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ABSTRACT
The uneven recombination structure of human DNA has
been highlighted by several recent studies. Knowledge of
the haplotype blocks generated by this phenomenon can be
applied to dramatically increase the statistical power of ge-
netic mapping. Several criteria have already been proposed
for identifying these blocks, all of which require haplotypes
as input. We propose a comprehensive statistical model of
haplotype block variation and show how the parameters of
this model can be learned from haplotypes and/or unphased
genotype data. Using real-world SNP data, we demonstrate
that our approach can be used to resolve genotypes into
their constituent haplotypes with greater accuracy than pre-
viously known methods.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
biology and genetics

General Terms
Algorithms, Performance, Experimentation

Keywords
haplotype, haplotype block, recombination hotspot, haplo-
type resolution, Bayesian Network, linkage disequilibrium
mapping

1. INTRODUCTION
Several recent studies suggest that the relationship be-

tween the physical distance separating loci on human chro-
mosomes and the probability of their division during recom-
bination is far from smooth [1, 2, 3, 4, 5]. Specifically,
there are indications that in certain chromosomal regions,
recombination only takes place at narrow hotspots, which
separate between stretches of DNA which are almost never
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themselves divided during meiosis. The variants of these
stretches, called haplotype blocks, constitute the true co-
segregating alleles.
The visibility of haplotype blocks is enhanced by the low

level of variation present within each, due to bottleneck ef-
fects and genetic drift. Bottlenecks occur when a local pop-
ulation is descended from a small group of individuals, for
example due to migration or strong selection, resulting in a
sharp reduction in genetic variation. Genetic drift refers to
the gradual decrease in variation due to repeated random
sampling of the alleles in a population from those in the
previous generation. Since genetic drift is strongest when a
population is small, the early generations following a bottle-
neck event will undergo the greatest reduction in diversity,
leaving behind a small number of ancestral haplotypes upon
which the future population is built.
The identification of haplotype blocks improves the ef-

fectiveness of the linkage disequilibrium (LD) approach to
genetic mapping. The LD method is based on the assump-
tion that the genetic variants underlying a disease are the
product of mutations which took place in only a few found-
ing individuals. Any marker allele possessed by one of these
founders which is located in the same haplotype block as the
disease allele will be passed together with the other alleles
in that block to future generations. Therefore, the presence
of the disease in affected individuals will be correlated with
that marker allele, allowing the gene affecting the disease
to be mapped. Knowing the haplotype block structure of a
chromosomal region allows tests to be performed on multi-
ple adjacent markers belonging to each block, dramatically
increasing the chance of detecting associations.
Several tests have recently been proposed for detecting

haplotype blocks in DNA. Daly et al. [3] identify stretches
which have significantly less heterogeneity than would be ex-
pected considering the frequencies of the constituent SNPs.
Patil et al. [4] and Zhang et al. [6] examine the ratio between
the number of SNPs in a region and the size of the smallest
subset of these which is sufficient to uniquely identify all of
its haplotypes. Gabriel et al. [5] look for areas within which
the allelic correlation between most pairs of SNPs is high.
All of these criteria are local in that an assessment of each
putative block is based only on the haplotype distribution
observed within.
A potential obstacle for both haplotype block identifi-

cation and LD mapping in general is the cost involved in
separately identifying the complete haplotypes on each of
a subject’s two chromosomes. In the absence of additional
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information from relatives, a standard genotyping process
will yield an unordered pair of alleles for each locus, with
no information on which alleles are co-located on the same
chromosome. Molecular laboratory techniques to identify
chromosomal haplotypes have been developed [7, 8, 9, 10]
but their cost remains prohibitive in many cases.
A series of observed marker pairs containing s heterozy-

gous sites can be separated into constituent haplotypes in
2s−1 different ways. This degeneracy leads to the haplo-
type resolution problem, which seeks to infer the pairs of
haplotypes from which a set of observed genotypes are con-
stituted. An early approach to haplotype resolution was
Clark’s parsimony-based algorithm [11], later improved by
Gusfield [12]. A likelihood-based EM algorithm [13, 14, 15]
gives far superior results but is infeasible for large experi-
ments, since for genotypes with s heterozygous loci its com-
plexity is O(2s). Recently, Stephens et al. [16] and Niu
et al. [17] have proposed new MCMC-based methods which
are computationally feasible and give good results. None of
these methods for haplotype resolution consider the impli-
cations of the block-like structure of DNA.
We have developed an integrated approach to both haplo-

