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Abstract. Mapping by Admixture Linkage Disequilibrium (MALD) is
an economical and powerful approach for the identification of genomic
regions harboring disease susceptibility genes in recently admixed pop-
ulations. We develop an information-theory based measure, called EMI
(expected mutual information), that computes the impact of a set of
markers on the ability to infer ancestry at each chromosomal location.
We then present a simple and effective algorithm for the selection of
panels that strives to maximize the EMI score. Finally, we demonstrate
via well established simulation tools that our panels provide considerably
more power and accuracy for inferring disease gene loci via the MALD
method in comparison to previous methods.

1 Introduction

Mapping by admixture linkage disequilibrium (MALD) is an economical and
powerful approach for the identification of genomic regions harboring disease
susceptibility genes in recently admixed populations [11,9]. For the method to
be useful, the prevalence of the disease under study should be considerably dif-
ferent between the ancestral populations from which the admixed population
was formed.

Myeloma, for example, is a type of cancer that is approximately three times
more prevalent in Africans than in Europeans [11]. Hepatitis C clearance is ap-
proximately five times more prevalent in Europeans than in Africans. Stroke, lung
cancer, prostate cancer, dementia, end-stage renal disease, multiple-sclerosis, hy-
pertension and manymore diseases all exhibit a highermorbidity in either Africans
or Europeans, when the two ethnically-different populations are compared [11].
This difference in susceptibility to a specific disease is also evident in other ethnic
populations. Native Americans suffer from a high prevalence of type 2 diabetes,
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obesity and gallbladder disease, while showing a lower prevalence of asthma, rel-
ative to Europeans [8].

When examining an individual that originated from several ancestral popu-
lations, such as African-Americans, the likelihood that this individual will carry
a given disease is influenced by the susceptibility to the disease in the ancestral
populations. When such an admixed individual carries a hereditary disease, the
chances are higher that the disease gene or genes are harbored in chromosomal
segments that originated from the ancestral population with the higher risk.

The MALD method screens through the genome of either affected or both
affected and healthy admixed individuals, looking for chromosomal segments
with an unusually high representation of the high-risk ancestry population for the
disease. MALD requires 200 to 500-fold fewer markers, in comparison to genome-
wide association mapping, while offering the same power [9]. Consequently, the
method has an economical advantage over alternative methods. Lately, successful
results from admixture mapping have begun to emerge. For example, the usage
of MALD led to the discovery of multiple risk alleles (gene variants) for prostate
cancer [2].

In this paper, we develop an information-theory based measure, called EMI
(expected mutual information), to select an effective panel of markers to be used
in MALD. Our measure, presented in Section 4, computes the total impact of
a set of markers on the ability to infer ancestry at each chromosomal location,
averaged over all possible admixture related recombinations. This method im-
proves previous measures such as the Shannon Information Content (SIC)[10],
and Fisher Information Content (FIC)[6]. We then present, in Section 5, a simple
and effective algorithm for the selection of panels that strives to maximize the
EMI score. In Section 6, we demonstrate via well established simulation tools
used in previous studies, that our panels provide considerably more power for
inferring disease gene loci. For example, our simulations show that in the chal-
lenging case of a disease with an ethnicity risk ratio of 1.6 between two ancestral
populations, the power increased from 50% to 68%, namely, an increase of about
36% in the ability to detect the loci of disease susceptibility genes. The detection
accuracy has also significantly improved with the use of our new panels. The in-
crease in power is particularly important in the detection of weak signals that
underlie complex diseases. Section 7 concludes with extensions and discussion.

2 Background

The MALD method consists of three steps. First, an admixed population with a
significantly higher risk for a specific disease in one of the ancestral populations is
identified. Ancestry informative markers that effectively distinguish between the
relevant ancestral populations are selected, and either cases or both cases and
controls are genotyped. Second, the ancestry along the chromosomes of every
individual is computed based on the sampled genotypes. Third, chromosomal
regions with an elevated frequency of the ancestral population with the higher
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Fig. 1. Ancsetry informative markers are used to compute the ancestry across the
chromosomes of cases and controls. The region indicated by the bar shows elevated
frequency of one ancestral population in the cases versus the expected distribution of
ancestry in the controls, suggesting a disease susceptibility locus.

disease prevalence are identified. Figure 1 shows the ancestral profile of eight
individuals, of which half are cases and half controls. The ancestral profiles are
indicated as dark and light segments along the chromosomes. The excess of one
ancestral population in the cases at the locus marked by the bar suggests that
the locus contains the disease susceptibility gene. In the controls, the ancestry at
the same locus matches the expected distribution of ancestry, strengthening the
hypothesis. The detection of suspected regions can be followed by methods such
as high density SNP-based association studies, or a study of nearby candidate
genomic regions.

