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Abstract

We extend the Bayesian Information Crite-
rion (BIC), an asymptotic approxilnation for
tile ~narginal likelihood, to Bayesian networks
with hidden variables. This approximation
can be used to select models given large sam-
pies of data. Tile standard BIC as well as our
extension punishes the complexity of a ~nodel
according to tile dimension of its parameters.
We argue that dm dimension of a Bayesian
uetwork with hidden variables is tile rank of
the Jacobiau matrLx of the transformation
between the parameters of tile network and
tile parameters of tile observable variables.
We co,npute tile di~ne,lsions of several net-
works including the naive Bayes model with
a hidden root node.

1 Introduction

Learning Bayesian networks frown data extends their
applicability to situations where data is easily obtained
and expert knowledge is expensive. Consequently, it
has been the subject of ~nuch research in recent years
(see e.g., Heckerlnan [1995] and Buntine [1996]). Re-
searchers have pursued two types of approaches for
learning Bayesian networks: one that uses indepen-
dence tests ~o direct a search among valid models
and another that uses a score to search for the best
scored network--a procedure known as model selec-
tion. Scores based on exact Bayesian computations
have been developed by (e.g.) Cooper and Herskovits
(1992), Spiegelhalter et al. (1993), Buutine (1994),
and Heckerman et al. (1995), and scores based on min-
imum description length (MDL) have been developed
in Lain and Bacchus (1993) and Suzuki (1993).

We consider a Bayesian approach to model selection.
Suppose we have a set {X~,...,X~} = X of discrete
variables, and a set {x~,..., xN} = D of eases, where
each case is an instance of some or of all tile vari-
ables in X. Let (S, 0,) be a Bayesian network, where
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S is the network structure of the Bayesian network,
a directed aeyclic graph such that each node X, of S
is associated with a raudotn variable Xi, and 0~ is a
set of parameters associated with the network struc-
ture. Let Sh stand for tile hypothesis that the true
or objective joint distribution of X can be encoded in
the network structure S. Then, a Bayesian measure
of the goodness-of-fit of network structure $ to D is
p(ShlD) oc p(Sh)p(DlS~), where p(DlSh) is known as
the marginal likelihood of D given Sh.

The problmn of model selection mnong Bayesian net-
works with hidden variables, that is, networks with
variables whose values are not observed is more dif-
ficult than model selection among networks without
hidden variables. First, tile space of possible net-
works becomes infinite, and second, scoring each net-
work is co,nputatioually harder because one must ac-
count for all possible values of the missing variables
(Cooper and Herskovits, 1992). Our goal is to d.e-
velop a Bayesiau scoring approach for tmtworks that
include hidden variables. Obtaining such a score that
is cmnputationally effective and conceptually simple
will allow us to select a model froxn among a set of
competing models.

Our approach is to use an asymptotic approxi, natiou
of the ,narginal likelihood. This asy~nptotie approx-
imation is known as tile Bayesian Information Crite-
ria (BIC) (Schwarz, 1978), aud is equivalent to Rissa-
hen’s (1987) minimum description length (MDL). Such
an asymptotic approximation has been carried out for
Bayesian networks by Herskovits (1991) and Bouckaert
(1995) when no hidden variables are present. Bouck-
aert (1995) shows that the marginal likelihood of data
D given a network structure S is given by

p(DIS~) = H(S, D)N- 1/2 dim(S) log(N) + 0(1) (1)

where N is the sample size of the data, H(S,D) is
tile entropy of tile probability distribution obtained
by projecting the frequencies of observed cases into
the conditional probability tables of the Bayesian net-
work S, and diln(S) is tile number of parameters in
S. Eq. 1 reveals tile qualitative preferences made by
the Bayesian approach. Pirst, with sufficient data, a
network structure that is an I-map of the true distribu-
tion is more likely than a network structure that is not
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an I-inap of the true distribution. Second, amoug all
network structures that are I-maps of the true distribu-
tion, the one with the minimum number of parameters
is more likely.

