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ABSTRACT

This paper explores the role of Directed Acyclic Graphs (DAGs) as a representation of condition-
al independence relationships. We show that DAGs offer polynomially sound and complete inference
mechanisms for inferring conditional independence relationships from a given causal set of such relation-
ships. As a consequence, d-separation, a graphical criterion for identifying independencies in a DAG, is
shown to uncover more valid independencies then any other criterion. In addition, we employ the
Armstrong property of conditional independence to show that the dependence relationships displayed by a
DAG are inherently consistent, i.e. for every DAG D there exists some probability distribution P that em-
bodies all the conditional independencies displayed in D and none other.

INTRODUCTION AND SUMMARY OF RESULTS

Networks employing Directed Acyclic Graphs (DAGs) have a long and rich tradition, starting
with the geneticist Wright (1921). He developed a method called path analysis [Wright, 1934] which
later on, became an established representation of causal models in economics [Wold, 1964], sociology
[Blalock, 1971] and psychology [Duncan, 1975]. Influence diagrams represent another application of
DAG representation [Howard and Matheson, 1981], [Shachter, 1988] and [Smith, 1987]. These were
developed for decision analysis and contain both chance nodes and decision nodes (our definition of
causal models excludes decision nodes). Recursive models is the name given to such networks by statisti-
cians seeking meaningful and effective decompositions of contingency tables [Lauritzen, 1982], [Wer-
muth & Lauritzen, 1983], [Kiiveri et al, 1984]. Bayesian Belief Networks (or Causal Networks) is the
name adopted for describing networks that perform evidential reasoning ([Pearl, 1986a, 1988]). This pa-
per establishes a clear semantics for these networks that might explain their wide usage as models for
forecasting, decision analysis and evidential reasoning.

DAGs are viewed as an economical scheme for rep.resenting conditional independence relation-
ships. The nodes of a DAG represent variables in some domain and its topology is specified by a list of
conditional independence judgements elicited from an expert in this domain. The specification list desig-
nates parents to each vkriable v by asserting that v is conditionally independent of all its predecessors,
given its parents (in some total order of the variables). This input list implies many additional conditional
independencies that can be read off the DAG. For example, the DAG asserts that, given its parents, v is
also conditionally independent of all its non-descendants [Howard and Matheson, 1981 ]. Additionally, if
S is a set of nodes containing v’s parents, v’s children and the parents of those children, then v is in-
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Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer Information
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dependent of all other variables in the system, given those in S [Pearl, 1986a]. These assertions are exam-
ples of valid consequences of the input list i.e., assertions that hold for every probability distribution that
satisfies the conditional independencies specified by the input. If one ventures to perform topologica!
transformations (e.g., arc reversal or node removal [Shachter, 1988]) on the DAG, caution must be exer-
cised to ensure that each transformation does not introduce extraneous, invalid independencies, and/or
that the number of valid independencies which become obscured by the transformation is kept at a
minimum. Thus, in order to decide which transformations are admissible, one should have a simple
graphical criterion for deciding which conditional independence statement is valid and which is not.

This paper deals with the following questions:

What are the valid consequences of the input list ?

What are the valid consequences of the input list that can be read off the DAG ?

Are the two sets identical?

The answers obtained are as follows

A statement is a valid consequence of the input set if and only if it can be derived from it using
the axioms of semi-graphoids [Dawid, 1979; Pearl & Paz ,1985]. Letting X, Y, and Z stand for
three disjoint subsets of variables, and denoting by I (X, Z, Y) the statement: " the variables in X
are conditionally independent of those in Y, given those in Z ", we may express these axioms as
follows:

Symmetry
I(X, Z, Y) =~ I(Y, Z,X)

(1.a)

Decomposition
I(X,Z,Y ~W)=~[(X,Z,I’) & I(X,Z,W)

(lob)

Weak Union
I(X,Z,Y uW)=~l(X,Z ~W,Y)

(1.c)

Contraction
I (X,Z~ Y, W) & I (X,Z, Y) =~ I (X,Z, Y~ W)

Every statement that can be read off the DAG using the d-separation criterion is a valid conse-
quence of the input list [Verma, 1986].