Choosing ancestry informative markers (AIM) for the construction of MALD
panels has been pursued in several studies. AIM panels were constructed for
African-American [12,15], Mexican-American [14] and Hispanic/Latino [4,8] pop-
ulations. The construction of such panels requires three ingredients: a database
of markers, a measure for the informativeness of a set of markers regarding an-
cestry, and an algorithm that selects informative markers for the MALD panel.

The work of Rosenberg et. al. [10] introduced a measurement for the informa-
tion multialleleic markers provide on ancestry, based on the Shannon Informa-
tion Content. Pfaff et. al. [6] based their measurement on the Fisher Information
Content.

The algorithms used for panel construction in the studies that followed were
driven by two prime objectives: (1) choose markers with the highest ancestry-
informativeness (2) choose evenly spread markers. These guidelines were set to
provide informative panels for the estimation of ancestry at each point along
the genome. Current panel construction algorithms are “greedy”, attempting
to locally maximize an informativeness criterion, whilst investing less effort in
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ensuring that the chosen markers are evenly spaced or that the informativeness
along the genome is well balanced. Smith et. al. used a purely greedy algorithm
for marker selection [12]. Tian et. al. divided the chromosome into windows,
choosing multiple highly-informative markers within every such window [15].

When considering the informativeness of a set of markers regarding the an-
cestry at an arbitrary point, previous work offered rough approximations. Smith
et. al. considered the informativeness of a set of markers within a constant-size
window centered on the point examined as an approximation to the informa-
tiveness at that point. Tian et. al. used the mean informativeness between two
adjacent markers bounding the point examined. It is this deficiency that is ad-
dressed in the current paper. In the next section we develop an improved measure
and demonstrate through simulations that panels constructed using our measure
provides increased power in the detection of disease susceptibility gene loci.

3 Admixed Individuals Model

The genome of a recently admixed individual is a mosaic of large chromosomal
segments, where each segment originated from a single ancestral population. We
use the following definitions to describe these segments in admixed individuals.

Definition 1. An admixed chromosome is a chromosome that originated
from more than one ancestral population.

Definition 2. A Post Admixture Recombination point (abbreviated PAR)
is a recombination point in which either two chromosomes from different popula-
tions crossed, or two chromosomes crossed when at least one of the chromosomes
is an admixed chromosome.

Definition 3. A (PAR) block is a chromosomal segment limited by two con-
secutive PAR points, or by a chromosome edge and its closest PAR point.

An immediate implication of these definitions is that every PAR block originated
from a single ancestral population, designated as the ancestry of the block, for
otherwise the block would have been further divided.

Figure 2 illustrates the propagation of PAR points along three generations
of admixture, and the PAR blocks they induce. In particular, Figure 2 shows
a grandmother originating from one population, and a grandfather originating
from two populations, yielding a parent with one admixed chromosome (with one
PAR point) and one non-admixed chromosome. As the parent’s chromosomes
recombine to produce the child’s admixed chromosome, a second PAR point is
added. Hence, three recombination points reside on the child’s chromosome, of
which only two are PAR points (colored black). Three PAR blocks are defined
rather than four as the leftmost recombination point is not a PAR point.

We denote the set of all observed markers by J , and the vector of an individ-
ual’s PAR-blocks ancestries as Q. The set of an individual’s PAR points defines
a partition (denoted π) of the chromosomes into blocks. We use the random
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Fig. 2. Three generations admixture example. PAR blocks are limited only by PAR
points and the chromosomes’ ends.

variable Qπ to denote the vector of ancestries corresponding to the PAR-blocks
determined by π, Qπ,i to denote the ancestry (out of K possible ancestral pop-
ulations) of the ith PAR block in the given partition π, and the random vector
Jπ,i = {Jπ,i,1, Jπ,i,2, ..., Jπ,i,mi} to denote the haplotype assignment of the set
of mπ,i observed markers within this block. Reference to subscript π will be
omitted whenever π is clear from the context.