Eq. 1 was derived froln an explicit formula for the
probability of a network given data by lettillg the sam-
ple size N run to infinity and using a Dirichlet prior
for its parameters. Nonetheless, Eq. t does not depend
on tile selected prior. In Section 3, we use Laplace’s
method to rederive Eq. 1 without assumiug a Dirich-
let prior. Our derivation is a standard application of
asymptotic Bayesian analysis. This derivation is useful
for gaining intuition for the hidden-variable case.

In section 4, we provide an approximatiou to the
marginal likelihood for Bayesian networks with hid-
den variables, and give a heuristic argmnent for this
approximation using Laplace’s method. We. obtaiu the
following equation:

logp(SlD) ~
logp(SlD, ~) - 1/2 dim(S, ~,)log(N) (2)

where ~ is the mazimum likelihood (ML) value for
tile parameters of the uetwork and ditn(& d~) is the
di,nension of S at the ML value for 0~. The dimen-
sion of a model can be interpreted in two equivalent
ways. First, it is the number of free parmneters needed
to represent the parameter space near tile maxi,nu,n
likelihood value. Second, it is the rank of the Jacobian
matrix of the transformation between the parameters
of the uetwork and the parameters of the observable
(non-hidden) variables. In any case, the dimension d~
pends on the value of ~, in contrast to Eq. 1, where
the dimensiou is fixed throughout the parameter space.

In Section 5, we compute the dimensions of several
network structures, including the naive Bayes model
with a hiddeu class node. In Section 6, we demonstrate
that tile scoring function used iu AutoClass sotnetimes
diverges from p(SID) asy~nptotically, in Sections 7
and 8, we describe how our approach can be extended
to Gaussian and sigmoid networks.

2 Background

We introduce tile followiug notation for a Bayesian
network. Let r~ be tile number of states of variable X~,
Pai be the set of variables corresponding to the parents
of node X.i, and q~ = ~x~e~ r~ be the number of
states of Pa~. We use the integer j to index the states
of Pai. That is, we write Pai= pa{ to denote Ll~at the
parents of Xi are assigued its jth state. We use
to denote the true probability or parameter that Xi
~ given tlmt eai = pa{. Note that E;~, Oij~ = 1.

Also, we assume 0i~ > O. In addition, we use ~i~
{0~11 < k < r~} to denote the parameter~ associated
with node i for a given instance o{ the parents
and ~ = {0~1t ~ j ~ q~} to denote the parameters
associated with nod~ i. Thus, 0~ = {0~!1 < i <
When S is unambiguous, we use 0 instead of ~s.

To compute p(DlSh) iu closed form: several assump-
tious are usually made. First, the data D is as-
sumed to be a random sample frown stone Bayesian net-
work (S, 0,). Secoud, for each network structure, the
parameger sets 0t,---,0,~ are mutually independent
(global iudependence [Spiegelhalter and Lauritzen,
1990]), and the parameter sets Oi~,...,O¢v~ for each
i are assumed to be mutually independent (local inde-
pendence [Spiegelhalter and Lauritzen, 1990]). Third,
if a node has the same parents in two distinct networks,
then the distribution of tl~e parameters associated with
this node are identical in both networks (parameter
modularity [Heckerman et al., 1994]). Fourth, each
case is emnplete. FifflL the prior distribution of the
parmneters associated with each node is Dirichlet~
that is, p(0/~lS~*) ~ ~ 0~’~~ where aid~ can be inter-
preted as the equivalent number of cases seen in which

~̄ and Pai= pa~.Xi

Using these assumptions, Cooper and Herskovits
(1992) obtained the following exact formula for the
marginal likelihood:

where Ntj~ is the number of cases in D in which Xi =

* and Pai= pa{. We call this expression the Cooper-
Herskovits scoring function.

