratsch D., Finding all minimal separators
of a graph, Proceedings 11th STACS, Lecture notes in
ComputerScience #775, Springer-Verlag, 759-768, 1994.

Lauritzen, S.L. and Spiegelhalter, D.J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems (with discussion). Journal
Royal Statistica Society, B, 1988, 50(2):157-224.

Parra A. and Scheffler P. How to use the minimal sep-
arators of a graph for its chordal triangulations. in Pro-
ceedings of ICALP95; Lecture Notes in Computer Science,
Springer Verlag, #944, pp. 123-134, 1995.

Pearl, J., Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann, San
Mateo, California, 1988.

Pearl, J., Fusion, propagation and structuring in belief
networks, Artificial Intelligence, 29:3 (1986), 241-288.

Rose D., Triangulated graphs and the elimination
J. Math. anad. appl., 32 (1974), 597-609.

process,

190 CONSTRAINT SATISFACTION & SEARCH