type block identification and haplotype resolution, suitable
for high-density SNP data. It is based on a statistical model
which takes account of recombination hotspots, bottlenecks,
genetic drift and mutations. We show how the parameters
of this model can be recovered from observed haplotype or
genotype data and demonstrate the effectiveness of our tech-
nique by applying it to the haplotype resolution problem.
For high-density regions of chromosome 21, our site pair-
wise error rates are between 3 and 200 times lower than
those achieved by previously published methods.
The rest of this paper is organized as follows. Section 2

describes our statistical model and its parameters. Section
3 explains the criterion used to assess how well a partic-
ular model fits some observations. Section 4 outlines the
algorithm we use to search for a model which optimizes this
criterion. Section 5 explains how a specific model can be ap-
plied to perform haplotype resolution. Section 6 compares
the results of applying our approach in this way against ex-
isting methods for haplotype resolution. Finally, section 7
describes some future directions we aim to pursue.

2. STATISTICAL MODEL
Our model for the distribution of haplotypes descended

from a bottleneck event can be represented as a Bayesian
Network. A Bayesian Network is a directed acyclic graph,
where each vertex v = 1 . . . n corresponds to a discrete vari-
able Xv and each directed edge represents conditional de-
pendencies between these variables [18, 19]. The distribu-
tion for each variable Xv is conditional upon the variables in
Pav, which is defined as the set of vertices from which there
are edges leading to v in the graph. The joint probability of
a full assignment x1, . . . , xn to variables X1, . . . ,Xn is the
product of these conditional probabilities. In other words,
Pr(X1 = x1, . . . ,Xn = xn) =

∏
v Pr(Xv = xv|Pav = pav),

where pav is the joint assignment {xi|Xi ∈ Pav} to the vari-
ables in Pav. From here on, we will use the notation Pr(y|z)
as an abbreviated form of Pr(Y = y|Z = z) for any sets of
variables Y and Z. For example, the joint probability could
be rewritten as Pr(x1, . . . , xn) =

∏
v Pr(xv|pav).

An important query is to compute the probability of a par-
tial assignment xs to variables Xs ⊆ {X1, . . . ,Xn}. This is

Figure 1: Bayesian Network for haplotype data

A A A A A A A

H H H H H H H

C C C

defined as the sum of Pr(x1, . . . , xn) over all full assignments
x1, . . . , xn which are compatible with xs, so that Pr(xs) =∑

x1
· · ·∑xn

Pr(x1, . . . , xn|xs). The independence assump-
tions embedded in the Bayesian Network allow such com-
putations to be performed efficiently, for example by bucket
variable elimination, a technique applied extensively in our
work [20]. Also, suitable parameters for the conditional dis-
tributions in a Bayesian Network can be learned from ob-
served data sets by the Expectation Maximization (EM) al-
gorithm, which we use at many stages during our search for
a model to fit observations [21].
An example of our model is shown by the Bayesian Net-

work in Figure 1. It consists of a random variable Ck for each
block k = 1 . . . b and two random variables Aj and Hj for
each SNP j = 1 . . . l. Variable Ck takes values 1 . . . qk, where
qk specifies the number of different haplotypes for block k
which emerged from the bottleneck event, hereafter referred
to as the ancestors for block k. Both Aj and Hj take values
from the set B of SNP alleles, where B = {A,C,G, T,−}
contains the four nucleic acids and a deletion. A partition
by recombination hotspots of the SNPs into blocks is de-
fined by the groups of variables Aj pointed to by each Ck in
the Bayesian Network. For example, the model in Figure 1
places hotspots between adjacent SNP pairs 3–4 and 5–6.
An assignment of values to the variables in the Bayesian