Markers within a PAR block are assigned according to the probability function
of the corresponding ancestral population. We further assume that the ancestries
of all PAR blocks of a given partition π are mutually independent. A graphical
model showing these assumptions is given in Figure 3.

Fig. 3. Graphical model for P (Q,J) assuming markers Ji within a PAR block are
independent conditioned on ancestry Qi. Ancestries of PAR blocks are mutually inde-
pendent.
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The joint probability distribution described via the graphical model is given by

P (Q, J) =
∑

π

P (π) ·
|Qπ|∏

i=1

P (Qπ,i)
mπ,i∏

j=1

P (Jπ,i,j |Qπ,i) (1)

In particular, when considering a specific point x on the genome, the joint prob-
ability for the ancestry Qx at that point is given by

P (Qx, J) =
∑

π

P (π) · P (Qx, Jπ,x) · P (Jπ,x) (2)

where Jπ,x are the markers within the same PAR-block as location x, and Jπ,x

is the complementary set of markers outside this block. We use this joint distri-
bution to derive our panel informativeness measure.

4 Informativeness of Panels

In this section we develop a measure for the contribution of a set of observed
markers to the ability to infer the ancestry of a block conditioned on a partition
π. We then extend this measure to account for the fact that π is unknown by
computing the expectation over all possible partitions, while focusing on the
inference of a single location x.

We start by exploring the relationship between observed markers and the
ancestries of PAR blocks under the assumption that the partition is known. Using
information-theory, we estimate the extent to which a set of markers contribute
to the ability to infer ancestry by measuring the informativeness of a set of
markers regarding ancestry. The information gain for ancestry due to observing a
set of markers can be described by the well known Shannon Information Content
(SIC)

I(Qi; Ji) = H(Qi) − H(Qi|Ji) (3)

=
∑

Qi

∑

Ji

P (Ji|Qi) · P (Qi) · log
P (Ji|Qi)

P (Ji)

where H(Qi) is the entropy (or the amount of uncertainty) of the PAR block’s
ancestry, given by

H(Qi) = −
K∑

Qi=1

P (Qi) · log P (Qi)

and H(Qi|Ji) is the conditional entropy on ancestry once the markers observa-
tions are accounted for, given by

H(Qi|Ji) = −
∑

Qi

∑

Ji

P (Ji, Qi) · log P (Qi|Ji).
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In other words, the markers’ informativeness is measured by the reduction in
uncertainty regarding the ancestry of a given location due to observing these
markers. This reduction in uncertainty originates from the fact that each ances-
tral population has a distinct distribution over the haplotype. The information
gain in each PAR block is computed separately through Equation 3 due to our
assumption of mutual independence.

The possible presence of linkage disequilibrium between markers within a
block raises difficulties partially stemming from the need to estimate the joint
probability of a haplotype Ji that contains multiple markers conditioned on the
ancestry (i.e., P (Ji|Qi)). To reduce computational cost, we assume conditional
independence between all markers given ancestry, yielding a simpler form of
mutual-information Iind(Qi; Ji), explicated in Lemma 1. The relaxation of this
assumption is pursued in Section 7.

Lemma 1. For a given PAR Block, let Qi be its ancestry, and Ji,j be its jthmarker
(out of mi markers). Under the assumption that the markers are conditionally in-
dependent given Qi, the mutual information of Qi and Ji is:

Iind(Qi; Ji) = H (Ji) −
mi∑

j=1

H (Ji,j |Qi) (4)

Given a partition π, all PAR blocks are determined, and the informativeness of
markers regarding ancestry Qi, and in particular regarding ancestry Qx of an
arbitrary location x within the ith PAR block, is the informativeness of the mark-
ers in Ji alone. All other markers are not informative regarding Qx. However, π
is not known, and for every π a different block contains a location x. Hence, for
each π, a different set of markers is informative. The expected informativeness
of all markers regarding ancestry at location x is given, in principle, by

EMI(Qx; J) =
∑

π

P (π) · I(Qx; J |π) (5)

We call this measure EMI for Expected Mutual Information. Since summing over
all possible partitions is not feasible, the rest of this section rewrites Equation 5
and explicates how to compute it.

