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Abstract 

We develop a closed form asymptotic for- 
mula to compute the marginal likelihood of 
data given a naive Bayesian network model 
with two hidden states and binary features. 
This formula deviates from the standard BIC 
score. Our work provides a concrete example 
that the BIC score is generally not valid for 
statistical models that belong to a stratified 
exponential family. This stands in contrast to 
linear and curved exponential families, where 
the BIC score has been proven to provide a 
correct approximation for the marginal like- 
lihood. 

1 INTRODUCTION 

Statisticians are often faced with the problem of choos- 
ing the appropriate model that best fits a given set 
of observations. One example of such problem is the 
choice of structure in learning of Bayesian networks 
(Heckerman, Geiger & Chickering, 1995; Cooper & 
Herskovits, 1992). In such cases the maximum likeli- 
hood principle would tend to  select the model of high- 
est possible dimension, contrary to the intuitive notion 
of choosing the right model. Penalized likelihood ap- 
proaches such as AIC have been proposed to  remedy 
this deficiency (Akaike, 1974). 

We focus on the Bayesian approach to model selection, 
by which a model M is chosen according to the maxi- 
mum posteriori probability given the observed data D: 

where w denotes the model parameters and 0 denotes 
the domain of the model parameters. In particular we 
focus on large sample approximation for P(M1D). 

The critical computational part in the evaluation of 
this criterion is the marginal likelihood integral II _= 

P(D1M) = S, P(DIM,w)P(wlM)du. We write 

where YD is the averaged sufficient statistics of the 
data D ,  N is a number of examples in D, and p(wlM) 
is the prior parameter density for model M. Recall 
that the average sufficient statistics for multinomial 
samples of n binary variables (XI , .  . . , X,) is simply 
the counts for each of the possible 2n joint states. Of- 
ten the prior P ( M )  is assumed to be equal for all 
models, in which case Bayesian model selection is per- 
formed by maximizing I[[N, Yo, MI. The quantity rep- 
resented by S(YD, N,  M)  = lnIIIN,YD, MI is called 
the Bayesian Information Criterion (BIC) for choos- 
ing model M .  

For many types of models the asymptotic evaluation 
of integral 1 (as N -t co) is a classical Laplace proce- 
dure. This evaluation was first performed for Linear 
Exponential (LE) models (Schwarz, 1978) and then 
for Curved Exponential (CE) models under some ad- 
ditional technical assumptions (Haughton, 1988). It 
was shown that 

where In P(YoIwML) is the log-likelihood of YD given 
the maximum likelihood parameters of the model and 
d is the model dimension, i.e., the number of indepen- 
dent parameters. The error term R = R(YD, N, M )  
was shown to be bounded for a fixed YD (Schwarz, 
1978) and uniformly bounded for all YD -t Y in CE 
models (Haughton, 1988). This approximation is re- 
ferred as a (standard) BIC score. 

The use of BIC score for Bayesian model selection for 
Graphical Models is valid for Undirected Graphical 
Models without hidden variables because these are LE 
models (Lauritzen, 1996). The justification of BIC for 
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Direct,ed Graphical Models (called Bayesian Net,works) result deferring the proof to an Appendix. Finally, 
is somewhat, more complicat,ed. On one hand discrete Section 6 out,lines future research directions. 
and Gaussian DAG models are C E  models (Geiger, 
Heckerman, King & Meek, 2001; Spirtes, Richardson 2 ASYMPTOTIC 
& Meek, 1997). On  t,he other hand, the t,heoretical 
iustification of t,he BIC score for C E  models has been 

APPROXIMATIONS 

established under the  assumpt,ion that, the model con- 
tains the t,rue distribution - t,he one that has generat,ed 
t,he observed data.  This assumpt,ion limit,s t,he applica- 
bility of the proof of BIC score's validity for Bayesian 
networks in practical set,ups. 