Network reflects the history of a single observed haplotype.
The value of each variable Ck is the index of the ancestor
for block k from which the observed haplotype is descended.
The sequence of that ancestor is specified by the values of
Ask . . . Aek , where Ask and Aek are the first and last vari-
ables descended from Ck respectively. The observed haplo-
type is specified by the values of variables H1 . . .Hl. Clearly,
Hj = Aj unless a mutation has taken place at site j since
the bottleneck event.
The topology of the Bayesian Network defines the joint

distribution Pr(c1, . . . , cb, a1, . . . , al, h1, . . . hl) over all vari-
ables as:

Pr(c1)
b∏

k=2

Pr(ck|ck−1)
b∏

k=1

ek∏

j=sk

Pr(aj |ck)Pr(hj |aj)

The conditional distributions for ancestor index variables
Ck are defined by the vector parameter θ. For the first block,
Pr(c1) = θ1,c1 and for subsequent blocks, Pr(ck|ck−1) =
θk,ck−1→ck

. The conditional distributions for ancestor se-
quence variables Aj are defined by the vector âk,c,j ∈ B
over blocks k = 1 . . . b, ancestors c = 1 . . . qk and sites
j = sk . . . ek. Each sub-vector âk,c defines the sequence of
ancestor c of block k, so that Pr(aj|ck) = 1 if aj = âk,ck,j
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and 0 otherwise. Note that the conditional distribution for
Aj is deterministic, as denoted by its double border in the
graph. The conditional distributions for observed sequence
variables Hj are given by the vector parameter µj,a→h, de-
fined over sites j = 1 . . . l and alleles a, h ∈ B. In each
case, Pr(hj |aj) = µj,aj→hj . The small dot in each vertex
Hj denotes that this variable’s value is observed, whereas
all others must be inferred. On this point, it is worth noting
the similarities between our model and a Hidden Markov
Model (HMM), since in each case there is a Markov chain
of distributions over unobserved variables upon which the
observed data is conditional.
Many biological assumptions underlie our model’s design.

Most fundamentally, we assume our population is in Hardy-
Weinberg equilibrium, so we define our distribution over in-
dividual haplotypes instead of genotypes [22]. The Markov
chain connecting variables C1 . . . Cb also implies that the
probability of a haplotype being descended from a particu-
lar ancestor for block k depends only on their ancestor for
block k− 1. This first-order property is based upon the ob-
servation that recombination is a Markovian process, under
the assumption of no chiasma interference. The values of
qk for each block k are allowed to differ, since the processes
of drift and selection act somewhat independently on each
block.
The parameter independence of each conditional distribu-

tion Pr(Aj |Ck) lifts all constraints on the phylogenetic re-
lationship between each block’s ancestors, since we are only
interested in tracing ancestry as far back as the formative
bottleneck event. The parameter independence of each con-
ditional distribution Pr(Hj|Aj) allows for both site- and
allele-specific mutation rates, justified by recent evidence
for mutation hotspots [23, 24]. This is a marked departure
from the traditional infinite-sites model of mutation, which
assumes that each SNP has only mutated once in evolution-
ary history. Our model also assumes that a site’s mutation
rate is independent of the alleles at other sites, or the an-
cestor from which it is descended.
Nonetheless, a model’s mutation rates are constrained in

other ways. Firstly, if either a or h are not observed alleles
of site j, we fix µj,a→h = 0, since such mutations are as-
sumed either never to occur or to be deleterious. For other
alleles a �= h, mutation rates are constrained by parameters
µmin and µmax, so that µmin ≤ µj,a→h ≤ µmax. The values
of µmin and µmax should ideally be based on the mutabil-
ity and history of the chromosomal region being studied.
However, since we generally lack such knowledge, suitable
guideline values are µmin = 10−6 and µmax = 10−3, based
on mutation rates of 1.6×10−7 to 5.5×10−9 per generation,
a generation length of 20 years and a most recent bottleneck
event between 100,000 and 5,000 years ago [25].
The Markov chain parameters θ determine some addi-

tional values of interest. For the first block, the prior distri-
bution π1,c for each ancestor c is clearly given by π1,c = θ1,c.
For subsequent blocks k > 1, we obtain the prior distri-
bution from that of the previous block and the transition
parameters, where πk,c =