Observe that for any two partitions π1 and π2 such that the PAR block that
contains location x also contains the same set of markers Jπ,x ⊆ J , the term
I(Qx; J |π) in Equation 5 is equal. The probability for a partition π to contain a
block that contains both location x and markers Jπ,x is defined by three events:

1. The minimal segment [l, r] that spans over Jπ,x and x does not contain a
PAR point.

2. The segment between l and the marker to its left (at l′), if such exists,
contains a PAR point.

3. The segment between r and the marker to its right (at r′), if such exists,
contains a PAR point.
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Assuming PAR points are distributed independently, the aforementioned three
events are independent as well. This holds because the corresponding three seg-
ments are mutually exclusive. Hence, the probability of a partition π to contain a
PAR block containing location x and markers Jπ,x alone is given by the product

P(l,r) = P (N[l′,l] �= 0) · P (N[l,r] = 0) · P (N[r,r′] �= 0) (6)

where N[a,b] is a random variable of the number of PAR points in segment
[a, b], and [l, r] is the minimal segment containing location x and markers Jπ,x.

The term P (N[l′,l] �= 0) depends on the existence of a marker at l′, hence the
term will not appear in Equation 6 in case there is no marker to the left of l.
Similarly, P (N[r,r′] �= 0) will not appear in Equation 6 if there is no marker to
the right of r.

Let J[l,r] denote a sequence of markers within a segment [l, r], and location(j)
denote the location of a marker j ∈ J . To compute EMI, we weight the potential
contribution I(Qx; J[l,r]) by the probability of such a contribution, namely the
probability P(l,r) of a partition π to contain location x and markers J[l,r] within
the same block.

Theorem 1. Let Qx be the ancestry at location x, and J the set of observed
markers. The expected mutual information between Qx and J is

EMI(Qx; J) =
∑

l∈L

∑

r∈R

P(l,r) · I(Qx; J[l,r]) (7)

where

L = {location(j) ≤ x|j ∈ J} ∪ {x},

R = {location(j) ≥ x|j ∈ J} ∪ {x}.

The common realization of the term P(l,r) in Equation 7 is via the exponential
distribution. In particular P (N[a,b] = 0) = e−λ·|b−a|, where λ is the rate of PAR
points in admixed individuals, as derived from the admixture model being used.
Consequently,

P(l,r) = (1 − e−λ·|l−l′|) · e−λ·|r−l| · (1 − e−λ·|r′−r|). (8)

Equation 7 defines the EMI at a specific location x. The average information
gain regarding the entire chromosome is given by

EMIavg(J) =
1

|N | ·
∑

x∈N

EMI(Qx, J) (9)

which measures the the average EMI along the chromosome. The set N consists
of all locations x on an evenly spaced grid with a specific resolution. For example,
for chromosome 1, a set N of 280 points means about one location per cM .

In the task of mapping disease genes in admixed populations using the MALD
method, panels of high EMIavg are shown in Section 6 to outperform previous
panels.
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5 Panel Construction

We employ a greedy algorithm that constructs panels of markers for which the
EMIavg is high. In principle, the algorithm iterates over the candidate markers,
selecting the marker with the highest EMIavg gain given the markers chosen so
far. Namely, in each iteration the algorithm chooses a marker j that maximizes

EMIavg(J ∪ {j}) − EMIavg(J) (10)

where J is the set of markers selected so far.
The evaluation of EMIavg is a computationally intensive task that is repeated

with every iteration, and for every candidate marker. To reduce execution time,
for each examined candidate we locally evaluate EMIavg on a set of points located
in a segment of length w centered on the candidate marker. Equation 11 evaluates
the EMIavg on a subset of points wj ⊆ N

EMIavg(J) =
1

|wj |
·

∑

x∈wj

EMI(Qx, J) (11)

where

wj = {p ∈ N | location(j) − w

2
≤ p ≤ location(j) +

w

2
}

rather than on the entire chromosome. Once a marker j is chosen, the EMIavg

gain in the next iteration is computed only for those markers that are within
wj , as the last chosen marker mostly affects their potential gain.