The evaluat,ion of the marginal likelihood [[N, Y] for 
Bayesian networks witah hidden variables is a wide 
open problem because t,he class of distributions rep- 
resented by Bayesian networks with hidden variables 
is signifi~ant~ly richer than curved exponential mod- 
els and it falls into the class of Stratified Exponential 
(SE) models (Geiger et al., 2001). For such models 
the effective dimen~ionalit~y d (Eq. 2) of the model is 
no longer the number of network parameters (Geiger, 
Heckerman & Meek, 1996; Settimi & Smith, 1998). 
Moreover, the central problem in the  evaluat,ion of the 
marginal likelihood for this class is that the set of max- 
imum likelihood points is sometimes a complex self- 
crossing surface. R.ecently, major progress has been 
achieved in analyzing and evaluating this t,ype of int,e- 
grals (Wat,anabe, 2001). Herein, we apply these tech- 
niques t o  model selection among Bayesian networks 
with hidden variables. 

The focus of t,his paper is the  asympt,otic evaluation of 
I[[N, Y, MI for a binary naive Bayesian model M with 
binary features. The  results are derived under similar 
assumptions t o  the  ones made by Schwarz (1978) and 
Haughton (1988). In this sense, our paper general- 
izes the  mentioned works, providing valid asymptotic 
formulas for a new type of marginal likelihood inte- 
grals. The resulting asymptotic approximations, pre- 
sented in Theorem 3, deviate from the standard BIC 
score. Hence the  standard BIC score is not justified 
for Bayesian model selection among Bayesian networks 
wit,h hidden variables. Our adjusted BIC score changes 
depending on the  different types of singularities of the 
sufficient statistics, namely, the coefficient of the In N 
term is no longer -$  but rat,her a function of the suf- 
ficient statistics. Moreover, an additional In In N term 
appears in some of the  O(1) approximations, which is 
unaccounted for by the classical score. 

The rest of this paper is organized as  follows. Sec- 
tion 2 introduces the  concept of asymptotic expansions 
and presents some methods of asymptotic approxima- 
tion. Section 3 discusses an  application of these meth- 
ods. Section 4 reviews naive Bayesian models and ex- 
plicates the relevant marginal likelihood integrals for 
these models. Section 5 states and explains our main 

Exact analytical formulas are not available for many 
integrals arising in pract,ice. In such cases some sort 
of approximate or asymptotic solut,ions are of inter- 
est. Asymptotic analysis is a branch of analysis that 
is concerned with obtaining the approximate analyti- 
cal solutions t o  problems where a parameter or some 
variable in an  equation or integral becomes either very 
large or very small. 

Let z represent such a large parameter. We say that 
f (2) is asymptotically equal t o  Cz=, a,g,(z), denoted 
by the symbol " -", if 

where the big 0 symbol states that  the error term is 
bounded by a constant multiply of g,+l (2) and {g,) is 
an  asymptotic sequence, i.e., lim,,,g,+l/g, = 0. A 
good introduction to asymptotic analysis can be found 
in (Murray, 1984). 

The main objective of this paper is asymptotic approx- 
imation of marginal likelihood integrals as represented 
by Eq. 1, which are of the form 

where f (w, Y)  = -loglikelihood(Yjw). We shall as- 
sume that we are dealing with exponential models, so 
the log-likelihood of sampled da ta  is equal to N times 
the  log-likelihood of the  averaged sufficient statistics. 
This assumption holds for the  models discussed in this 
paper. 

Consider Eq.  3 for some fixed Y. For large N ,  the main 
contribution t o  the integral comes from the neigh- 
borhood of the minimum of f ,  i.e., the maximum of 
- N  f (w, Y).  Thus, intuitively, the approximation of 
II[N, Y] is determined by the  form of f near its mini- 
mum on 0. In the simplest case f (w) achieves a sin- 
gle minimum a t  W M L  in the interior of R and this 
maximum is non-degenerat,e, i.e., the Hessian matrix 
X f (wMI,) of f a t  W M ~ ,  is of full rank. In this case 
the appr~ximat~ion of [[N, Y] for N + cc is the clas- 
sical Laplace procedure (e.g., Wong, 1989, page 495), 
summarized as  follows 

Lemma 1 (Laplace Approximation) Let 
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where U C Rd. Suppose that f is twice differentiable 
and convex (Rf (11) > O), the minimum of f on U is 
achieved on a single internal point UO,  p is- continuous 
and ~ ( u o )  # 0. If I ( N )  absolutely converges, then 

where C = (2n)"2p(uo)[det R f (uO)]-f is a constant. 

Note that the logarithm of Eq. 4 yields the BIC score 
as presented by Eq. 2. 

