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ABSTRACT
Motivation: The presence of millions of single nucleotide
polymorphisms (SNPs) in the human genome has spurred
interest in genetic mapping methods based on linkage dis-
equilibrium. The recently discovered haplotype block structure
of human variation promises to improve the effectiveness of
these methods. A key difficulty for mapping techniques is the
cost involved in separately identifying the haplotypes on each
of an individual’s chromosomes.
Results: We present a new approach for performing link-
age disequilibrium mapping using high density haplotype or
genotype data. Our method is based on a statistical model of
haplotype block variation, which takes account of recombina-
tion hotspots, bottlenecks, genetic drift and mutation. We test
our technique on two empirically determined high density data-
sets, attempting to recover the location of an SNP which was
hidden and converted into phenotype information. We com-
pare the results against a mapping method based on individual
SNPs as well as a competing haplotype-based approach. We
show that our strategy significantly outperforms these other
approaches when used as a guide for resequencing and that
it can also deal with both unphased genotype data and low
penetrance diseases.
Availability: HaploBlock executables for Linux, Mac OS X and
Sun OS, as well as user documentation, are available online
at http://bioinfo.cs.technion.ac.il/haploblock/
Contact: gdg@cs.technion.ac.il, dang@cs.technion.ac.il

1 INTRODUCTION
The linkage disequilibrium (LD) approach to genetic map-
ping looks for markers in a candidate region whose alleles are
correlated with disease in unrelated individuals. It assumes
that each genetic mutation associated with a disease occurred
in only a few founding individuals. Any marker allele near
a founder mutation is likely to be inherited along with it,
due to the low probability of recombination between the two
loci. These marker alleles will therefore be more prevalent
in contemporary affected individuals than in the rest of the
population, generating a correlation that allows the mutation
to be mapped. In the wake of the Human Genome Project,
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millions of single nucleotide polymorphisms (SNPs) have
been discovered, opening the way for high density LD studies.

LD mapping studies based on individual SNP markers have
met with little success (Risch, 2000; Cardon and Bell, 2001).
Even if a single marker is close to the phenotypic site, its
degree of correlation with disease will rarely distinguish it
from other markers associated by chance. A more power-
ful approach treats multi-marker haplotypes as the variable
for correlation (Botstein and Risch, 2003; Fan and Knapp,
2003). The descendants of a disease founder are more clearly
identified by a haplotype than by a single marker since two
haplotypes with different lineages are unlikely to be identical
at many sites. Nevertheless, tests based on haplotypes must
consider the possibility that recombinations and mutations
have taken place, complicating the correlation with dis-
ease. Many methods for addressing this challenge have been
proposed, based on evolutionary trees (Lam et al., 2000), hap-
lotype sharing (McPeek and Strahs, 1999; Morris et al., 2000),
clustering (Liu et al., 2001) and the coalescent (Rannala and
Reeve, 2001).

In recent years, several studies of human variation have
demonstrated the presence of haplotype blocks, defined as
genomic regions in which a small number of multi-site vari-
ants cover most of the observed variation (Daly et al., 2001;
Goldstein, 2001; Patil et al., 2001; Gabriel et al., 2002). These
blocks may result from recombination hotspots, which separ-
ate between stretches of DNA that are almost never divided
during meiosis (Jeffreys et al., 2000, 2001). Alternatively, they
may be distributed randomly as a result of uniform but rare
recombination (Zhang et al., 2003). In either case, haplotype
blocks are further explained by population phenomena such
as bottlenecks and genetic drift, which reduce the amount of
variation in a genetic region over time.

A diverse range of block identification criteria have been
proposed, based on heterogeneity (Daly et al., 2001), haplo-
type tagging SNP (htSNP) informativeness (Patil et al., 2001),
linkage disequilibrium (Gabriel et al., 2002), the four-gamete
test (Wang et al., 2002) and statistical model selection (Green-
span and Geiger, 2003; Anderson and Novembre, 2003;
Koivisto et al., 2003). Each of these methods infers a single
block partition for a genomic region, often by dynamic pro-
gramming (Zhang et al., 2002b). Recent research suggests
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however that it may be difficult to justify the selection of one
partition over another, due to the complex patterns generated
by recombination and mutation (Schwartz et al., 2003).