Tile last two assmnptions are tnade for the sake of
convenience. Namely, the parmneter distributions be-.
fore and after data are seen are in the same family:
the Dirichlet family. Geiger and Heckerman (1995)
provide a characterization of the Dirichlet distribu-
tion, which shows that the fifth assu,nptiou is im-
plied from the first three assumptions aud from one
additional assumption that if S~ aud $2 are equiva-
lent Bayesian networks (i.e., they represent the same
sets of joint distributions), then the events S~h and
S} are equivalent as well (hypothesis equivalence
[Heckerman et al., 1995]). This assumption was made
explicit, because it does not hold for causal networks
where tWO arcs with opposing directions correspond
to distinct hypotheses [Heekerman, 1995@ To satisfy
these assumptions, Heckennan et al. (1995) show that
olle nlust use

ozij~ = oz q(Xi = x~, Pai= pa~)

in the Cooper-Herskovits scoring function, where
q(X~,...,X,~) is the joint probability distribution of
X obtained frmn an initial or prior Bayesian network
specified by the user, aud a is tile user’s effective sam-
pie size or confidence in the prior network.

Tile Cooper Herskovits scoring flmction does not lend
itself to a qualitative analysis. Nonetheless, by letting
N grow to infinity yet keeping N.ij/N and NIj~/N fi-
nite, Eq. 1 can be derived by expanding F(.) using
Sterling’s approximation. This derivation hinges on
the assmnptions of global and local independence and
on a Dirichlet prior, although, as we show, the result
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still hokls without these assumptions. Intuitively, with
a large sa~nple size N, the data washes away any con-
tribution of the prior.

3 Assymptotics Without Hidden
Variables

We shall llOW rederive Herskovits’ (1991) and Bouck-
aert’s (1995) asymptotic result. TILe technique we
use is Laplace’s lnethod, which is to expand tile log
likelihood of the data around the tnaximum likeli-
hood value, and then approximate tile peak using a
multivariate-normal distribution.

Our derivation bypasses the need to compute
V(D.~IS~9 for data DN of a salnple size N, which re-
quires the assumptions discussed in the previous see-
tion. Instead, we compute lkn~v-~ p(DNISh). Fur-
thermore, our derivation only assumes that the prior
for 0 around tile maximum likelihood value is posi-
tive. Finally, we argue in tile next section tllat our
derivation can be extended to Bayesian networks with
hidden variables.
We begin by defining f(O) = logp(DNlO, S~). Thus,

fexp{f(O)}’ ~’p(OiS ~ dO

Assuming f(O) has a. maximum the ML vMue 0--we
have if(0) = 0. Using a Taylor-series expansion of
f(O) around the ML vatue, we get

f(O) ~ f(O) + 112(0 - O)f"(O)(O - O) (4)

where f"(O) is tile Hessian of f--the square matrix of
second derivatives with respect to every pair of vari-
ables {Oij~, O~,j,~, }. Consequently, from Eqs. 3 aud 4,

logp(DISh) ~ f(O)+ (5)

log / exp{1/2(0 -0):"(o)(o O) }p(OlSh) O

We assmne that -f"(O) is positive-definite, and that,
as N grows to infinity, the peak iLL a neighborhood
around the maximum becomes sharper. Consequently,
if we ignore tile prior, we get a normal distribution
around the peak. Furthermore, if we assume that the
prior p(OIS~) is not zero around 0, then as N grows it
can be assumed constant and so removed frmn the int~
gral in Eq. 5. The remaining integral is approximated
by tile formula for multivariate-normal distributions:

exp{1/2(O - O)f"(O)(O - ~)}dO ~

where d is tile number of parmneters ill 0, d =
~I~=~ (ri - 1)qi. As N grows to infinity, the above ap-
proxi~nation becomes more precise because tile entire

mass becomes concentrated arouud the peak. Plug-

6 into Eq. 5 and noting that aet /-f"(0)[ isgingEq.
proportional to N yields the BIC:

A careful derivation in tiffs spirit shows that tile er-
ror in this approximation does not depend on N
[Schwarz, 1978].

For Bayesian networks, dm function f(O) is known.
Thus, all the assumptions about riffs function can be
verified. First, we note that ff’(O) is a block diago-
nal matrix where each block Aij corresponds to vari-
able X¢ and a particular instance j of Pai, and is of
size (rl - 1)2. Let us examine one such Aq. To sim-
plify notation, assume that X~ has three states. Let
wl, w2 and w3 denote Oij~ for k = 1, 2,3, where i and
j are fixed. We consider only those cases in DN where
Pai = j, and examine only the observations of Xi.
Let D}v denote the set of N values of X~ obtained in
this process. With each observation, we associate two
indicator functions xi and Yi. The function x~ is one
if Xi gets its first value in case i and is zero otherwise.
Silnilarly, yi is one if X4 gets its second value in case i
and is zero otherwise.