However, in many cases, and, in particular, in the 
case of naive Bayesian networks, the minimum of f 
is achieved not at  a single point in 0 but rather on a 
variety Wo C 0 ,  called the zero set. Sometimes, this 
variety may be dl-dimensional surface (smooth mani- 
fold) in 0 in which case the calculation of the integral 
is locally equivalent to the d - d' dimensional classical 
case. The hardest cases to evaluate happen when the 
variety Wo contains self-crossings. 

Fortunately, an advanced mathematical method for 
approximating this type of integrals was introduced to 
the machine learning community by Watanabe (2001). 
Below we introduce the main theorem that enables us 
to compute the asymptotic form of II[N, Y] integrated 
in a neighborhood of a maximum likelihood point. 

Theorem 2 (based on (Watanabe, 2001)) Let 

where WE is some closed &-box around wo, which is a 
minimum point o f f  in WE, and f(wo) = 0. Assume 
that f and p are analytic functions, p(wo) # 0. Then, 

l n I (N)  = X i  In N + (ml - 1) lnln N + O(1) (5) 

where the rational number XI < 0 and the natural 
number ml  are the largest pole and its multiplicity of 
the meromorphic (analytic + poles) function that is 
analytically continued from 

where E > 0 is a suficiently small constant 

Applying Theorem 2 to the classical, single maximum, 
strictly convex case (Lemma 1) gives the largest pole 
A1 = -d/2, with multiplicity m = 1 confirming the 
classical result (Example 1 in (Watanabe, 2001)). 
However in the more complex cases, e.g., when the 
integral is evaluated in the neighborhood of the self- 
crossing of the zero set Wo, the coefficient -XI is 
not equal to half the dimensionality of the parame- 
ter space. In fact, 2X1 need not be an integer; it is a 
rational number. 

In general it is not easy to find the largest pole and 
multiplicity of J(X). Here, another fundamental math- 
ematical theory comes to rescue. The resolution of 
singularities in algebraic geometry transforms the in- 
tegral J(X) into a direct product of integrals of a sin- 
gle variable (Atiyah, 1970, Resolution Theorem; Hi- 
ronaka, 1964). We demonstrate this technique in the 
next section. 

3 APPLICATION OF WATANABE'S 
METHOD 

We now apply the method of Watanabe (2001) to ap- 
proximate the integral 

as N tends to infinity. This evaluation is part of the 
proof of our main result (Theorem 3). It is presented 
here as a self contained example which can be skipped 
without loss of continuity. 

Watanabe's method calls for the analysis of the poles 
of the following function 

To find the poles we transform the integrand function 
+(u) = U ~ U ;  into a function of new coor- 
dinates v l , .  . . , vn such that +(v) = a(v)vp'vg2 . . .v:" 
and a(v) is invertible near 0. This transformation de- 
compose the integral under study into n independent 
one-dimensional integrals each of which can be easily 
computed. The process of changing to the new coor- 
dinates is known as the process of resolution of sin- 
gularities. To obtain the needed transformations for 
the integral under study, we apply a technique called 
blowing-up which consists of a series of quadratic trans- 
formations. For an accessible introduction to these 
concepts see (Abhyankar, 1990). 

We start with n = 3 and then generalize. Rescaling 
the integration range to (-1, l )  and then taking only 
the positive quadrant, which does not change the poles 
of J(X), yields 

The three cases are symmetric, so we evaluate only the 
first. Using the quadratic transformation uz = 211212, 
u3 = ~ 1 ~ 3 ,  yields 
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and the marginal likelihood integral (1) becomes 

where w = ( a ] , .  . . , a n ,  b] , .  . . , b,, t )  are the model pa- 
rameters. 

Figure 1. A naive Bayesian model 

5 MAIN RESULT 
We now divide the range (0, 1)3 according to 212 < u3 
or u3 < u2. Again these cases are symmetric and so 
we continue to evaluate only one of them 

Since the function ( l f u ~ f u ~ ~ ~ ~ )  is bounded on (0, 
it follows that J(X) is within a constant multiply of 

Thus J(X) has poles a t  X = -314 and X = -1 with 
multiplicity m = 1. The largest pole is X = -314 
with multiplicity m = 1. Generalizing the above ap- 
proach to  n 2 3 we get that the largest pole of J ( X )  is 
X1 = -7114 with multiplicity rn = 1, so j[N] is asymp- 
totically equal to  c N - 2 .  