The d-separation condition is defined as follows [Pearl, 1985]: For any three disjoint subsets
X, Y, Z-of nodes in a DAG D, Z is said to d-separate X from Y, denoted I(X, Z, Y)o, if there
is no path from a node in X to a node in Y along which: 1. every node that delivers an arrow is
outside Z, and 2. every node with converging arrows either is in Z or has a descendant in Z (the
definition is elaborated in the next section).

The two sets are identical, namely, a statement is valid IF AND ONLY IF it is graphically-
validated under d-separation in the DAG.
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The first result establishes the decidability of verifying whether an arbitrary statement is a valid conse-
quence of the input set. The second restflt renders the d-separation criterion a polynomially sound infer-
ence rule, i.e., it runs in polynomial time and certifies only valid statements. The third renders the d-
separation criterion a polynomially complete inference m!e, i.e., the DAG constitutes a sound and com-
plete inference mechanism that identifies, in polynomial time, each and every valid consequence in the
system.

The results above are true only for causal input sets i.e., those that recursively specify the relation
of each variable to its predecessors in some (chronological) order. The general problem of verifying
whether a given conditional independence statement logically follows from an arbitrary set of such state-
ments, may be undecidable. Its decidability would be resolved upon finding a complete set of axioms for
conditional independence i.e., axioms that are powerfial enough to derive ~ valid consequences of an ar-
bitrary input list. The completeness problem is treated in [Geiger & Pearl, 1988] and completeness
results for specialized subsets of probabilistic dependencies have been obtained. All axioms encountered
so far are derivable from Dawid’s axioms, which suggests that they are indeed complete, as conjectured
in [Pearl & Paz, 1985]. Result-1 can be viewed as yet another completeness result for the special casein
which the input statements form a causal set. This means that applying axioms (1.a) through (1.d) on a
causal input list is guaranteed to generate all valid consequences and none other. Interestingly, result-2
above holds for any statements that obey Dawid’s axioms, not necessarily probabilistic conditional in-
dependencies. Thus, DAGs can serve as polynomially sound inference mechanisms for a variety of
dependence relationships, e.g., partial correlations and qualitative database dependencies. In fact, the
results of this paper prove that d-separation is cotnplete for partial correlation as well as for conditional
independence statements, whereas completeness for qualitative database dependencies has not been ex-
amined.

SOUNDNESS AND COMPLETENESS

The definition of d-separation is best motivated by regarding DAGs as a representation of causal
relationships. Designating a node for every variable and assigning a link between every cause to each of
its direct consequences defines a graphical representation of a causal hierarchy. For example, the proposi-
tions "It is raining" (c0, "the pavement is wet" (1~) and "John slipped on the pavement" (~,) are well
represented by a three node chain, from ~ through 13 to y ; it indicates that either rain or wet pavement
could cause slipping, yet wet pavement is designated as the direct cause; rain could cause someone to slip
if it wets the pavement, but not if the pavement is covered. Moreover, knowing the condition of the pave-
ment renders "slipping" and "raining" independent, and this is represented graphically by a d-separation
condition, I (~ y, I~)o, showing node ~x and [~ separated from each other by node y. Assume that "broken
pipe" (5) is considered another direct cause for wet pavement, as in figure 1. An induced dependency ex-
ists between the two events that may cause the pavement to get wet: "rain" and "broken pipe". Although
they appear connected in Figure 1, these propositions are marginally independent and become dependent
once we learn that the pavement is wet or that someone broke his leg. An increase in our belief in either
cause would decrease our belief in the other as it would "explain away" the observation. The following
definition of d-separation permits us to graphically identify such induced dependencies from the DAG (d
connoted "directional").

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to d-separate X
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from Y, denoted I(X, Z, Y)o, iff the’re is no path* from a node in X to a node in Y along which every
node that delivers an arrow is outside Z and every node with converging arrows either is or has a descen-
dant in Z. A path satisfying the conditions above is said to be active, otherwise it is said to be blocked
(by Z). Whenever a statement [(X,Z, Y)o holds in a DAG D, the predicate I(X,Z, Y) is said to be
graphically-verified (or an independency), otherwise it is graphically-unverified by D (or a dependency).