Both haplotype block identification and LD mapping in
general are made harder by an absence of haplotype phas-
ing information. Standard SNP genotyping processes yield an
unordered pair of alleles for each locus, with no information
on which alleles are co-located on the same chromosome. A
genotype containing s heterozygous sites can be separated into
constituent haplotypes in 2s−1 different ways. This degen-
eracy leads to the haplotype resolution problem, which we
addressed directly in an earlier work (Greenspan and Geiger,
2003).

In this paper, we proposed a new method for high density
LD mapping that takes account of haplotype blocks. For a
set of SNPs at known locations, our method analyzes a list
of haplotypes or genotypes with corresponding phenotype
information, generating a posterior distribution for the pos-
ition of a phenotype locus over the candidate region. This
posterior distribution provides a prioritization for chromo-
some resequencing, which is the final step required to identify
a disease-related mutation.

The rest of this paper is organized as follows. Section 2
describes our statistical model, which summarizes the effects
of recombination hotspots, bottlenecks, genetic drift and
mutations. Section 3 describes how we infer an ensemble
of models from observed data and calculate a posterior dis-
tribution for the position of the phenotype locus using this
ensemble. Section 4 demonstrates the effectiveness of our
technique using real-world SNP data, showing how our
method significantly outperforms two other approaches when
used as a guide for resequencing. In this section, we also
demonstrate that our strategy remains effective for low pen-
etrance diseases and in the absence of haplotype phasing
information. Finally, Section 5 presents some further points
for discussion.

2 STATISTICAL MODEL
Our model for the haplotype block variation in a genomic
region, which was introduced previously (Greenspan and
Geiger, 2003), is defined by (a) a partition of the region into
blocks, (b) one or more ancestor haplotypes for each block,
(c) a Markov chain over the blocks defining the ancestor dis-
tributions and (d) site-specific mutation rates reflecting the
mutations accumulated since the ancestors were alive. All
aspects of the model are inferred from the raw haplotype or
genotype data with no other prior knowledge.

We partition a genomic region containing l SNPs into adja-
cent and contiguous blocks, numbered 1, . . . , b, with the
indices of the first and last SNP of block k defined by sk
and ek , respectively. The ancestor haplotypes for block k are
numbered 1, . . . , qk . The sequence of ancestor haplotype c of
block k is given by ak,c, a string of ek−sk+1 symbols from the

Fig. 1. Bayesian Network for modeling haplotype data.

set B = {A, C, G, T , −} of SNP alleles, which contains the
four nucleic acids and a deletion. The probability that a haplo-
type is descended from ancestor c in the first block is defined
by the parameter θ1,c. For subsequent blocks, θk,c′→c defines
the probability that a haplotype is descended from ancestor
c in block k, given that it is descended from ancestor c′ in
the previous block k − 1. Note that the directionality of this
dependency between adjacent blocks is meaningless, as with
any Markov chain. The mutation parameter µj ,a→h denotes
the probability that ancestral allele a at site j is observed today
as allele h. Population genetic considerations led to a con-
straint of 10−6 ≤ µj ,a→h ≤ 10−3 for all a �= h (Greenspan
and Geiger, 2003).

The joint distribution defined by our model can be concisely
depicted using a Bayesian Network. A Bayesian Network
is a directed acyclic graph, in which each node represents
a variable and each variable’s distribution is dependent on
those which point to it (Pearl, 1988; Jensen, 1996). Using this
representation, general probability computations can be per-
formed efficiently by bucket variable elimination (Dechter,
1996). Furthermore, suitable parameters for the conditional
distributions can be inferred from observed data using the
EM algorithm (Lauritzen, 1995).