The log likelihood function of D~v is given by

~(~,, w~)      = logH          ~L, IX~ 7/329i (1 __ Wl __ w2)l-z’i

To find the inaximum, we set tile first derivative of this
fu,mdou to zero. The resulting equations are called the
maximum likelihood equations:

N

i=1
1 -- 2/)1 -- W2

N

The only solution to these equations is given by"~ = ~i xi!N, w2 = ~ = ~i yi/N, which is tile inaxi-

mum likelihood vMue. The Hessian of £(w~, w2) at
ML value is given by

This Hessian matrix decomposes into tile suln of two
lnatriees. One matrix is a diagonal matrix with posi-
tive nmnbers I/~ and I/~ oil tile diagonal. The secoud
matrix is a constant matrix in which all elements equal
tile positive number 1/(1 - N - ~). Because these two
matrices are positive and non-negative definite, respec-
tively, tile Hessian is positive definite. This argument
also holds when X~ has more than three values.



286 Geiger, Heckerman, and Meek

Because the ~naxitnum likelihood equation has a single
solution, and the Hessiau is positive defiuite, aud be-
cause as N increases the peak becomes sharper (Eq.9),
all the couditions for the general derivation of the BIC
are met. Pluggiug the maximum likelihood value into
Eq. 7, which is correct to O(~1), yields Eq. 1.

4 Assymptotics With Hidden
Variables

Let us now consider the sittlation where S contains
bidden variables. In this case, we call uot use the
derivation in the previous section, because tile log-
likelihood function logp(DNISh, 8) does not necessar-
ily tend toward a peak as the sample size iucreases.
Iustead, the log-likelihood functiou can tend toward a
ridge. Consider, for example, a network with one arc
H --~ X where H has two values h and ~ and X has
two values x and 2. Assume that only values of X
are observed--that is, H is hidden. Then, the like-
lihood function is given by I-I~ w~ (1 - w)~-*~ where
w = OhOxlh + (1 --Oh)O~lh, and xi is the indicator func-
tion tha~ equals one if X gets value x in case i and
zero otherwise. The para,neter w is the true proba-
bility that X = x unconditionally. The ML value is
unique in terms of w: it attains its ,naximmn when
w = ~i x~/N. Nonetheless, any solution for 8 to the
equation

will maximize the likelihood of the data. In this sense,
the network structure H -~ X has only one uon-
redundant parameter. In this section, we provide an
informal argmneut describiug how to identify a set of
non-redundant parameters for any Bayesian network
with hiddeu variables.

Given a Bayesian network for domain X with observ-
able variables O C X, let W = {wolo ff O} de,tote
the parameters of tile true joint probability distribu-
tion of O. Correspondiug to every value of 0 is a value
of W. That is, S defines a (smooth) map 9 from 0 to
W. The range of 9 is a curved manifold M in the
space defined by W.t Now, consider 9(~), the image
of all ML values of 0. In a small region around g(0),
the manifold M will resemble Euclidean space with
some dimension d. That is, in a small region around
g(0), M will look like Ra with orthogonal coordinates
~ = {0t,..., Ca}- Thus, tile log-likelihood flmction
written as a function of q~ logp(D~,l~)--will become
peaked as the sample size iucreases, aud we cau apply
the BIC approximation:

d
logp(DNIS’~) ~ logp(Dml@, S~) - ~ log N (10)

Note that logp(D~v[~}, Sh) = logp(Dm I0, Sh).

tFor terminology and basic facts in differential geome-
try, see Spivak (1979).