In figure 2, for example, X= {2} and Y --{3] are d-separated by Z -- { 1 }; the path 2 ~- 1 ~ 3 is
blocked by 1 a Z while the path 2 --~ 4 <--- 3 is blocked because 4 and all its descendents are outside Z.
Thus I (2, 1, 3) is graphicaLly-verified by D. However, X and Y are not d- separated by Z’ = { 1, 5 } be-
cause the path 2 --~ 4 <-- 3 is rendered active. Consequently, I (2, { 1,5 } ,3) is graphically.unverified by D ;
by virtue of 5, a descendent of 4, being in Z. Learning the value of the consequence 5, renders its causes
2 and 3 dependent, like opening a pathway along the converging arrows at 4.

Figure 1 Figure 2

Definition: If X, Y, and Z are three disjoint subsets of variables of a distribution P, then X and Y are
said to be conditionally independent given Z, denoted I (X, Z, Y)t,    iff
P(X,Y IZ)=P(X I Z).P(Y I Z) for atl possible values of X, Y and Z for which P(Z)>0.
[(X,Z, Y)p is called a (conditional independence) statement. A conditional independence statement ~
logically follows from a set Y~ of such statements if a holds in every distribution that obeys E. In such case
we also say that a is a valid consequence of ~.

Ideally, to employ a DAG D as a graphical representation for dependencies of some distribution
P we would like to require that for every three disjoint sets of variables in P (and nodes in D ) the follow-
ing equivalence would hold

t(x,z,~’)o iff t(x,z,Y)v (2)

This would provide a clear graphical representation of all variables that are conditionally independent.
When equation (2) holds, D is said to be a perfect map of P. Unfortunately, this requirement is often too
strong because there are many distributions that have no perfect map in DAGs. The spectrum of proba-
bilistic dependencies is in fact so rich that it cannot be cast into any representation scheme that uses poly-
nomial amount of storage ([Verma, 19871). Geiger [1987] provides a graphical representation based on a
collection of graphs (Multi-DAGs) that is powerful enough to perfectly represent an arbitrary distribution,

* By path we mean a sequence of edges in the underlying undirected graph, i.e ignoring the directionality of the
links.
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however, as shown by Vetma, it requires, on the average, an exponential number of DAGSo Being unable
to provide perfect maps at a reasonable cost, we compromise the requirement that the graphs represent
each and every dependency of P, and allow some independencies to escape representation.

Definition: A DAG D is said to be an 1-map of P if for every three disjoint subsets X, Y and Z of vari-
ables the following holds:

I(X,Z,Y)o ~ I(X,Z,Y)~

The natural requirement for these I-maps is that the number of undisplayed independencies be minimized.

The task of finding a DAG which is a minimal I-map of a given distribution P was solved in
[Verma 1986; Pearl & Verma, 1987]. The algorithm consists of the following steps: assign a total order-
ing d to the variables of P. For each variable i of P, idemify a minimal set of predecessors Si that
renders i independent of all its other predecessors (in the ordering of the first step). Assign a direct link
from every variable in Si to i o The resulting DAG is an I-map of P, and is minimal in the sense that no
edge can be deleted without destroying its I-mapness. The input list L for this construction consists of n
conditional independence statements, one for each variable, all of the form 1 (i, Si, U(i)-Si) where U(i) is
the set of predecessors of i and S~ is a subset of U(1) that renders i conditionally independent of all its
other predecessors° This set of conditional independence statements is called a causal input list and is said
to define the DAG D. The term "causal" input list stems from the following analogy: Suppose we order
the variables chronologically, such that a cause always precedes its effect. Then, from all potential causes
of an effect i, a causal input list selects a minimal subset that is sufficient to explain i, thus rendering all
other preceding events superfluous° This selected subset of variables are considered the direct causes of i
and therefore each is connected to it by a direct link.

Clearly, the constructed DAG represents more independencies than those listed in the input,
namely, all those that are graphically verified by the dTseparation criterion. The analysis of [Verma, 1986]
guarantees that all graphically-verified statements are indeed valid in P i.e., the DAG is an I-map of P.
However, this paper shows that the constructed DAG has an additional property; it graphically-verifies
every conditional independence statement that logically follows from L (i.e. holds in every distribution
that obeys L)o Hence, we cannot hope to improve the d-separation criterion to display more indepen-
dencies, because all valid consequences of L (which defines D ) are already captured by d-separation.

The three theorems below formalize the above discussion.

Theorem 1 (soundness) [Verma, 1986]: Let D be a DAG defined by a causal input list L. Then, every
graphically-verified statement is a valid consequence of L.