∑
c′ (πk−1,c′ · θk,c′→c). The con-

ditional entropy ξ(k−1)→k across each hotspot measures the
degree of recombination between blocks k − 1 and k and is
given by ξ(k−1)→k = −∑

c′ πk−1,c′
∑

c(θk,c′→c · log θk,c′→c).
Under a particular model M , the likelihood Pr(h|M) of

a haplotype h = h1, . . . , hl is obtained by calculating the
probability of the corresponding partial assignment in the

Figure 2: Bayesian Network for genotype data

A A A A A A A

H H H H H H H

C C C

A' A' A' A' A' A' A'

H' H' H' H' H' H' H'

C' C' C'

G G G G G G G

Bayesian Network. This is given by the summation of the
joint probability function over all unassigned variables, i.e.∑

c1...cb

∑
a1...al

Pr(c1, . . . , cb, a1, . . . , al, h1, . . . , hl|M), cal-

culated efficiently by bucket variable elimination [20]. In
some cases, we lack observations for particular sites due to
failed measurements in the laboratory, in which case the
variables Hj corresponding to those sites are unassigned and
so included in the summation.
The likelihood Pr(g|M) of a genotype g is calculated us-

ing the Bayesian Network shown in Figure 2. This contains
two identical copies of the haplotype Bayesian Network cor-
responding to M , where the mirrored copy has variables
renamed to C′

k, A
′
j and H ′

j . The new discrete variable Gj

corresponds to the joint observation at site j, so we eval-
uate a genotype’s likelihood by calculating the probability
of the partial assignment Pr(g1, . . . , gl|M). Each Gj takes
values from the set D of possible unordered pairs of SNP
alleles, given by D = {[b1, b2] : b1, b2 ∈ B}. The condi-
tional distribution for each Gj is deterministic, since it is
fixed by the alleles present on each chromosome at site j,
i.e. Pr(gj|hj , h

′
j) = 1 if gj = [hj , h

′
j ] and 0 otherwise.

3. MDL CRITERION
Our core problem is to learn a suitable model from ob-

served SNP data, consisting of a set of haplotype observa-
tions H and/or genotype observations G. Assuming sample
independence, the likelihood Pr(H,G|M) of the data under
model M is given by

∏
h∈H Pr(h|M)

∏
g∈G Pr(g|M).

Seeking a model which maximizes this likelihood produces
erroneous results, since any observed haplotype distribu-
tion can be reproduced exactly by a simple model with
no recombination or mutation. We address this problem
of model over-fitting using the minimum description length
(MDL) criterion, which seeks to minimize the total num-
ber of bits required to represent data with a model, akin
to finding its optimal compressed encoding [26]. If DL(M)
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bits are required to represent a model M for data D then
DL(D,M) = DL(M)−log2 Pr(D|M). For general Bayesian
Networks, the Bayesian Information Criterion (BIC) can be
used to calculate DL(M) but we diverge somewhat from
that formulation here [27].
Formally, the description length DL(M) of model M is

the number of bits required to represent it with optimal ef-
ficiency. For our models, we ignore elements of this descrip-
tion whose lengths are fixed, for example the boolean vector
describing the partition into blocks and the site mutation
rates µ, since these make no difference to model compar-
isons. We consider only an efficient representation of the
ancestor sequences â and the parameters θ of the Markov
chain.
Ancestor sequences are represented using a distribution-

based optimal encoding scheme [28]. First, for each SNP j,
the frequency fj(a) in the model’s ancestors of each allele a
is calculated independently. If SNP j falls in block k, this
is given by fj(a) =

1
qk

|{c : âk,c,j = a}|. These independent

frequencies are multiplied to form a distribution over the
SNPs in block k, so that Pr(âk,c) =

∏ek
j=sk

fj(âk,c,j). Using
our scheme, the representation length of the sequence of
ancestor c of block k is given by L(âk,c) = − log2 Pr(âk,c), so
the total length for all ancestor sequences of block k is Sk =∑

c L(âk,c). Note that we ignore the cost of representing
the actual allele frequencies fj(a), since this is fixed for all
models to be compared.
Since each parameter θ of the Markov chain is a contin-

uous value with potentially infinite representation size, a
limit must be placed on its accuracy. We apply Rissanen’s
result, which states that the optimal representation size for
continuous parameters of a distribution from which m sam-
ples are taken is 1