It remains to understand what d is and how it cau
be found. Wheu considering a liuear transformatiou
j : /~ _~ !~m, the transformation is a matrix of size
n x m. The dilneusion d of tile image of j equals the
rank of the lnatrix. When k : R~ -~ Rm is a smooth
mapping, it can be approximated locally as a linear
traasformatiou, where the Jacobian ~natrix d(x) serves
as the linear transformation matrix for the ueighbor-
hood of x e R’~. Tile dimeasion of the image of k in
a small region around k(x) is tile rank of Y(x) (Spb
yak, 1979). This observation holds wheu the rank of
the Jacobiau matrix does not dmnge in a small ball
around x, in which case x is called a regular point.

Returning to our problem, the mapping from 0 to W is
a polynmnial function of 0. Thus, as the uext theorem

shows, the rank of tile Jacobian matrix [0~-~] is ahnost
everywhere some fixed constaut d, which we call the
regular rank of tile Jacobian matrix. This rauk is the
number of nou-reduudant parameters of S--that is,
the dimeusion of S.

Theorem 1 Let 0 be the parameters of a network S
for variables X with observable variables 0 C X. Let
W be the parameters of the true joint distribution of
the observable variables. If each paranteter in W is

function of O, then rank ~(0)/ = dpolynomial
almost everywhere, where d is a constant.

Proof’. Because the mapping frola 0 to W is polyno-
each curry ill the matrix g(0): "/00"/mial, 5w(0) is a

polyumnial in 0. When diagoualiziug J, the leading
elements of the firs~ d lines remain polynomials in 0,
whereas all other lines, which are dependeut given ev-
ery value of 0, become identically zero. The rauk of
g(O) falls below d only for values of 0 that are roots
of some of the pdynomials in ~he diagonMized marrY.
¯ he set of M1 such roots has measure zero. ~

Our heuristic argument for Eq. I0 does not provide
us with the error term. If tim image ~nauifold is
too curved, it might be possible that the local region
will never become "sufficiently fiat" to obtain an 0(1)
bound ou the error of the approximate marginal likeli-
hood. We conjecture that, for manifolds corresponding
to Bayesiau uetworks with bidden variables, the local
region will always be sufficiently fiat. Researdmrs have
shown that 0(1) bouuds are attainable for a variety of
statistical models (e.g., Schwarz, 1978, and Haughton,
1988). Although the argumeuts of these researchers
do not directly apply to our case, it may be possible
to extend their methods to prove our cm~jec~,ure.

5 Computations of the Rank

We have argued that the second term of the BIC for
Bayesian networks with hidden variables is tile rank of
tile Jacobian matrLx of the transformatiou between the
parameters of the network and the parameters of the
observable variables. In this section, we explain how
to compute this rank, aud demonstrate the approach



Asymptotic Model Selection with Hidden Variables    287

with several examples.

Theoretn 1 suggests a random algorithm for calculat-
ing the rank. Compute the Jacobian ~natrix Y(O) sym-
bolically frmn the equation W = g(8). This compu-
tation is possible since 9 is a vector of polynomials in
8. Then, assign a random value to 8 and diagonalize
the numeric ~natrix Y(8). Theorem 1 guarantees that,
with probability 1, the resulting rank is the regular
rank of or. For every network, select--say--ten val-
ues for 8, and detenniue r to be the maxi,num of the
resulting ranks. In all our experi~nents, none of the
randomly cfioseu values for 8 accidentally reduced the
rank.

We uow demonstrate the computation of the needed
rank for a naive Bayes model with oue hidden variable
H and two feature variables X1 and X~. Assmne all
three variables are binary. Tile set of parameters W =
g(8) is given by

Tile 3 x 5 Jacobian matrix for tiffs transfor~nation is
given in Figure 5 where O~dh = 1--Ozilh (i = 1, 2). The
colmnns correspond to differentiation witfi respect to
0~]h,0z~ii~,0z~l~,0~<~ and Oh, respectively. A sy~n-
bolic computation of the rank of this matrix can be
carried out; and it shows that the regular rank is equal
to the dilnension of tim matrix nalnely, a. Noneth~
less, as we have argued, in order to compute the regular
rank, one can simply choose rando~n values for 0 and
diagonalize the resulting nmnerical matrix. We have
done so for naive Bayes models with one binary hidden
root node and n _< 7 bi~lary observable uon-root nodes.
Tile size of the associated matrices is (1 + 2n) x (2~ - 1).
The regular rank for n = a .... ,7 was found to be
1 + 2n. We conjecture that 1 + 2n is the regular rank
for all n > 2. For n = 1, 2, the rank is 1 andS, re-
spectively, which is the size of the full parameter space
over one and two binary variables. The rank can not
be greater than 1 + 2n because this is the m~imum
possible ditneusion of the Jacobian marrY. In fact, we
kave proven a lower bound of 2n as well.