The most computationally dominant factor in EMI is the evaluation of H(J)
(Equation 4), as it is exponential in the number markers |J |. However, for a given
PAR-block, a small number of ancestry informative markers suffice to nearly
eliminate the uncertainty regarding its ancestry; the information gain regard-
ing the ancestry of the PAR-block saturates rapidly as the number of markers
within the PAR-block increases. Hence, limiting the number of markers used in
the evaluation of Equation 4 yields an eligible approximation. In our implemen-
tation, we limited the number of markers in the evaluation of Equation 4 to a
maximum of 17 markers, offering a plausible tradeoff between performance and
approximation accuracy.

6 Evaluation

In this section we demonstrate the power of panels produced by our algorithm
and EMI. We compare performance with the works of Smith et. al. [12], and
Tian et. al. [15].

Similarly to the panels of Smith et. al. and Tian et. al., we constructed a
panel for the African-American admixed population. The International HapMap
Project [13] was used as the SNP allele frequencies source for the two ancestral
populations, namely the west-African and European populations. HapMap has
been shown to reflect these two distinct populations well [1].
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We constructed a panel of 148 markers (denoted EMI-148) for chromosome 1,
matching the number of corresponding markers in the screening panel of Tian
et. al.. The panel of Smith et. al. contains 238 markers. We further constructed
a more economical panel of 100 markers for chromosome 1 (denoted EMI-100)
which is two thirds the number of markers in the panel constructed by Tian
et. al. Based on the admixture-dynamics of African-Americans as described in
[3,11,12], we used λ = 6 (Equation 8), a proportion of 0.8 African/0.2 European
contribution to the admixed population, and w = 45cM (Equation 11).

We first examine the performance of the four panels according to the EMI
measure. The maximal EMI value is derived from the admixed-population char-
acteristics, namely the number of admixed populations and the admixture co-
efficient. In the case of African-Americans, the maximal value is approximately
0.5. As illustrated in Figure 4, the proportion of chromosome 1 above most EMI
thresholds is higher in the panels constructed in the current work. Moreover, the
EMI-148 panel constructed by our algorithm has a low EMI standard-deviation
of 0.0041 in comparison to the screening panel of Tian et. al. (0.0142) and the
panel of Smith et. al. (0.0178); indeed, our algorithm strives to balance the infor-
mativeness of markers across the chromosome. It is interesting to note that our
lighter panel, EMI-100, has good performance as well, with a low EMI standard-
deviation of 0.0056.

ANCESTRYMAP [5] is a tool we used for the estimation of the ancestral
origin of a locus on the basis of sampled genotypes. Given genotypes of cases
and controls, the tool can compute the likelihood of each point along the genome
to be the disease locus, under a specified disease model. ANCESTRYMAP can
also generate admixed-individual genotypes for cases and controls under a given
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Fig. 4. Proportion of chromosome above an EMI threshold. For most levels of infor-
mativeness, our panel covers larger segments of the chromosome.
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disease model. This software was used in [12] and [15] to evaluate the power of
the Smith and Tian panels, respectively.

In the experiments conducted, we generated 5761 admixed-individual cases
per experiment through the use of ANCESTRYMAP. In each experiment, a
single location on chromosome 1 was used as the disease predisposition locus. In
order to evaluate the performance of the panel across the entire chromosome, a
set of disease predisposition loci were chosen using a resolution of 4 points per
cM; above 900 uniformly selected locations across chromosome 1 were used in the
experiments. Multiple disease models were examined, all with higher prevalence
in the European population. A range of ethnicity relative risk (ERR) factors,
between 1.4 and 1.8, were set as the disease model parameters. We focused on
this range as it captures diseases such as stroke and lung cancer [11], which
are considered mild in their ERR, hence harder to detect. We proceeded by
employing ANCESTRYMAP to locate the disease gene. Similar to the threshold
used for the evaluation of Tian’s panel [15], we used a LOD score above 4.0
as an indicator for successful detection. Figure 5 shows the power, namely, the
detection success-rate, in a total of 5500 experiments per panel.
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Fig. 5. EMI-148 achieves a significantly higher power in all tested disease models

Measuring the distance between the highest detection signal and the actual
disease predisposition locus reveals that our panel also has a high detection accu-
racy, as illustrated in Figure 6. Approximately 55% of the experiments conducted
on the entire range of ERR using our EMI-148 panel detected a signal within a
3 cM distance from the actual disease predisposition locus, whilst the other two
panels achieved approximately 42% (Tian et. al.) and 37% (Smith et. al.). The
EMI-100 panel achieved a 46% detection-rate within 3 cM.
1 Commercial panel infrastructure requires sample size to be a multiplicative of 96.
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Fig. 6. Experiments percentage above accuracy threshold for each of the four panels. A
higher percentage of the experiments yield higher accuracy for EMI-148, in comparison
to the other three panels.