4 NAIVE BAYESIAN MODELS 

A naive Bayesian model M for discrete variables X = 
{ X I , .  . . , X,) is a set of joint distributions for X that 
factor according t o  the tree structure depicted on Fig- 
ure 1. A probability distribution P ( x )  belongs to  a 
naive Bayesian model if 

where x is the n-dimensional binary vector of values 
of X ,  r is the number of hidden states and hi denotes 
a particular state (class). Intuitively, this model de- 
scribes the generation of data  x that comes from r 
sources hl , . . . , h,. Naive Bayesian models are a sub- 
class of Bayesian networks (Pearl, 1988). 

In this work we focus on naive Bayesian networks that 
have two hidden states ( r  = 2) and n binary feature 
variables X I ,  . . . , X,. We denote the parameters defin- 
ing p(xilc1) by ai ,  the parameters defining p(xiIc2) by 
bi, and the parameters defining p(c1) by t. These pa- 
rameters are called the model parameters. We denote 
the joint space parameters P ( X  = x) by 8,. The fol- 
lowing mapping relates these parameters. 

This section presents an asymptotic approximation of 
the integral U[N, Y] (Eq. 7) for naive Bayesian networks 
consisting of binary variables X I ,  . . . , X n  and two hid- 
den states. It is based on two results. First, the clas- 
sification of singular points for these types of models 
(Geiger et al., 2001). Second, Watanabe's approach 
as explained in Section 2, which provides a method 
to  obtain the correct asymptotic formula of I[[N, Y] for 
the singular points not covered by the classical Laplace 
approximation scheme. 

Let Y = {(yl, . . . , yzn)jyi 2 0, C yi = 1) be the set of 
possible values of sufficient statistics Y = (Yl, . . . , Y2") 
for data  D = {(xi,] ,  . . . In our asymptotic 
analysis we let the sample size N grow to infinity. 

Let Yo c Y be the points ( y l , .  . . , y p )  that corre- 
spond to  the distributions that can be represented by 
binary naive Bayesian models with n binary variables. 
I.e., assuming the indices of yi are written as vectors 
(61,. . . ,6,) of n zeros and ones, points in S are those 
that can be parameterized via 

~ ( a  ,,..., a,) = t n a p ' ( 1  - ~ i ) ' - ~ ' +  (8) 

where t ,  a = ( a l , .  . . , a , )  and b = (bl, .  . . , b,) are the 
2n + 1 model parameters, as defined in Section 4. 

Geiger et al. (2001) classify the singular points into 
two classes S and S'. The set S is the set of points 
( y l , .  . . , y p )  such that Eq. 8 holds and all a i  = bi ex- 
cept for a t  most two indices in (1, . . . , n) .  Intuitively, 
each such point represents a probability distribution 
that can be defined by a naive Bayesian model (Fig- 
ure 1) with all links removed except a t  most two. 

The set S' c S is the set of points represented by 
a naive Bayesian model, just as the set S does, but 
with all links removed; namely, a distribution where all 
variables are mutually independent and independent of 
the class node as well. 

Clearly S' C S C Yo c T. We now present our main 
result. 

Theorem 3 Let II[N, Y] be the marginal likelihood 
of data with suficient statistics Y given the naive 
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Bayesian model u~i th  hinary variables and tu~o  hidden 
states, as represented hy Eqs. 6 and 7. Let Y and p 
satisfy following assumptions: 

A1 Bounded dens it,^. The density p(w) is hounded 
and hounded away from zero on 0 = (0, 1)2n". 

A2 Positive statist,ics. The statistics Y are such that 
Y i > O  f o r i = l ,  . . . , 2 n .  

A3 Statistics stability. There exists sample site No 
such that the suficient  statistics is Y for all sam- 
ple sizes N  > No. 

Then, for n 2 3 as N -t m. 

1. If Y E T o  \ S (regular point) 

2. If Y E S \ S' (type 1 singularity) 

5. If Y E S' (type 2 singularity) 

where f y  = In P(YIwMI,) and WMI, is the maximum 
likelihood parameters. 
Moreover, for n = 1 , 2  (degenerate models), 

a If n = 2, and Y @ S', or n = 1, then 

2n - 1 
lnII[N,Y] = N f y  - - 

2 
In N  + 0 ( 1 ) ,  (12) 

The first assumption (bounded density) has been made 
by all earlier works; in some applications they hold and 
in some they do not. The proof and the results, how- 
ever, can be easily modified t,o apply to  any particular 
kind of singularity of H, as long as we know the form 
of this singularity. The second and third assumptions 
are made to  ease the proof; the third assumption was 
also made by Schwarz (1978). 