2
log2m bits [29]. Therefore, the cost T1

to represent all θ1,c parameters for the first block is given
by T1 = q1−1

2
log2 n, where n = |H | + 2|G| is the number

of haplotypes represented by our data. Similarly, the cost
Tk to represent all θk,c′→c parameters for subsequent blocks

k > 1 is given by Tk = qk−1
2

qk−1 log2 n.
Thus, the total description length of a model M is given

by DL(M) =
∑

k (Sk + Tk) and our aim is to find M which
minimizes DL(H,G,M) = DL(M) − log2 Pr(H,G|M).

4. SEARCH ALGORITHM
Clearly, for any non-trivial input, the space of possible

models is vast (to begin with, there are 2l−1 different parti-
tions into blocks) so any form of exhaustive search is infeasi-
ble. Instead, our strategy takes advantage of two features of
the search space which were observed during development.
Firstly, it was noted that if the optimal model has sev-

eral recombination hotspots, adding these one-by-one will
tend to incrementally improve the score. This means that
hotspots may be examined individually and accumulated
over several iterations. Secondly, even if the recombination
hotspots in a model are not quite at their ideal locations
or the number of ancestors for each block is slightly sub-
optimal, the model will nonetheless have a relatively strong
score. This means that an initial quick scan can be used to
assess regions of the search space, leading to further explo-
ration in those areas which look most promising.
Globally, we adopt a myopic search strategy, retaining and

attempting to improve only the best scoring model M found
to date. We begin by assigning M to an initial model con-

Figure 3: Broken Bayesian Network for haplotype
data

A A A A A A A

H H H H H H H

C C C

taining no recombination hotspots, optimizing the number
of ancestors for the single block. Following this, we repeat-
edly execute a set of three phases, hotspot addition, nudg-
ing and removal, replacing M as we go by any model found
with a lower DL score. If two full rounds of these three
phases produce no improvement, the algorithm finishes and
the model is output, after its parameters are refined by ad-
ditional rounds of EM.
During hotspot addition, we attempt to insert a single new

hotspot somewhere within each block of the current model,
optimizing the number of ancestors for the new blocks gen-
erated on both sides. When nudging, we try moving each ex-
isting hotspot a small distance, also allowing small changes
in the number of ancestors for the blocks on both sides. In
the removing phase, we attempt to take out each existing
hotspot, optimizing the number of ancestors for the newly
reunited block.
Any particular assignment of hotspots and values q fixes

the topology of the Bayesian Network and the cardinality of
each variable within, allowing the remaining parameters â,
µ and θ to be inferred by the EM algorithm [21]. However,
to speed up our search, we learn â and µ for each block
independently, before learning parameters θ for the Markov
chain from adjacent pairs of blocks. This is equivalent to
performing EM on nodes Aj and Hj in the broken Bayesian
Network shown in Figure 3, followed by EM on each node
Ck with just the single edge from Ck−1 to Ck reintroduced
from Figure 1.
Learning in this modular fashion means that during our

model search, we need only recalculate parameters of blocks
which are immediately affected by each adding, nudging or
removing operation. At the cost of losing some informa-
tion, this shortcut introduces greater locality into our search
space, reducing calculation time a great deal. For exam-
ple, having added a hotspot within block k in an existing
model M , we only relearn the ancestors âk and âk+1, mu-
tation rates µsk , . . . , µek+1 and Markov transition probabili-
ties θk, θk+1 and θk+2. Parameters for unaffected blocks are
copied from M , shifting indices appropriately. Furthermore,
to calculate the new value of DL(H,G,M), the elements
S1, . . . , Sk−1, Sk+1, . . . , Sb and T1, . . . , Tk−1, Tk+2, . . . , Tb can
be reused, along with cached forward probabilities such as
Pr(hs1 , . . . , hek−1 , ck−1|M) and backward probabilities such
as Pr(hsk+2 , . . . , heb |ck+1,M) for each input haplotype h.
Our model requires a deterministic conditional distribu-