The Bayesian Network corresponding to our model is shown
in Figure 1. It contains a random variable Ck for each
block k = 1, . . . , b and two random variables Aj and Hj

for each SNP j = 1, . . . , l. Variable P will be discussed
later in Section 3.1. Each variable Ck defines the ancestor
from which a haplotype is descended in block k. For the
first block, Pr(C1 = c) = θ1,c and for subsequent blocks,
Pr(Ck = c | Ck−1 = c′) = θk,c′→c. For each block k, variables
Ask

, . . . , Aek
define the sequence of the ancestor indicated by

the value of Ck . For SNP j in block k, Pr(Aj = a | Ck =
c) = 1 if ak,c,j = a and 0 otherwise. Variables H1, . . . , Hl

define the observed haplotype data over loci 1, . . . , l, where
Pr(Hj = h | Aj = a) = µj ,a→h for each SNP j . The double
borders in Figure 1 denote that variables Aj are deterministic
and the black dots indicate that variables Hj are observed.

Let δ(x, y) = 1 if x = y and 0 otherwise. The Bayesian
Network defines the joint distribution over all variables
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LD mapping using haplotype blocks

Pr(c1, . . . , cb, a1, . . . , al , h1, . . . hl) as:

θ1,c1

b∏

k=2

θk,ck−1→ck

b∏

k=1

ek∏

j=sk

δ(ak,ck ,j , aj ) · µj ,aj →hj
. (1)

The likelihood Pr(h1, . . . , hl) of a haplotype h is the sum
of the joint distribution in Equation (1) over all values of the
unobserved variables, calculated efficiently by bucket variable
elimination (Dechter, 1996).

Our statistical model represents a series of multiple star
genealogies, one for each haplotype block. Each block
ancestor corresponds to the center of one star, while the
haplotypes descended from that ancestor correspond to the
star’s points. The Markov chain expresses the dependencies
between the block genealogies, reflecting the fact that link-
age disequilibrium exists between blocks as well as within
them. Tests on real-world data confirm that a Markov chain
provides a close approximation to true haplotype distributions
observed (data not shown). By allowing mutation rates to be
site-specific and allele-specific, we consider the possibility
of mutation hotspots and coldspots with different substitution
patterns. Other biological assumptions underlying our model
were discussed previously (Greenspan and Geiger, 2003).

To assess the suitability of a particular model M for repres-
enting an observed dataset D, we use the minimum description
length (MDL) criterion, which considers both the complex-
ity of M and the likelihood of D under M (Rissanen, 1978).
This criterion is based on the total amount of information
required to transmit data D using model M , as denoted by
DL(D, M). If DL(M) bits are required to represent a model
M then DL(D, M) = DL(M) − log2 Pr(D|M). The descrip-
tion length DL(M) of model M is calculated using an
efficient representation of the model parameters, as described
previously (Greenspan and Geiger, 2003). Assuming inde-
pendence, the likelihood Pr(D | M) is the product of the
likelihoods of each sample in D under model M .

For genotype data, we require an extended model to deal
with the lack of phasing information. The genotype model,
depicted in Figure 2, contains two identical copies of the hap-
lotype model, where the mirrored copy has variables renamed
to C′

k , A′
j and H ′

j . The new deterministic variable Gj cor-
responds to the joint observation at site j , taking values
from the set D of unordered pairs of SNP alleles, where
D = {[b1, b2] : b1, b2 ∈ B}. The value of Gj is fixed by
the alleles present on each chromosome at site j , so that
Pr(gj |hj , h′

j ) = 1 if gj = [hj , h′
j ] and 0 otherwise.

3 MAPPING USING MODELS
A high density LD mapping study is based on a list H =
{h1, . . . , hn} of n phased haplotypes or a list G = {g1, . . . , gn}
of n unphased genotypes over the entire region of interest. We
use the symbol D to refer to input H or G as appropriate.
The other inputs are a list P = {p1, . . . , pn} of phenotypes

Fig. 2. Bayesian Network for modeling genotype data.

associated with each haplotype or genotype and the distances
dj in base pairs between adjacent SNPs j and j + 1 over
j = 1, . . . , l − 1. For haplotype mapping, each haplotype
hi is a string of l symbols from the set B of SNP alleles,
where l is the number of loci examined. For genotype map-
ping, each genotype gi is a string of l elements from the set
D of unordered SNP allele pairs. Each pi is in the range
1, . . . , pmax, where pmax is the total number of phenotypes
observed. In a simple case–control study, pmax = 2.