Detailed information regarding our panel can be found at bioinfo.cs.technion.
ac.il/MALD.

7 Extensions and Discussion

The EMI measure, introduced in Section 4, provides an estimate for the informa-
tiveness of a set of markers regarding ancestry at a specific location. It improves
upon previous measures as it takes into account the expected informativeness of
a set of markers with respect to ancestry, over all possible partitions. The higher
accuracy of EMI, especially in regions between markers, enables the creation of
panels that are well balanced in terms of the informativeness provided by the set
of markers across the genome. Finally, the panels constructed by our algorithm
demonstrated significantly higher power and accuracy.

An immediate extension of EMI that we pursued addresses possible dependen-
cies between markers given ancestry. Lemma 1 disregards LD within ancestral
population in favor of a lower computational cost. We now use a first-order
Markov-chain to model marker dependencies within ancestral populations in
order to provide a more accurate model. Under this model, the transition prob-
abilities are derived from the LD present between every two adjacent markers
given the ancestry. Such a model still yields a computationally plausible form,
as shown in the next lemma.

Lemma 2. For a given PAR Block, let Qi be the ancestry, and Ji,j be the
jthmarker (out of mi markers). Under the assumption that each marker is



Panel Construction for Mapping in Admixed Populations 447

dependent on the preceding marker and conditionally independent of the rest
of the markers given Qi, the mutual information of Qi and Ji is:

Ichain(Ji; Qi) = H(Ji) − H(Ji,1|Qi) −
mi∑

j=2

H(Ji,j |Qi, Ji,j−1) (12)

However, we have not employed this extension in the panel constructed because
the public data of LD categorized by ancestral population is still too sparse.
In addition, as our algorithm inherently yields a balanced panel in terms of
EMIavg, the selected markers tend to be evenly spaced (hence with a large inter-
distance), decreasing the probability for LD between two consecutive markers,
given ancestry.

Another extension of EMI relaxes the assumption that the rate of PAR points,
used in Equation 8, is constant across the chromosomes. Recombinational hot-
spots can be taken into account by using a PAR point rate as a function of
location λ(x) instead of the constant rate λ. For example, assume that a chro-
mosome is divided into regions of different PAR point rates λ1, λ2, ..., λn. For a
segment [l, r] that spans two consecutive regions with PAR rates λi and λi+1,
the term P (N[l,r]) in Equation 6 equals e−(λi·t+λi+1·(1−t))·|r−l|, where t is the
proportion of segment [l, r] with PAR rate λi. Furthermore, the framework pro-
vided in this paper can address the effect on EMI of different admixture models,
such as continuous-gene-flow [7], by considering a different realization of Equa-
tion 6.

We note that EMI assumes a model for haplotypes rather than genotypes,
and that the allele frequencies P (J |Q) are definite. In reality these frequencies
are derived from a small set of samples (60, barring missing data, in the case of
HapMap). In its current form, EMI lacks an appropriate treatment for the uncer-
tainty involving allele frequencies. It is advisable to validate the allele frequencies
by taking more samples for candidate markers, as done in [15].

The approach presented in this paper for panel construction also applies to
the second phase of the MALD method. This second step currently employs a
Markov chain model that assigns the most probable ancestry for each location,
given the model and marker data [5,3]. By conditioning on possible partitions
π, one can compute the expected ancestry P (Qx|J = j) of a point x given mea-
surements J = j via Equation 2, similarly to our computation of the expected
informativeness. It would be interesting to see whether this approach yields
higher accuracy in ancestry inference.

Finally, further research could determine the relative contribution of each of
the following three ingredients to the reported increase in power: the richer set of
SNP markers available in the current HapMap project, the validity of the EMI
measure, and the success of our proposed algorithm. Nevertheless, we clearly
showed that the panel produced using EMI has a well balanced high score in
terms of informativeness of markers, yielding a significant improvement in both
power and accuracy, compared to previous work.
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