Theorem 2 Let S be a naive Bayes model with one
binary hidden root node and n > 2 binary observable
non-root nodes. Then

2n < r < 2n + 1

where r is the regular rank of the Yacobian matrix be-
tween the parameters of the network and the parame-
ters of the feature variables.

Tile proof is obtained by diagonalizing the Jacobian
matrix symbolically, and showizlg that there are at
teast 2n independent lines.

Tfie cmnputation for 3 _< n <_ 7 shows that, for naive
Bayes models with a binary hidden root node, there

are no redundant parameters. Therefore, the best way
to represent a probability distribution that is repre-
sentable by such a model is ~o use the network repre-
smltation explicitly.

Nonetheless, this result does not hold for all models.
For example, consider the following W structure:

where H is hidden. Assmning all five variables are
binary, the space over the observables is representable
by 15 parameters, and tile number o~ parameters of the
uetwork is 11. I,t this example, we could not compute
the rauk symbolically. Instead, we used the following
Mathematica code.

There are 16 functions (only 15 are indepeudent) de-
fined by W = g(O). In the Mathematica code, we use
fijkl for the true joint probability W~=i,~=j,~=~,d=~,
cij for the ~rue conditional probability O~-ol=-i h-y,
dij for 0a=o!~=i,h=a, a for 0==0, b for 0~=0, ~ud~6 ~c;r

The first fuuction is given by

f0000 [a_, b_, h0_, cOO_,..., (:11_, d00_,..., dll_] :=
a * b * (h0 * cO0 * d00 + (1 - h0) * c01 * d01)

aud the other functions are silnilarly written. The
cobian matrix is computed by the command Outer,
which has three argumeuts. Tile first is D which
stands for tfie differentiation operator, the second is
a set of functions, and the third is a set of variables.

or [a_, b_, h0_, cOO_,..., c11_, d00_,..., dll_] :=
Outer[D, {f0000 [a, b, h0, cOO, c01,..., d1I],
f0001 [a, b, h0, e00, ..., c11, d00,..., d11],

f1111 [a, b, h0, c00,..., c11, d00,..., dill},
{a, b, h0, c00, c01, c10, c11, d00, d01, dl0, dll}]

The next command produces a diagonalized matrix at
a random point with a precision of 30 deci~nal digits.
This precision was selected so that matrix elements
equal to zero would be correctly identified as such.

N[RowReduce[ J[a, b, hO, cO0,..., c11, dO0,..., dl 1]/. {
a + P~ndom[Integer, { 1,999}J/1000,
b -~ l~ndom[Integer, {1,999}]/1000,

di1 + Random[Iuteger, { 1,999}]/1000}], 30]

Tile result of this Mathematica progrmn was a diago-
nalized matrix with 9 non-zero rows and 7 rows con-
raining all zeros. The same counts were obtained in
ten runs of the program. Hence, the regular rank of
this Jaeobian matrix is 9 with probability 1.

The interpretation of this result is that, around ahnost
every value of 0, one can locally represent the hiddeu
W structure with ouly 9 parameters. In contrast, if we
encode tile distribution using the network parameters
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Figure 1: The Jacobian matrix for a uaive Bayesiau network with two binary feature nodes

(0) of the W structure, then we tnust use 11 parame-
ters. Thus, two of the network parameters are locally
reduudaut. The BIC approximation punishes this W
structure according to its most efficieut representation,
which uses 9 parameters, and riot according to the rep-
resentation given by the W structure, which requires
11 parameters.