We are searching for an unobserved genetic locus within the
candidate region that affects the phenotypes observed. Let Lj

denote the hypothesis that this locus is situated in the interval
between SNPs j and j + 1, so that we consider the set of
hypotheses {L1, . . . , Ll−1}. We express the output of a map-
ping study as a posterior distribution Pr(Lj | P , D) over these
alternatives, normalized so that

∑l−1
j=1 Pr(Lj | P , D) = 1.

This distribution is calculated in the following four stages.
First, we infer an ensemble M of statistical models which

are locally optimal in terms of the MDL criterion, i.e. those
which provide a compact explanation of the observed data D.
We ignore the phenotypes P during this process, since they
barely affect the data likelihood. We explore the search space
of models using Gibbs-style iterations, in which the exist-
ence and location of each block divider constitute the variable
for resampling. The initial model has dividers distributed
evenly over the region. During a sampling iteration, each of
the dividers in the current model is removed in turn to cre-
ate a larger block, into which we attempt to add up to three
new dividers at optimal locations, so long as this improves
the MDL score. All model parameters are optimized at each
stage of this process, using the local search and modified
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EM algorithms described previously (Greenspan and Geiger,
2003).

Second, for each model M in the ensemble M, we calculate
the posterior probability that each block contains the pheno-
typic locus. Let Uk denote the hypothesis that the locus is in
block k of M . The posterior distribution Pr(Uk | P , D, M) is
calculated using the method described in Section 3.1 or 3.2
as appropriate. Note that at this stage the phenotype data is
used to assess hypotheses relating to blocks, rather than SNP
intervals, since each model inferred assumes that the alleles
within each block segregate together.

Third, the posterior distribution Pr(Uk | P , D, M) over
the blocks in model M is converted into a posterior
Pr(Lj | P , D, M) over SNP intervals. For an interval (j , j +1)

in block k, for which sk ≤ j < ek , we allocate the pos-
terior in proportion to the length dj of the interval, setting
Pr(Lj | P , D, M) = dj ·Pr(Uk | P , D, M)/Vk , where Vk is the
total length of block k. For an interval (j , j +1) on the bound-
ary between blocks k and k + 1, for which j = sk+1 − 1 =
ek , we assume that half of the interval lies in each block,
setting Pr(Lj | P , D, M) = dj · Pr(Uk | P , D, M)/2Vk +
dj · Pr(Uk+1 | P , D, M)/2Vk+1. The block length Vk is
obtained by summing the interlocus distances dj within the

block and half of those at either end, i.e. Vk = ∑ek−1
j=sk

dj +
1
2 (dsk−1+dek

). Note that V1 and Vb lose elements dsk−1 and dek

respectively from this sum, where b is the number of blocks
in the model.

In the fourth and final stage, the individual posterior
distributions Pr(Lj | P , D, M) obtained from each model
M in the ensemble M are combined into a single stat-
istic by uniform model averaging, so that Pr(Lj | P , D) =∑

M∈M Pr(Lj | P , D, M)/1/|M|. We use a uniform prior
for the averaging since the sampling process has already
introduced a strong bias toward models with a low MDL score.

3.1 Haplotypes posterior
Recall that hypothesis Uk states that the phenotypic locus is
located in block k of a model. Under Bayes’ Rule, the posterior
probability of hypothesis Uk is given by

Pr(Uk | P , H, M) = Pr(P | Uk , H, M) Pr(Uk | H, M)

Pr(P | H, M)
.

Since Pr(P | H, M) is the same for all k and we assume that
the prior Pr(Uk | H, M) does not depend on H, this can be
rewritten as

Pr(Uk | P , H, M) ∝ Pr(P | Uk , H, M) Pr(Uk | M). (2)

In this equation, Pr(Uk | M) is the prior probability that
block k of model M contains a locus which affects the
observed phenotypes, while Pr(P | Uk , H, M) is the posterior
probability of phenotypes P given haplotypes H under that
assumption.