tion for each variable Aj but the EM algorithm will rarely
produce this. Therefore, when learning parameters within
block k, we begin by fixing the conditional distribution for
each Hsk . . .Hek as if no mutations have taken place. Then
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we perform EM for the variables Ask . . . Aek , effectively clus-
tering the observed sequences into qk self-similar clades. An-
cestor sequences are assigned based on each conditional dis-
tribution, setting âk,c,j = argmaxa Pr(Aj = a|Ck = c).
Only then do we perform EM for variables Hj , constraining
site mutation rates to µmin and µmax as appropriate.
Unlike the nudging and removal phases, which examine

each hotspot in the current model in turn, the addition phase
requires testing every possible hotspot location within each
block, significantly raising its complexity. For a new hotspot
tried in block k, different numbers of ancestors qk and qk+1

for the new blocks must also be considered, with only an
upper limit on the likely range of suitable values. Further-
more, because the EM algorithm is guaranteed only to find
parameters which lead to a local maximum for the likelihood
of observed data, multiple iterations with different random
seeds must be run for each assignment to qk and qk+1, in
order to allow the observed sequences to be clustered best.
Clearly, it would be infeasible to implement such a full search
for every hotspot that could be introduced into the model.
To overcome this problem, the addition phase takes ad-

vantage of the properties of the search space, as mentioned
above. The search for a suitable hotspot addition within
block k takes place in two stages, called scan and isolation.
In the scan stage, we generate a vector of new models Vj for
each possible insertion site j = sk +1 . . . ek − 1, in each case
copying the number of ancestors qk and qk+1 in the two new
blocks from qk in the original model. Then, for each model
in the vector, we try removing ancestors from each of the
two new blocks in ascending order of their prior probability
π, keeping any improvements in score. Having done so, the
score of each model Vj is a fair guide to the value of adding
a hotspot at j.
In the isolation stage, we begin by discarding all models in

V whose score is lower than that of either of their neighbors.
This search for local minima is guaranteed to remove at
least half (rounded down) of the models remaining. Then,
we try to improve each model Vj by slightly moving the
newly placed hotspot and reselecting ancestors, as in the
nudging phase described above. Having done so, the search
for local minima is repeated, continuing the isolation process
until a single model remains. In each round of the isolation
stage, we double the search time expended on improving
each remaining model, leading to a constant cost per round.
To prevent a bias towards hotspot accumulation in early
blocks, we do not attempt to add hotspots into new blocks
generated by the current phase of hotspot addition.
In a similar fashion, the nudging and removing phases

also focus more effort on models whose parameters are clos-
est to the best one seen. This approach is effective be-
cause models with similar parameters tend to produce sim-
ilar scores, especially when the parameters are close to op-
timal. Nonetheless, for best results, multiple independent
runs of the search algorithm may be performed, selecting
the best scoring model among those obtained.

5. HAPLOTYPE RESOLUTION
Using our approach, we perform haplotype resolution in

two stages. First, we search for the best model M for ob-
served genotype data G, as explained in section 4. We then
use this model to define a function H(g,M) which gives
a pair of haplotypes (h, h′) which is compatible with each
genotype g ∈ G and likely under M . Ideally, this function

would find the assignment of h1, . . . , hl, h
′
1, . . . , h

′
l with max-

imum likelihood in the model’s genotype Bayesian Network,
giving argmax(h,h′) Pr(g,h, h

′|M).
Unfortunately, computing this is infeasible, since it re-

quires a summation over all paths through the two Markov
chains to generate joint distributions over h and h′ before
calculating their maximal assignments, an operation with
exponential complexity in terms of l. Instead, we find the
joint maximum likelihood assignment of the haplotype pair
h1, . . . , hl, h

′
1, . . . , h

′
l and ancestor indices c1, . . . , cb, c

′
1, . . . , c

′
b

which is compatible with g by bucket variable elimination
[20]. In doing so, we only consider the single most proba-
ble path through the Markov chain that could lead to each
haplotype, analogous to applying the Viterbi algorithm on
a Hidden Markov Model. This approximation is reasonable
because one path is likely to give a much higher probability
for a particular haplotype than the others, since mutations
are rare.