It is interestiug to note that the dilnensiou of the W
structure is 10 if H has three or four states, and 11
if H has 5 states. We do not know how to predict
when tile dimension changes as a result of iucreasiug
the number of hidden states without computing the
dimeusion explicitly. Nonetheless, the dimeusion cau
not iucrease beyoud 12, because we can average out
the hidden variable in the W structure (e.g., using arc
reversals) to obtain another network structure that has
only 12 parameters.

6 AutoClass

The AutoClass clustering algorithm developed by
Cheeseman and Stutz (1995) uses a naive Bayes
tnodel.2 Each state of the hiddeu root node H repre~
sents a cluster or class; and each observable uode repre-
sents a measurable feature. Tile number of classes k is
unknown a priori. AutoC]ass computes an approxima-
tion of the marginal likelihood of a naive Bayes model
given the data using increasing values of k. When tiffs
probability reaches a peak for a specific k, that k is
selected as the number of classes.

Cheeselnan and Stutz (1995) use the following formula
to approxilnate the marginal likelihood:

logp(DlS) .~

where D~ is a database cousistent with the expected
sutficient statistics as computed by the EM algo-
rithm. Although Cheeseman and Stutz suggested
this approximation in the context of simple AutoClass
models, it can be used to score any Bayesian net-
work with discrete variables as well as other models
[Chickering and Heckerman, 1996]. We call this ap-
proximation the CS scoring function.

Using the BIC approximation for p(Dc[S), we obtain

logp(DlS) ~ logp(DlS, ~,) - d’/2 logN

’~The algorithm can handle conditional dependencies
among continuous variables.

where d’ is tile nmnber of parameters of the net-
work. (Given a naive Bayes model with k classes
and n observable variables each with b states,
nk(b- 1) + k - 1.) Therefore, the CS scoring fuuctiou
will couverge asymptotically to the BIC and hence to
p(DIS) whenever ff is equal to the regular rank of
(d). Giveu our conjecture in the previous section, we
believe that the CS scoring function will converge to
p(DIS) wtmn the number of classes is two. Nonethe-
less, d’ is not always equal to d. For example, when
b = 2, k = 3 and n = 4, the nmnber of paraineters
is 14, but the regular rauk of the aacobiau ~natrix is
13. We computed this rank using Mathematica as de-
scribed i~ the previous section. Consequently, the CS
scoring function will not always converge to

Tills example is the only oue that we have found so
far; aud we believe that incorrect results are obtaiued
ouly for rare combinatious of b, k and n. Nouetheless,
a simple lnodificatiou to tim CS scoriug fuuction yields
an approximatiou that will asymptotically couverge to
p(DlS):

logp(DlS) ~ logp(D~lS) + logp(DlS,
logp(D~lS, d~) - d/2 logN + d’!2 log N

Chickering and Hecker~nau (1996) show that this scor-
ing fuuetiou is often a better approximatiou for p(DIS)
than is the BIC.

7 Gaussian Networks

In this section, we consider tile case where each of tile
variables {X~,.-.,Xn} = X are continuous. As be-
fore, let (S, 0~) be a Bayesiau uetwork, where S is the
uetwork structure of tile Bayesian uetwork, and 0.~ is
a set of parameters associated with the network struc-
ture. A Gaussiau uetwork is one iu which the joint
likelihood is tkat of a multivariate Gaussian distribu-
tion that is a product of local likelihoods. Each local
likelihood is the liuear regression ~nodel

where N(/~, v) is a normal (Gaussian) distribution with
~nean bt and variance v > O, ml is a couditional mean
of Xi, bjl is a coefi-icieut that represeuts tile strength
of the relationship between variable Xj and Xi, v~ is a
variance,3 and Oi is the set of parmneters cousistiug of

3ml is the mean of X~ conditional on all parents being
zero, b~i corresponds to the partial regression coefficient of
Xi on X~ given the other parents of X~, and v~ corresponds
to the residual variance of Xi given the parents of
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mi, v~, and the bji. The paraIneters 0, of a Gaussian
network with structure S is the set of all 01.