Phenotype information is expressed as the variable P in our
model. Under hypothesis Uk , P is directly dependent only on

variable Ck , as depicted in Figure 1. This simple dependence
is sufficient because the differences in ancestry reflected by
variable Ck capture the ancestral variation at all loci within
block k, including those which are not observed.

We approximate the term Pr(P | Uk , H, M) of Equation (2)
by assuming sample independence and inferring maximum-
likelihood parameters for Pr(P | Ck , M). These parameters
are obtained using the EM algorithm with the haplotypes H
and phenotypes P as evidence (Lauritzen, 1995). The sub-
sequence of each haplotype for block k is usually compatible
with only one value of Ck , so the EM algorithm converges
uniquely and quickly.

The prior probability Pr(Uk | M) of Equation (2) is based on
two elements. The first element assigns probability in propor-
tion to Vk , the length of block k. The second element adjusts
for the fact that blocks with more ancestors have more para-
meters for maximizing the likelihood Pr(P | Uk , H, M). We
compensate by considering the optimal number of bits Wk

required to represent Pr(P | Ck , M). Using a standard encod-
ing, Wk = qk · (pmax −1) log2 n/2, where qk is the number of
ancestors for block k, pmax is the number of phenotypes and n

is the number of samples observed (Rissanen, 1983). Apply-
ing the MDL schema, elements Vk and Wk are combined to
obtain Pr(Uk | M) ∝ Vk · 2−Wk (Rissanen, 1978).

3.2 Genotypes posterior
For genotype data, the posterior distribution Pr(Uk | P , G, M)

is obtained in a similar manner as for haplotypes. Equation (2)
is trivially rewritten as

Pr(Uk | P , G, M) ∝ Pr(P | Uk , G, M) Pr(Uk | M). (3)

As before, we represent phenotype information as the vari-
able P in our model. For dominant, recessive and co-dominant
disease models, the phenotype is affected by genetic varia-
tion in both chromosomes. Therefore, under hypothesis Uk ,
P depends on both variables Ck and C′

k , as depicted in
Figure 2. The differences between haplotype and genotype
posterior calculations stem only from this more complex
dependency.

Element Pr(P | Uk , G, M) of Equation (3) is calculated as
before by assuming sample independence and inferring the
parameters of Pr(P | Ck , C′

k , M) by EM. This distribution
is symmetrical for the two variables Ck and C′

k , reflecting
the functional symmetry between the maternal and paternal
chromosomes in a cell.

The prior probability Pr(Uk | M) of Equation (3) is also
calculated as before, based on the length Vk and the num-
ber of bits Wk required to represent Pr(P | Ck , C′

k , M). Since
the distribution Pr(P | Ck , C′

k , M) is symmetrical, we set
Wk = qk · (qk + 1) · (pmax − 1) log2 n/4. The two elements
are combined as before so that Pr(Uk | M) ∝ Vk · 2−Wk .
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LD mapping using haplotype blocks

Table 1. Outcomes for full penetrance haplotype tests

Data set and SNP range Target SNP Individual BLADE HaploBlock
Rank Sequence (kb) Rank Sequence (kb) Rank Sequence (kb)

5q31 3 1 7 8 71 3 7
7 5 43 1 80 1 68

21 5 14 18 17 1 5
80 69 336 54 277 7 111
84 54 255 9 273 1 9

Mean 13.0 131 9.6 144 2.6 40
Chromosome 21

3877–4077 4063 2 2 114 140 3 12
8538–8738 8597 28 101 7 20 1 17

15 510–15 710 15 607 1 17 104 267 1 24
15 855–16 055 15 870 2 8 9 52 1 10
16 807–17 007 16 918 36 38 27 60 33 57

Mean 13.8 33 16.4 107 7.8 24

For each algorithm, the ‘Rank’ column shows the position of the interval containing the target SNP in a ranking of intervals according to the posterior probability assigned. The
‘Sequence’ column shows how much of the region would be resequenced before finding the target SNP when resequencing intervals in descending order of posterior density.