Theorem 2 (closure) [Verma, 1986]: Let D be a DAG defined by a causai input list L. Then, the set of
graphically-verified statements is exactly the closure of L under axioms (1.a) through (1.d).

Theorem 3 (completeness): Let D be a DAG defined by a causal input list L. Then, every valid conse-
quence of L is graphically-verified by D (equivalently, every graphically-unverified statement in D is not
a valid consequence of L)o
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Theorem 1 guarantees that the DAG displays only valid statements. Theorem 2 guarantees that
the DAG displays all statements that are derivable from L via axioms (1). The third theorem, which is
the main contribution of this paper, assures that the DAG displays a.ll statements that logically follow
from L i.e., the axioms in (1) are complete, capable of deriving all valid consequences of a causal input
list. Moreover, since a statement in a DAG can be verified in polynomial time, theorem 3 provides a com-
plete polynomial inference mechanism for deriving all independency statements that are implied by a
causal input set.

Theorem 3 is proven in the appendix by actually constructing a distribution Po that satisfies all
conditional independencies in L and violates any statement g graphically-unverified in D. This distribu-
tion precludes g from being a valid consequence of L and therefore, since the construction can be repeat-
ed for every graphically-unverified statement, none of these statements is a valid consequence of L.

The first two theorems are more general than the third in the sense that they hold for every depen-
dence relationship that obeys axioms (1.a) through (1.d), not necessarily those based on probabilistic con-
ditional, independence (proofs can be found in [Verma, 1986]). Among these dependence relationships are
partial correlations ([Pearl & Paz, 1985]) and qualitative dependencies ([Fagin, 1982], [Shafer at al,
1987]) which can readily be shown to obey axioms (1). Thus, for example, the transformation of ai’c-
reversal and node removal ([Howard & Matheson, 1981]) can be shown valid by purely graphical con-
sideration, simply showing that every statement verified in the transformed graph is also graphically-
verified in the original graph.

The proof of theorem 3 assumes that L contains only statements of the form l(i, Si, U(i?-Si).
Occasionly, however, we are in possession of stronger forms of independence relationships, in which case
additional statements should be read of the DAG. A common example is. the case of a variable that is
functionally dependent on its corresponding pa.rents in the DAG ( deterministic variable, [Shachter,
1988]). The existence of each such variable i could be encoded in L by a statement of global indepen-
dence I (i, Si ,U-Si-i ) asserting that conditioned on Si, i is independent of all other variables, not merely
of its predecessors. The independencies that are implied by the modified input list can be read from the
DAG using an enhanced version of d-separation, named ID -separation.

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to ID-separate
X from Y, iff there is no path from a node in X to a node in Y along which 1. every node which delivers
an arrow is outside Z, 2. every node with converging arrows either is or has a descendant in Z and 3. no
node is functionally determined by Z.

The new criterion certifies all independencies that are revealed by d-separation plus .additional
ones due to the enhancement of the input list. It has been shown that theorem 1 through 3 hold for ID -
separation whenever L contains global independence statements [Geiger & Verma, 1988].

These graphical criteria provide easy means of recognizing conditional independence in influence
diagrams as well as identifying the set of parameters needed for any given computation. Shachter [1985,
1988] has devised an algoritban for finding a set of nodes M guaranteed to contain sufficient information
for computing P (xl y), for two arbitrary sets of variables x and y. The outcome of Shachter’s algorithm
can now be stated declaratively; M contains every ancestor of x ~ y that is not ID-separated from x
given y and none other. The completeness of ID-separation implies that M is minimal; no node in M can
be excluded on purely topological grounds (i.e., without considering the numerical values of the probabil-
ities involved).
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We conclude by showing how these theorems can be employed as an inference mechanism. As-
sume an expert has identified the following conditional independencies between variables denoted 1
through 5:

L = { I(2, 1, ~), I(3, l, 2), I(4, 23,1), I(5, 4,123) }

(the first statement in L is trivial). We address two questions. First, what is the set of all valid conse-
quences ofL ? Second, in particular, is I(3, 124, 5) a valid consequence ofL ? For general input lists the
answer for such questions may be undecidable but, since L is a causal list, it defines a DAG that graphi-
cally verifies each and every valid consequences of L. The DAG D is the one shown in figure 2, which
constitutes a dense representation of all valid consequences of L. To answer the second question, we sim-
ply observe that I (3, 124, 5) is graphically-verified in D. A graph-based algorithm for another subclass
of statements, called fixed context statements, is given i_n [Geiger & Pearl, 1988]. In that paper, results

analogous to theorem 1 through 3 are proven for Markov-fields; a representation scheme based on un-
directed graphs ([Isham, 1981], [Lauritzen, 1982]).