Note that Eq. 10 corresponds to  selecting X I  = - 
and ml = 1 in Watanabe's method, Eq. 11 corre- 
sponds to  selecting X1 = -? and m, = 1, and Eq. 13 

corresponds to select,ing X1 = -: and m = 3. These 
formulas are different from the st,andard BIC score, 
given by Eq. 9, which only applies to  regular points in 
non-degenerat,e models, namely, the points in T o  \ S. 
In contrast t,o t,he standard BIC score, which is uniform 
for all pointas Y, the asymptotic approximation given 
by our adjusted BIG score depends on the value of 
Y through the coefficient of In N .  This coefficient in 
the singular cases is not the effective dimensionality 
of the parameter space, because the parametric space 
is singular a t  these points, namely, not isomorphic to  
any hypersurface. Inst,ead, t,he coefficients of In N  and 
lnln N  terms describe t,he geometric struct,ure of the 
log-likelihood function near singular points. E.g., for 
n = 2 and Y E S', we get the 2 Inln N  term in O(1) 
approximation, which is missed by the standard BIC 
score formula, Eq. 2. 

One may argue that  evaluating t,he marginal likelihood 
on singular points is not needed because one could ex- 
clude from the model all singular pointas which only 
have measure zero (wit,h respect to  the volume element 
of the highest dimension). The remaining set would 
be a smooth manifold defining a curved exponential 
model, and so BIC would be a correct asymptotic ex- 
pansion as long as the point Y has not been excluded, 
i.e., it will be correct for regular Y E To points. How- 
ever, this proposal fails in the case of selecting amongst 
naive Bayesian models. 

Consider the problem of selecting between two naive 
Bayesian models with n binary features and a binary 
hidden class variable. One model M F  with all links 
present between the class variable and each and ev- 
ery feature variable, and the other being a degenerate 
model MD for which all the feature variables are mu- 
tually independent and independent also of the class 
variable, namely, there are no links present. Assum- 
ing the two states hl and hz of the hidden variable 
are interpreted as representing two classes, model M D  
tells us that  the n features in the model do not distin- 
guish between the two classes, and so if model MD is 
correct, the two classes are not distinguishable using 
the prescribed n features. If model MF is correct, it 
provides some support for the existence of two classes, 
the strength of which is determined by the parameters 
of the model. Assume a prior probability of p > 0 and 
1 - p > 0 for the two models, respectively. 

Now, if the true data  comes from model M D ,  then 
its large sample statistics falls very close to the set S' 
of singular points of the full model M F .  Even if the 
statistics are regular due to  small perturbations in the 
sample, evaluation of I [ N ,  Y] according to  the regular 
case formula will give very large error terms and result 
in an incorrect model selection. Hence, in this case, 
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one should evaluate t,he marginal likelihood of M F  US- 

ing uniform asympt,ot,ic formulas, which are valid for 
the range of Y near singular points, and which, in the 
limit, are equivalent t o  the formulas derived in this pa- 
per. This careful evaluat,ion should be performed for 
a non negligible fraction p of the possible large sam- 
ple dat,aset,s, at least according t o  the prior specifica- 
tion. This phenomenon happens whenever comparing 
a graphical model against one of its submodels, which 
is a common pract,ice that  requires a careful analysis 
that this paper attempts t o  provide. 

6 FUTURE WORK 

We now highlight t,he steps required for obtaining a 
fully justified asymptotic model selection criterion for 
naive Bayesian networks. 

1. Develop a closed form asymptotic formula for 
marginal likelihood int,egrals for all types of statis- 
tics Y given an arbitrary naive Bayesian model. 
This step has been partially treated by the current 
paper. 

2. Extend these solut,ions by developing uniform 
asymptotic formulas valid for converging statis- 
tics Y" + Y as N + m. 

3. Develop an  algorithm that ,  given a naive Bayesian 
network and a da ta  set with statistics Yo, deter- 
mines the  possible singularity types of the limit 
statistics Y and applies the  appropriate asymp- 
totic formula developed in step 2. 