4 RESULTS
4.1 Full penetrance haplotype mapping
We assessed our mapping technique using two large sets of
empirically determined human haplotypes: (a) 258 transmit-
ted haplotypes for 98 SNPs over 464 kb in the 5q31 region
(Daly et al., 2001) and (b) 20 haplotypes over the whole of
chromosome 21 (Patil et al., 2001).

Each test set was generated from a set of haplotypes by ran-
domly selecting a target SNP to be converted into phenotype
information. Each haplotype was assigned the phenotype cor-
responding to the allele it possessed for this SNP, which was
then removed from the marker data—the goal of the map-
ping algorithm was to recover its location. Since all SNPs
were biallelic, haplotypes which had the more common allele
for the target SNP were labeled as ‘healthy’ while the others
were labeled ‘diseased’. This mirrors the LD mapping prob-
lem for high penetrance diseases, where a hidden locus which
determines phenotypic differences must be found.

For the 5q31 data, we created five separate test sets, select-
ing SNPs as the target with probability in proportion to the
distance between their neighboring SNPs. For chromosome
21, we used five randomly selected contiguous subsets of 201
SNPs from the NT_002836 contig, then created a single test
set from each subset as before. We removed those few hap-
lotypes from test sets for which the target SNP allele was
unknown.

For each test set, we obtained the distribution Pr(Lj | P , D)

by inferring an ensemble of 100 models as described in
Section 3. For comparison, we also obtained posteriors from
the BLADE algorithm, allowing it to optimize the number of
founders using the MAP criterion (Liu et al., 2001). We further
calculated a distribution using a version of our model with no

interlocus dependencies, considering each SNP individually
as an independent ‘block’. We tried to include three other
software packages in our comparison, however each proved
unobtainable or unsuitable for datasets with a large number of
SNPs (Lam et al., 2000; McPeek and Strahs, 1999; Rannala
and Reeve, 2001).

Table 1 lists the results for each test set. For each algorithm,
the first column shows the position of the interval containing
the target SNP, in a ranking of intervals according to their
posterior probability. The ranking compared 96 intervals for
the 5q31 data, and 199 intervals for each chromosome 21 test
set. Note that larger intervals rank higher under any algorithm,
so this statistic is not ideal for comparative study.

To generate a better statistic, we used the posterior density of
each interval [i.e. Pr(Lj | P , D)/dj ] to determine a resequenc-
ing prioritization. We assumed that SNP intervals would be
resequenced in descending order of posterior density until the
target SNP was found. The second column for each algorithm
shows how much of the candidate region would have to be
resequenced under this scheme. In the absence of any mapping
information, we would expect this to be half of the region’s
length, i.e. 232 kb for the 5q31 data and 99, 82, 248, 167 and
201 kb, respectively, for each of the chromosome 21 test sets.

In 6 out of the 10 tests, HaploBlock ranked the target
SNP interval first, whereas the individual SNP and BLADE
approaches did so twice and once, respectively. In terms of
the resequencing prioritization, HaploBlock also comfortably
outperformed the other two approaches. This is particularly
notable for the 5q31 region, in which it required an average of
40 kb instead of 131 and 144 kb, saving ∼70% in resequencing
costs.

It is instructive to examine the results for the 5q31 dataset
with target SNP 21, in which all three algorithms performed
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Fig. 3. Posterior densities for SNP 21 in haplotype dataset 5q31.

reasonably well. Figure 3 depicts the posterior density curve
assigned by each algorithm in the immediate vicinity of the
hidden target SNP. The BLADE algorithm failed to find any
significant peak in this area, although it did assign a pos-
terior density to a 50 kb window containing the target that was
slightly higher than in the rest of the region. The individual
SNP method assigned a peak window between SNP 23 (5.5 kb
downstream of target) and SNP 25 (13.5 kb downstream),
reflecting a strong association between the phenotypes and
SNP 24. While close by, this window failed to include SNP
21, since both SNPs 22 and 23 were poorly correlated with
the phenotypes. By contrast, HaploBlock assigned a wider
peak which was well centered around the target, reflecting
its location within a block whose haplotypes were strongly
associated with the phenotypes. It is interesting to note that
the original 5q31 analysis assigned a block from SNP 16
(8 kb upstream of target) to SNP 24 (6 kb downstream) (Daly
et al., 2001). Similarly, 84 of the 100 models sampled by
HaploBlock placed SNPs 16–23 in a single block.