EXTENSIONS AND ELABORATIONS

Theorem 3 can be restated to assert that for every DAG D and any dependency c there exist a
probability distribution Po that satisfies D’s input set L and the dependency c~. By theorem 2, Po must
satisfy all graphically-verified statements as well because they are all derivable from L by Dawid’s ax-
ioms. Tlaus, theorems 2 and 3 guarantee the existence of a distribution P a that satisfies all graphically
verified statements and a single arbitrary-chosen dependency. The question answered in this section is the
existence of a distribution P that satisfies all independencies of D and all its dependencies (not merely a
single dependency). We show that such a distribution exists, which legitimizes the use of DAGs as a
representation scheme for probabilistie dependencies; a model builder who uses the language of DAGs to
express dependencies is guarded from inconsistencies.

The construction of P is based on the Armstrong property of conditional independence.

Definition: Conditional independence is an Armstrong relation in a class of distributions P if there exists
an operation ® that maps ftnite sequences of distributions in P into a distribution of P, such that if g is a
conditional independence statement and if Pi i=l..n are distributions in P, then ~ holds for
®{Pi I i=l..n } iffg holds foreachPi.

The notion of Armstrong relation is borrowed from database theory ([Fagin 1982]). We concen-
trate on two families of distributions P: All distributions, denoted PD and strictly positive distributions,
denoted PD +. Conditional independence can be shown to be an Armstrong relation in both families. The
construction of the operation ® is given below, however the proof is omitted and can be found in ([Geiger
& Pearl, 1988]).

Theorem 4 ([Geiger & Pearl, 1988]): Conditional independence is an Armstrong relation in PD and in
pD÷.

We shall construct the operation ® for conditional independence using a binary operation ®’ such
that ifP = P 1®’ P2 then for every conditional independency statement ~ we get

I
l
I
I
I
l
I
I
I
l
I
i
I
l
I
l
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@’Pi obeys ~ iff P 1 obeys ~r and P2 obeys

The operation ® is recursively defined in terms of ®’ as follows:

® {Pi I i=l..n } =((PI®’P2)®’P3)®’" "’P, ).

Clearly, if ®" satisfies equation (5), then ® satisfies the the requirement of an Armstrong relation, i.e.

(5)

P obeys ~r iff V. Pi obeys

Therefore, it suffices to show that ®’ satisfies (5).

Let P1 and P2 be two distributions sharing the variaNes x l ,"", xn. Let A 1, "’", An be the
domains of xl,--., xn in P 1 and let an instantiation of these variables be ~i," "", c~,. Similarly, let
B I, " " ",B, be the domains of xl, ¯ ° °, xn in P2 and 131, " ¯ ", ~,~ an instantiation of these variables. Let
the domain of P = PI®’ P2 be the product domain A 1B1 ,..., An Bn and denote an instantiation of the
variables of P by cq[3x, ¯ ¯ ¯, ct, 13n. Define P 1®’ P2 by the following equation:

P((~l~l,(Z2~2,’",~n~n)-Pl(~l,1362,;’’,(ln)’P2(~l’~2,’’’’ ~n)"

The proof that P satisfies the condition of theorem 4 uses only the definition of conditional independence
and can be found in [Geiger & Pearl 1988]o The adequacy of this construction for PD+ is due to the fact
that ® produces a strictly positive distribution whenever the input distributions are strictly positive.

Theorem 5: For every DAG D there exists a distribution P such that for every three disjoint sets of vari-
ables X, Y and Z, the following holds;

I(xx,Y)o iff I(x,z,Yh,

Proof: Let P = ® { P~ I ~ is a dependency in a DAG D } where P,~ is a distribution obeying all in-
dependencies of D and a dependency ~. By theorem 3, a distribution Po always exists. P satisfies the re-
quirement of theorem 5 because it obeys only statements that hold in every P ~ and these are exactly the
ones verified by D. []

The construction presented in the proof of theorem 5 leads to a rather complex distribution, where
the domain of each variable is unrestricted. It still does not guarantee that a set of dependencies and in-
dependencies represented by DAGs is realizable in a more limited class of distributions such as normal or
those defined on binary variables. We conjecture that these two classes of distributions are sufficiently
rich to permit the consistency of DAG representation.
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APPENDIX

Theorem 3 (completeness): L~t D be a DAG de~-~ed by a causal input listLo Then, every valid consequence of L is

grapkically-verified by D.