6. RESULTS
Many studies of the haplotypes in particular genomic re-

gions have been carried out over the past few years [30].
However, in most cases, the haplotypes used for the study
were obtained using one of the haplotype resolution algo-
rithms described in section 1, so they hardly form a suitable
basis for a comparison of such methods. Furthermore, not
all studies are based on closely-spaced SNP markers, so our
block-based approach would be ineffective on the data sets
obtained.
Our results are based on two sources of high-density hap-

lotype data. Rieder et al. studied the gene ACE located
on chromosome 17, thought to be related to cardiovascular
disease, examining variation at 52 biallelic markers which
extend over a genomic region of 24 kb [31]. In their paper,
they obtained 22 haplotypes from 11 subjects using allele-
specific PCR to ensure that ambiguous genotypes were re-
solved correctly [7]. Patil et al. undertook a full study of
chromosome 21, examining variation at 24,047 SNPs over a
total length of 21.7 Mb [4]. They obtained 20 haplotypes
from 10 subjects by separating the two copies of each sub-
ject’s chromosome using a somatic cell hybrid technique [10].
For the purposes of this comparison, we examined the five
contiguous stretches of approximately 100 SNPs in chromo-
some 21 which extend over less than 35,000 bp.
To compare the quality of haplotype resolution, we used

10 random pairings of the true haplotypes for each region
to generate genotypes, which were then passed to each al-
gorithm for haplotype resolution. We applied our approach
for three different values of µmin and µmax in two ways, first
restricting the search to models which place all the SNPs in
a single block (i.e. b = 1) and then allowing the block divi-
sions to also be learned. The results are compared against
those for four other methods: (i) Clark’s algorithm, slightly
modified to deal with unknowns [11], (ii) Our local variation
of the EM algorithm which overcomes its exponential com-
plexity [13, 14, 15], (iii) The PHASE algorithm developed
by Stephens et al. [16], (iv) A beta version of the HAPLO-
TYPER algorithm developed by Niu et al. [17].
Table 1 compares the quality of haplotype resolution, as

measured by the proportion of individuals phased incor-
rectly. A finer comparison, shown in Table 2, is generated
by measuring the proportion of pairs of adjacent sites which
are phased incorrectly relative to each other. Although the
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Table 1: Mean subject error rates
Proportion of subjectsa C21ab C21b C21c C21d C21e ACE
Clark .8222 .7300 .5300 .7900 .8444 .5091
Local EMc .5889 .3900 .1300 .5800 .5667 .3545
HAPLOTYPERd .6667 – .6000 .6000 – .2818
PHASE .6778 .5000 .4800 .4800 .6556 .4727
HaploBlocke, b = 1, µmax = 10−4 .4222 .2200 .1400 .2600 .6889 .5364
HaploBlock, b = 1, µmax = 10−3 .4556 .2300 .1000 .3100 .6778 .5636
HaploBlock, b = 1, µmax = 10−2 .4333 .5500 .0800 .4600 .5667 .5364

HaploBlock, µmax = 10−4 .4556 .3400 .1200 .2800 .5667 .4818
HaploBlock, µmax = 10−3 .4778 .3300 .1200 .3800 .6444 .6818
HaploBlock, µmax = 10−2 .7111 .4700 .1200 .4300 .5667 .7273

aSites with unknowns were excluded from the comparison.
bAll chromosome 21 regions are from contig NT002836, over the following stretches of base pairs. a: 1262471-1292884, b:
7490174-7517009, c: 10972404-10996329, d: 13622368-13650628, e: 14999072-15030226.
cFor Local EM and HAPLOTYPER, we took the maximum likelihood result of 20 runs.
dThe HAPLOTYPER beta version failed on data with many unknowns – averages are for successful runs, if any.
eFor each HaploBlock run, we set µmin = µ2

max.