Our work provides a first step and a concrete frame- 
work t o  resolve these tasks among naive Bayesian net- 
works and perhaps among Bayesian networks with hid- 
den variables in general. 
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APPENDIX: PROOF OUTLINE 

The integral I[N, Y] converges for all N 2 1 and for 
all Y because the likelihood function is bounded. The 
first claim of Theorem 3 follows from the fact that for 
Y E To  \ S there are only two (symmetric) maximum 
likelihood points at  each of which the log-likelihood 
function is properly convex. Hence, the marginal like- 
lihood integral can be approximated by the classical 
Laplace method (Lemma 1). 

The proof of the second and third claims of Theorem 3 
requires the advanced techniques of Watanabe (Sec- 
tion 2). First, the integral I[N, Y] is transformed by a 
series of transformations into a simpler one. Second, 
the sets of extremum points of the exponent (maxi- 
mum log-likelihood points) are found, and then the 
new integral is computed in the neighborhoods of ex- 
tremum points. Finally, the asymptotic form of the 
largest contribution gives the desired asymptotic ap- 
proximation to the original integral. We focus on one 
thread of our proof which demonstrates this method. 

USEFUL TRANSFORMATIONS 

We first introduce a series of three transformations 
from the model parameters w = (a, b, t)  to the joint 
space parameters B, that facilitates the approximation 
of I[N, Y]. The transformations TI, Tz and T3 are such 
that their composition T = T3 o Tz o TI : 0 -t O is 
defined by Eq. 6, where R = (0, 1)2n+' is the domain 
of model parameters w and O is the domain of joint 
space parameters 8,. We call w's - the source variables 
and 6"s - the target variables. These transformations 
are from (Geiger et al., 2001). 

Transformation TI: Let TI : R + U be defined via 

i = 1 , .  . . , n .  The mapping Tl is a diffeomorphism, 
namely, a one-to-one differentiable map with a differ- 
entiable inverse. Furthermore, I det JT, I = 2Tn+'. 

Transformation T3: The transformation T3 : A + O 
is defined on the original target variables in such way 
that the new target variables z E A are expressed in 
terms of the new source variables (x, u, s )  by a number 
of simple formulas. The exact form of this transforma- 
tion is unimportant for our analysis. We note that T3 
is diffeomorphism and I det JT,I = 1. For details con- 
sult (Geiger et al., 2001). 

Transformation T2: This transformation is defined 
by ~2 : u c Pn+' + A c R~"- '  via 

t i  = xi, zij = p2(s)uiuj 
. . . 
212 ... r = P ~ ( S ) U I U Z . .  .UF,  

where pi(s) = i(1 - s2)((1 - s )~- '  + ( - l ) i ( l  + s ) ~ - ' ) ,  
and, in particular, pz(s) = 1 - sZ.  We index the z vari- 
ables by non-empty subsets of (1,.  . . , n). Note that, 
generally, this transformation is not a diffeomorphism. 

We have defined three transformations, from the 
model parameters R to the joint space parameters O: 

Based on these transformations we now present lemma 
that facilitates the evaluation of t,he integral II[N, yl. 

Lemma 4 Let I[N,  Y] be as represented by Eq. 7 
and let f define the normalized log-likelihood function, 
namely 

f (6') = f~ - C K In Bi, 
i 

where fy  = In P(YlwML) and 8[x,u,s]  = 
(T3 0 Tz)[x,u,s]. Also, let the zero set Uo = 
argmin( ,,,,, 1 , ~  f (x,u,  s )  be the set of minimum points 
of f in (x, u ,  s )  coordinates, and let 

where Ui,, is a small neighborhood of (x, u, s)i E UO, 
Z(X,U,S) = Tz(x,u, s) and zoi = Tz[(x,u,s)i]. 
Suppose that p is bounded (Al), and Y is positive (AZ) 
and fixed (A3). Then, for all N > 1, 

where J[N,Y] is represented by finite sum of neighbor- 
hood integrals. 

This lemma follows from the assumptions A1-A3 and 
the facts that TI, T3 are diffeomorphisms, Y E To, 
U is compact, and the contributions of non-maximum 
regions of the integrand are exponentially small. 

Lemma 4 states that integral 14 determines the asymp- 
totic form of the original integral !l[N,yl. 