Proof: Let ~ -- I(X, Z, Y) be an arbitrary graphically-unverified statement in D. We construct a distribution P~ that satisfies all
conditional independencies in the input list L and violates ~. This dis~’ibution precludes o from being a valid consequence of L

and therefore, every valid consequence of L must be graphically-verified in D.

>From the definition of d-separation, there must exist an active path between an element a in X and an element [3 in Y
that is not d-separated by Z. Ensuring tha~ P,~ violates ~he conditional independency I(~ Z, ~3), denoted O", guarantees that ~s is
also violated, because any distribution that renders X and Y conditionally hadependent must render each of their individual vail-

ables independent as well (axiom (1.b)).

P, is defined in terms of a simpILfied DAG De. This DAG is constructed by removhug as many links as possible from
D such that ~ remains unverified in Da. Tlfis process clea~ly preserves a11 previously verified stafements but caution is exercised

not to remove links that would render ~ graphically-ver~ed in Da. We will conclude the proof by constructing a distribution Po

which satisfies all graphically-verified statements of D, (hence also those of D ) and violates o".

L~t q be an active path (by Z) between ~x and [~ with the minimum number of head-to-head nodes (i.e. nodes with con-
vecging arrows) denoted, left to right, h t .h z ..... h~. Let z~ be ~he closest (wrt path length) descendent of h,- in Z and let Pt be the
dkected path from hl to zt (if hl e Z then z~ = hl). We define D ~ to be a subgraph of D containing only the links that form the
paths p~ ’s and the path q o We make two claims about the topology of the resulting DAG. Fkst. the paths p,- are all distinct.
Second, for any i, ht is the only node shared by pt and q. The resulting DAG is depicted in figure 3 (note that some nodes, in-

chding nedes of Z, might become isolated in D

oo.-. oo
F~e3

Proof of claim 1: Assume, by con~adiction, that there are two paths p~ and p~ (i < j) with a common node y. Under
this assumption, we find an active path between a and ~ that has less head-to-head nodes then q, contradicting the minimality of

the latter. If ~ is neither h~ nor hi then the path (a, hl, 7, hi, [3) is an active path (by Z); Each of its head-to-head nodes is or has a
descendent in Z because it is either 7 or a head-to-head node of q. Every other node lies either on the active path q and therefore
is outside Z or lles onp~ (~i) in which case. since it has a descendent 7. it must also be outside Z. The resulting path conuadicts
the rninimality of q since bo~h h~ and ~. are no longer head-to-head nodes while ~ is the only newly introduced head-to-head
node. If T-- hi then, using similar arguments, the path (a, hl, ~, [~) (see figure ~), which has less head-to-head nodes then q. can

readily b~ shown active ( the case 7 = ht is similar).

1

1

1
1
1

1

1
1
1

1
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Figure 4

Proof of claim 2: Assume p~. and q have in common a node 7 other then hi and assume w.l.o.g that it lies between hi

and ~. This node is not a head-m-head node on q because p; is distinct from all other p~ ’s. The node y cannot belong to Z be-
cause otherwise q would not have been active. Thus, the path (~ h;, 7, [3 ) must be an active path which contradicts the minimali-

ty of q (figure 5).

F~ure5

In the following discussion we call a path containing no head-to-head nocl~ a regular path. l.~t Po be a normal distri-

bution with tl~ following eoverlanee matrix F

f O There exists no regular path from node i to node j
F=(I~j) P~J -’- p; There exists a regular path of length t between node i andnode j ¯ (3)