Table 2: Mean site pairwise error rates
Proportion of pairs C21a C21b C21c C21d C21e ACE
Clark .0548 .0251 .0280 .0329 .0234 .0381
Local EM .0095 .0042 .0009 .0047 .0083 .0152
HAPLOTYPER .0224 – .0204 .0077 – .0102
PHASE .0669 .0403 .0655 .0262 .0183 .0419
HaploBlock, b = 1, µmax = 10−4 .0052 .0011 .0007 .0014 .0161 .0100
HaploBlock, b = 1, µmax = 10−3 .0053 .0016 .0001 .0012 .0171 .0144
HaploBlock, b = 1, µmax = 10−2 .0036 .0074 .0006 .0027 .0116 .0185
HaploBlock, µmax = 10−4 .0039 .0015 .0001 .0008 .0048 .0109
HaploBlock, µmax = 10−3 .0030 .0030 .0005 .0015 .0045 .0109
HaploBlock, µmax = 10−2 .0068 .0058 .0005 .0024 .0080 .0173

first metric is common in the literature, it forms a crude
basis for comparison, since it ignores the useful information
contained in a pair of haplotypes which is phased wrongly
at only one site. The second metric overcomes this short-
coming and is particularly relevant if the inferred haplotypes
are to be used for LD mapping, which is based on correla-
tions between disease susceptibility and the alleles present
at contiguous sites.
The first set of tests, in which the number of blocks b

is fixed to 1, demonstrates the effectiveness of our ances-
tor and mutation model, even when the possible presence
of haplotype blocks is ignored. In other words, model-based
Bayesian clustering is an effective method for haplotype res-
olution over closely-linked SNPs. For the high-resolution
data from chromosome 21, the results are compelling – our
approach consistently outperforms previously published al-
gorithms, with the exception of some cases where µmax =
10−2. The contrast is particularly marked in the site pair-
wise error rates, indicating the suitability of our method
for high-resolution disease mapping. Our model-based ap-
proach also obtained better results than our own Local EM
algorithm with the exception of data set C21e, to be dis-
cussed further below. For the ACE data set, the results are
more mixed, perhaps because the lower SNP density in that
study makes it less suitable for our model.
The second set of tests, in which an unrestricted model

search is performed (allowing b ≥ 1), demonstrates the extra
accuracy that is achieved by allowing recombination hotspots
to be included in a model. However, for chromosome 21
data sets (a) through (d), there is no significant difference
between the results of the two experiments. This surprising
result is explained by the fact that even in the unrestricted
model search, many of the models learned from these regions
placed all the SNPs in a single block. By contrast, the unre-
stricted searches for data set (e) showed a clear improvement
in mean site pairwise error rate from (0.0161, 0.0171, 0.0116)
to (0.0048, 0.0045, 0.0080) for the three values of µmax, re-
flecting the fact that they all indicated the presence of re-
combination hotspots. Clearly, for data that extends over
longer chromosomal regions, the contrast between the two
types of search will increase in prominence.
Our algorithms have been implemented in ANSI C as the

HaploBlock package, available online with documenta-
tion at http://bioinfo.cs.technion.ac.il/haploblock/.
Running times on a 2 GHz Pentium Xeon workstation were
under 5 minutes for each search performed on genotype in-
put data, while learning from haplotypes is typically 20
times faster. The search algorithm can accept a mixture
of haplotypes and genotypes and imposes no limits on input
size.
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7. FUTURE WORK
The above results demonstrate the potential of our ap-

proach for modeling high-density SNP data. We are now
expanding our study, generating a full recombination map
of chromosome 21. We are also improving our search strat-
egy to incorporate MCMC elements, to better reflect the
uncertainty which is inherent in the identification of recom-
bination hotspots. Having done this, we will perform both
haplotype resolution and linkage disequilibrium mapping us-
ing the set of obtained models as a representative sample.
On a more fundamental level, our model might be im-

proved by the introduction of prior distributions for some
parameters. This is particularly relevant for mutation rates,
since the alleles at adjacent sites have been observed to af-
fect SNP mutability [25]. Similarly, we wish to test whether
the first-order property of our Markov chain holds true for
real data, since it might be undermined by genetic drift,
local interactions between alleles or interference-like effects.
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