To apply the techniques developed in this paper, we
also need to specify the parameters of the observ-
able variables. Given that the joint distribution is
multivariate-normal and that multivariate, normal dis-
tributions are closed under ~narginalization, we only
need to specify a vector of means for tile observed
variables and a covariance matrix over the observed
variables. In addition, we need to specify how to trans-
form the parameters of the network to the observable
parameters. ~he transformation of tile means and
the transformation to obtain the observable covariance
matrix can be accomplished via the trek-sum rule (for
a discussion, see Glymour et al. 1987).

Using the trek-sum rule, it is easy to show that tile
observable parameters are all sums of products of tile
network parameters. Given that tile mapping from
0~ to the observable parmneters is W is a polynomial
function of 0, it follows from Thin. 1 that the raak of
the .]acobian matrix ~]is ahnosteverywhere some
fixed constant d, which we again call the regular rank of
the Jacobiau matrix. This rank is the nulnber of non-
redundant parameters of S--that is, the dimension of
S.
Let us coi~sider two Gaussian models. We use Mathe-
matica code similar to the code ill Section 5 to coInpute
their dimensions, because we can not perform the com-
putation symbolically. As in tile previous experiments,
none of the randolnly chosen values of 0, accidentally
reduces the rank.

Our first example is tile naive-Bayes model

H

ill which H is the hidden variable and the Xi are ob-
served. There are 14 network parameters: 5 condi-
tional variances, 5 conditional means, and 4 linear pa-
rameters. The marginal distribution for the observed
variables also has 14 parameters: 4 means, 4 variauces,
and 6 covariances. Nonetheless, the analysis of the
rank of the Jacobian matrix tells us that the dimension
of this model is 12. This follows from the fact that this
model imposes tetrad constraints (see Glymour et al.
1987). In this model the three tetrad constraints that
hold in the distribution over the observed variables are

two of which are independent. These two independent
tetrad constraints lead to the reduction of di~nension-
ality.

Our second example is tile I!V structure described

in Section 5 where each of the variables is continu-
ous. There are 14 network parameters: 5 conditional
means, 5 conditional variances, and 4 linear param~
ters. The marginal distribution for the observed vari-
ables has 14 paralneters, whereas the analysis of the
rank of the Jacobian matrix tells us that the dimension
of this Inodel is t2. This coincides with the intuition
that many values for tile variance of H and the linear
parameters for C +- H and H --> D produce tile same
model for the observable variables, but once any two of
these parameters are appropriately set, then the third
parameter is uniquely determined by tile marginal dis-
tribution for the observable variables.

8 Sigmoid Networks

Finally, let us consider the case where each of tile vari-
ables {X1,..., X~} = X is binary (discrete), and each
local likelihood is the generalized linear model

where Sig(x) is the sigmoid function Sig(x) = ~l+e ~"
These models, which we call sigmoid networks, are use-
ful for learning relationships among discrete variables,
because these models capture non-linear relationships
among variables yet employ only a small nmnber of
parameters [Neal, 1992, Saul et al., 1996}.

Using techniques similar to those ill Section 5, we can
compute the rank of tile Jacobian matrix [ 8wl" We
can not apply Thin. 1 to conclude that this rank is al-
most everywhere some fixed constallt, because tlle !o-
cal likelihoods are non-polynomial sigmoid functions.
Nonedieless, tile claim of Thin. 1 holds also for ana-
lytic transformations, hence a regular rank exists for
sigmoid networks as well (as confirmed by onr experi-
lnelltS).

Our experiments show expected reductions in rank for
several sigmoid networks. For exainple, consider the
two-level network

H1 H2

324
This network has 14 parameters. In each of 10 tri-
als, we found the rank of the Jacobian matrix to be
14, indicating that this model has dimension 14. In
contrast, consider the three-level network.

H3

H~.

X~ Xa    X~    X4
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This network has 17 parmneters, whereas the dhnen-
sion we compute is 15. This reduction is expected,
because we could eticode the dependeucy between the
two variables in tim middle level by removing the vari-
able in the top layer and adding an arc between these
two variables, producing a network with 15 parmne-
ters.
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