Since D ~ Ls singly connected there exist at most one path between any two nodes. Any value of p satisfying 0 < n . 92 < 1 would
render F positive definite and therefore a valid eovarianee matrix. We claim that tl~ distribution satisfies all independencies of
De and violates l(0q Z, [3). To evaluate I(ct, Z, [3) we first form the projection of Pn on the variables ct, {~ and Z. Since Po is
normal, this projection is al~o normal and is �ovarinaace matrix is a submatdx 1" of F that corresponcks to the variables or, ~ and
Zo The statement I(~ Z, [{) holds in P(, iff det (1"~) = 0 where I-’~ is a submatrix of r" obtained by removing the c~-th line and
the ~-th colturm ([Miller, 1964]). Both F’. and F~B are given below0 The malaix F’ is a =i-diagonal matrix whose off main-
diagonal elements are integer power~ of 9 or zeros. The columr~ and lines of I" correspond to the following order of variables:
zl,...,z~, [3 and then all other v~riables of Z (see fig 3), thus, for example, the term 9i’ located at (1,2) in I" is the correlation factor
between u and zt because these variables are the first two in the above order. The integer il is the length of the path between c~

and z x, i2 is the length of the path betwe~’n z ~ and zz and so on. The corhstruction of 1"~ is based on the observation that the loca-
tion (a, [3) in F is (1, k+2) where k is the number of head-to-head nodes of q.

ph 1 p;’ 0 0
0 9;’1 p;’

0 0 9;’ 1
0 0 0 0

0 p~’ 1
0 0 p"
0 0 0
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(These matrices are given for the case of two head-m-heM nodes and a single additional isolated node of Z, their general form is
obvious). Clearly, d~t (F’o~) = p~ (k >_ 0) and therefore chosing p ~ 0 guarant~es that I (cq Z, 6) does not hold in P o.

It remains to show that every graphically-verifi~l statement in Do is satisfied by P¢~. Wc assign a total order d on the
nodes of Do consistent with the partial order determined by Da. We show that the n statements that form the causal input list

that defines D o are satisfied in P~. Theorem I ensures that all other grap.hlcally verified statements me valid consequences of this
input list and therefore would all be satisfied in P a. In what follows we use the tag of a node as its name. Let I (i, St, U(1)-S~) be a
statement of L where St are the parents of i and U(O are all the variables preceding i in the order d. By the topology of Do, S;
contains no more then two nodes.

Assume S, is empty. This implies that i is not connected via a regular path to either of its predecessors. Hence, by the
consUucfion of F, p~j = 0 for every j e U~o, and therefore the statements I (i, ~, j) hold in P e. However, in normal distributions,
the correlation between single variables determines the dependency between the sets containing these variables becaus~ the fol-
lowing axiom holds.

(Composition-Decomposition)

I(X,Z,Y ~W) <~> I(X,Z,Y)& I(X,Z,W)

Accordingly, I (i, ~, U~o) holds in Pa and this statement is exactly equal to [(i, St, Uq)-S~) since St is empty.

(4)

Assume S~ consists of a single node h. In light of axiom (4) it is enough to show that for every j e U<o-h the state-

merit I(i, h ,j ) holds in P.. If there exists a path from j to i, it must pass through h. Therefore, by definition (3) of F, since h is

the only parent of i, th~ equality p~j = Pt~ P~ must be satisfied. This equality is a necessary and sufficient condition under which
l(i, h, j) holds in any normal distribution in which pq are the correlation factors (in particular, Po).

Assume Sl’ = {g, h } (see figure 6). Again, it isenough to show that I (i, {g ,h } d ) holds in P ~ for every j e U¢o-St.

Construct the �ovafianc~ matrix for the variables g, h, i and j (the columns of the matrix correspond to this order). By equation
(3), P~I = P, p~a = p and Ps~ = 0. The resulting matrix is given below,

Figure 6

The statement I (i, lg ,h } ,j ) holds in this distribution iff the submatfix F0’ is singular, i.e.

!
!
!
!
1
l
|
!
|
!
!
!
!
!

!
!
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I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

det 0 I     = 0

P~" P~" Pu

([Miller, 1964]) or equivalently, 9;i = (P~" ÷ P~’) " P"

The latter equality, however, holds for all possible selections of a node j ;/-fj is not cormected to i via a regular path,

Le. p~j = 0, then it is not cormected through a regular path to either of i’s parents and therefore both p~. and
eormected through a regular path of length I to g (similarty when connected to h ) then it is eormected to its son i with a path of
length l+1 alad is not connected to i’s other parent, in which case pq = p~+~, p#j = pt, ph~ = 0 and therefore the above equality
holds.
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