HaploBlock performed relatively poorly in terms of
resequencing length for SNPs 7 and 80 in the 5q31 region and
the last test set for chromosome 21. In all three cases, the target
SNP was strongly associated with several haplotype blocks in
the surrounding region, reducing the resolution that Haplo-
Block was able to achieve. Nonetheless, it is encouraging to
note that the target was always included in the window of high
posterior density output by HaploBlock, while this was not the
case for the other two approaches (graphs not shown).

4.2 Genotypes and partial penetrance
We also assessed the effectiveness of our LD mapping method
using unphased genotype marker measurements and/or a
partial penetrance model. We based the genotype tests on
the 129 offspring in region 5q31, while the haplotype tests
used the same 258 haplotypes from 5q31 as before. The
chromosome 21 data were not used since they contain too
few samples for partial penetrance mapping to be viable.

For a phenotype with penetrance p, the disease status was
assigned with probability p to haplotypes with the rare allele
for the target SNP, while all others were assigned healthy.
For genotypes, this model was applied independently to both
alleles before combining the results under a co-dominant
model to generate three phenotype assignments.

Table 2 compares the results of mapping haplotypes and
genotypes with varying degrees of penetrance. The results
show that our approach remains effective in the absence of
phasing information. For genotypes with full penetrance,
a mean rank and resequencing length of (3.2, 37 kb) was
achieved, compared with (2.6, 40 kb) for haplotypes. Fur-
thermore, our technique exhibits a similar deterioration
in performance for haplotypes and genotypes, achieving
(8.8, 118 kb) and (8.2, 113 kb) respectively at 10% penetrance.

The running time for HaploBlock is highly dependent on the
parameters of the models inferred. If a bound is placed on the
maximum number of SNPs and ancestors in any block, the
time complexity is O(l · n · s), where l is the number of
SNPs, n is the number of haplotypes or genotypes and s is
the number of models to be sampled. In practice, unphased
genotypes take much longer to analyze than haplotypes, due to
the extra complexity of the calculations involved. On a 2 GHz
Pentium IV workstation, HaploBlock took about 15 min of
CPU time to analyze each chromosome 21 test set (200 SNPs,
20 haplotypes) and about 3 and 40 h respectively for each set
of 5q31 haplotypes and genotypes (97 SNPs, 258 haplotypes
or 129 genotypes).

5 DISCUSSION
There is an ongoing debate over whether haplotype blocks are
generated by recombination hotspots, or arise from other pop-
ulation processes (Phillips et al., 2003; Zhang et al., 2003).
Our Markov model is neutral on this question, since it cap-
tures the dependencies between adjacent blocks in either case.
Nonetheless, a future direction for research is to examine high
density datasets in order to address the issue directly.

Although we demonstrated our method using real-world
haplotypes and genotypes, we were forced to simulate pheno-
types using a target SNP, since we could locate no publicly
available datasets which combine high density SNP data with
phenotype information. We wish to apply our approach to
such data in future, either as part of a new mapping study or
to confirm the effects of a locus whose position is known.