PROOF FOR TYPE 2 SINGULARITY 

We focus on the proof of the third claim of Theorem 3 
that deals with the singular points in S t .  This proof 
illustrates the methods required for the proofs of all 
cases of Theorem 3. 

Let Y 6 S'. Our starting point is integral 14, which by 
Lemma 4 is within a constant multiply of the original 
integral (without the e-Nfy term). We evaluate the 
contributions to the integral J [N ,y l  from the neigh- 
borhoods of extremum points (x', u', s') € Uo. The 
maximum contribution gives the asymptotic order of 
the original integral. 
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Figure 2: The set Uo projected on (s,ui, uj),  for yi = 
0.2, yj = 0.3. Examples of points of types C1-C5 are 
marked. 

- = Let y = (71,. . . , y,) be the model parameters' val- 
ues of n independent variables that define the 2" di- 
mensional point Y, as explicated by the definition of 
S'. The zero set Uo is rather complicated because 
it contains a number of intersecting multidimensional 
planes. We have 

n 

uo = Uo- U Uo+ U u U O j  
j=l 

where 
-7. 1-7; U O - = { ( Y , ~ , - ~ ) I U ~ E (  f ' , . 2  ) , i = l ,  ..., n},  

~ ~ + = { ( ~ , u , l ) ~ u ~ ~ ( ~ , + ) , i = l ,  ..., n},  
x = y,ui = 0, i  # j ,  

1 1  
uj  E (-?) ?) , s  (-1, I ) ,  

- -- -yj < (1 - s)uj  < 1 - yj 
yj - 1 < ( l+S)Uj  < y j  

and UO-, UO+, Doi denote the closures of Uo-, Uo+ 
and Uo + 

With the zero set containing n-dimensional surfaces 
Uo- and Uo+ in a 2n + 1 dimensional space (Figure 2), 
we expect the asymptotic formulae to reflect this fact 
by the appropriate dimensionality drop of n - 1. This 
indeed happens, but to prove it requires to closely ex- 

i amine the form off near the different minimum points. 
This evaluation is complicated by the fact that the zero 
planes intersect each other, and such cases are not cov- 
ered by a classic Laplace approximation analysis. 

The minimum points of f are divided into five sets 
according to their location in Uo (Figure 2). 

Among these cases, C1  and C3 are almost classical, 
with f being approximated by a quadratic form in 2n- 
1 and n + 1 variables, and the cases C2, C4 and C5 
are the most complex, since they correspond to the 
intersection points of hyper-dimensional planes. We 
illustrate the treatment of such points for case C2. 

Case C2: (x' ,ul,sl) = niUoj,  i.e., u = 0, s # f l .  
In this case zo,i = xi for all i and z o , ~  = 0 for all 
other 2's. Centering (x,u,  S) around the minimum 
point (x', u', s'), we get 

2 + El,k [(I - (S + s ~ ) ~ ) u ~ u ~  - 01 + . . . 
= C x l "  

2 + [(I - s " ) u ~ u ~  - (S + ~ s ' ) s u ~ u ~ ]  
+"higher order terms" 

So, the principal part o f f ,  that bounds f within the 
multiplicative constant near zero, is given by 

The quadratic form in xi's contributes an N-"/' factor 
to the integral J[N, Y]. This can be shown by decom- 
posing the integral and integrating out the xi's. We 
are left with the evaluation of the integral 

This is precisely the integral evaluated in Section 3 
which was found to be asymptotically equal to 
cN-2. Thus the contribution of the neighborhood of 

3" 
(x', u', s') to  J[N, Y] is c N - 7 .  

In summary, we have decomposed the proof of The- 
orem 3 for Y E S' into five possible cases. We 
have fully analyzed the second case, using Watanabe's 
method, showing that the contribution to  J[N,Y] is 
C N - F .  The dominating contribution in the cases C3, 
C4, and C5, are all equal to CN-* (the proof of 
this claim is omitted due t o  space limitations). The 
dominating contribution in case C1  is only C N - w .  
Also, the various border points of Uo do not con- 
tribute more than the corresponding internal points. 
Thus, lnJ[N,Y] = - 9 l n N  + 0 ( 1 ) .  Hence, due to 
Lemma 4, lnII[N, Y] = N f y  - 9 In N + 0(1) ,  which 
confirms Theorem 3 for Y E S'. 