The experiments performed in this paper were based on a
model in which phenotypes were affected by a single locus in
the region of interest. However, it is expected that LD map-
ping techniques will also prove useful for mapping complex
diseases, in which phenotypes are the product of interactions
between multiple loci as well as non-genetic factors. To fully
address this problem, our model would have to be extended
to allow multiple haplotype blocks to influence the pheno-
types, via an explicit model of interaction that would reduce
the number of parameters to be inferred. Nonetheless, the
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Table 2. Outcomes for HaploBlock for genotype and partial penetrance tests

Data type (statistic) Penetrance (%) Index of target SNP in 5q31 dataset
3 7 21 80 84 Mean

Haplotypes (rank) 100 3 1 1 7 1 2.6
50 3 1 1 10 3 3.6
25 3 1 1 4 17 5.2
10 3 1 13 16 11 8.8

Genotypes (rank) 100 3 1 2 7 3 3.2
50 5 1 2 17 11 7.2
25 5 1 2 18 16 8.4
10 5 1 3 21 11 8.2

Haplotypes (sequence, kb) 100 7 68 5 111 9 40
50 66 68 5 117 42 60
25 78 68 5 244 51 89
10 78 68 104 229 109 118

Genotypes (sequence, kb) 100 7 55 5 76 42 37
50 123 68 5 133 130 92
25 39 55 13 217 179 100
10 61 87 13 237 167 113

results for the partial penetrance tests indicate that our method
is already useful for individually detecting loci with simple
additive or multiplicative interactions.

Two other MDL approaches to modeling haplotype block
variation have recently been published, either of which could
be used as a basis for our LD mapping technique. Koivisto
et al. (2003) identify up to 10 haplotype clusters within
each block using k-means clustering. Each haplotype cluster
defines an independent distribution for the alleles at each SNP,
with no constraint on the distribution’s parameters. This con-
trasts with our ancestor plus mutation model, which expresses
the variation within each cluster as the result of mutations
since a founding bottleneck event. Koivisto et al. (2003) con-
sider the ancestry for each block independently, allowing the
optimal partition to be identified using dynamic programming
(Zhang et al., 2002b). In the language of our approach, their
model conflates variables Aj and Hj in Figure 1 and removes
the Markov chain connecting variables Ck .

Anderson and Novembre (2003) apply a different model,
in which they enumerate the different haplotypes observed
within each block without clustering by similarity or ances-
try. As in our technique, Anderson and Novembre rep-
resent the dependencies between adjacent haplotype blocks
using a Markov chain. However, since their enumeration
approach is liable to identify a large number of different
haplotypes for each block, they save space in their model
description by storing only selected parameters of this chain,
setting the probability of the other haplotypes according
to their marginal frequencies. Interestingly, Anderson and
Novembre (2003) develop a dynamic programming algorithm
to infer the globally optimal block partition in the presence

of dependencies between adjacent blocks, which may be
applicable with some modifications to our own work.

One clear advantage of our statistical model over these oth-
ers is its ability to represent unphased genotype data. This
allows it to be applied for haplotype resolution and LD map-
ping in the absence of phasing information. Another of its
strengths is that missing data are dealt with naturally within the
Bayesian Network framework, by summing over the variables
for loci that are not observed. Both Koivisto et al. (2003) and
Anderson and Novembre (2003) use dynamic programming to
infer a single globally optimal partition for a genomic region.
By contrast, we infer an ensemble of locally optimal mod-
els to allow for the ambiguity of block partitioning. Further
research is required to determine which of these approaches
is more fruitful.

In this paper, we described a mapping method which uses
a full set of SNP measurements taken from a group of sub-
jects. However, it is hoped that haplotype blocks will lead
to cost savings in LD studies by reducing the number of
SNP measurements required (Zhang et al., 2002a; Cardon
and Abecasis, 2003). A pilot study is initially performed on
a few subjects, from which the structure of haplotype block
variation is inferred. The htSNPs are then selected to identify
the common variants within each block. Measurements taken
at these htSNPs from the full set of subjects are extrapolated
into full haplotypes based on the pilot study. Our statistical
model could be applied to this strategy, using the full SNP
measurements taken in the pilot study to infer an ensemble
of models. The htSNPs would then be identified as the most
informative SNPs in the context of this ensemble. Measure-
ments taken at these htSNPs would be used with our technique
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by setting the alleles at all other SNPs to be unknown. Since
our Bayesian Network model deals naturally with any num-
ber of unobserved variable values, ancestry would be inferred
from the htSNPs as intended and the unmeasured loci would
be ignored.
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