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Abstract. Admixture mapping is a gene mapping approach used for the
identification of genomic regions harboring disease susceptibility genes
in the case of recently admixed populations such as African Americans.
We present a novel method for admixture mapping, called admixture
aberration analysis (AAA), that uses a DNA pool of affected admixed
individuals. We demonstrate through simulations that AAA is a powerful
and economical mapping method under a range of scenarios, capturing
complex human diseases such as hypertension and end stage kidney dis-
ease. The method has a low false-positive rate and is robust to deviation
from model assumptions. Finally, we apply AAA on 600 prostate cancer-
affected African Americans, replicating a known risk locus. Simulation
results indicate that the method can yield over 96% reduction in geno-
typing. Our method is implemented as a Java program called AAAmap
and is freely available.

1 Introduction

Many complex disease studies are currently being conducted using population-
based genetic association [1]. The premise of this method is that affected indi-
viduals carry a common variant of a disease susceptible gene which is in linkage
disequilibrium with sampled markers. Hence, the susceptibility locus can be de-
tected via the indirect association between the sampled markers and the disease
status. In order to guarantee a sufficiently high power in association studies,
thousands of cases and controls are sampled using dense marker panels.

Admixture mapping, also known as Mapping by Admixture Linkage Dise-
quilibrium (MALD), offers a more economical alternative to association studies
in certain circumstances without sacrificing the statistical power [2]. MALD is
a gene mapping approach used for the identification of genomic regions har-
boring disease susceptibility genes in the case of recently admixed populations,
i.e. populations that are an admixture of several ancestral populations. African
Americans are an example of an admixed population, having both European
and African ancestries. The method is applicable when the prevalence of a dis-
ease is significantly different between the ancestral populations from which the
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admixed population was formed. When such a disease is studied, admixed indi-
viduals carrying the hereditary disease are expected to show an elevated genomic
contribution from the ancestral population that has the higher prevalence of the
disease around the disease gene loci. A MALD study is comprised of three main
steps. First, a panel of ancestry informative markers (AIM) that differentiate
well between ancestral populations is designed. Next, either cases or both cases
and controls are individually genotyped using the AIM panel, and the mosaic of
ancestries of each individual is inferred. Finally, the inferred ancestral profiles
are scanned in search for an aberration towards the ancestral population with
the higher risk, as expected to appear near the disease locus.

The MALD method successfully discovered multiple risk alleles for prostate
cancer [3,4], a disease with a higher incident rate in Africans compared to Euro-
peans, and a candidate locus for end-stage kidney disease in African Americans
[5]. Diseases of similar characteristics include stroke, hypertension and multiple-
sclerosis; a more comprehensive list of diseases suitable for admixture mapping
appears in the method’s review by Smith and O’Brien [2]. In all of these cases,
the statistical efficiency of MALD stems from the fact that only a few thousands
of ancestry informative markers are required in order to accurately infer the an-
cestry of the admixed individuals [6,7]. Moreover, only a few hundreds of cases
are required for the identification of the ancestral aberration around the disease
locus [8].

In this paper we present a novel approach for admixture mapping that con-
siderably reduces the genotyping cost of disease studies by applying admixture
aberration analysis (AAA) on pooled DNA of affected admixed individuals. Our
analysis detects divergence of allele distribution in a pool of samples near a dis-
ease locus without the intermediate step of ancestry inference per individual.
The inherent aberration in admixture around the disease locus shifts the sam-
pled allele frequencies towards the distribution of the alleles in the ancestry with
the higher risk. It is the examination of this shift, evaluated through the estima-
tion of allele frequencies in the pooled sample, that provides the means for our
pooled mapping method. Figure 1 illustrates this idea.

Current MALD studies mainly differ in the informative panel of choice and
the method used for ancestry inference. Patterson et al. [9] presented a method
that employs a hidden Markov model (HMM) for the estimation of ancestry
along the genome. The HMM was integrated into a Markov chain Monte Carlo
(MCMC) method to account for the uncertainties in model parameters. Tang
et al. [10] extended previous methods by modeling linkage-disequilibrium in the
ancestral populations using a Markov Hidden Markov model (MHMM), namely,
dependency between adjacent markers evident in the ancestral populations was
modeled. An inference framework developed in [11] enables the incorporation of
more complex probability models that account for linkage disequilibrium in the
ancestral populations. An earlier work by Chakraborty and Weiss [12] suggested
mapping by directly assessing divergence from admixture linkage-disequilibrium,
as expected near disease loci.
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Fig. 1. An illustration of admixture aberration. (a) Two distinct ancestral populations,
X and Y , expressing a different distribution of alleles at a particular location. The
greater the distance between allele distributions, the more informative the marker is
regarding ancestry. (b) a sample of admixed individuals, descendants of the ancestral
populations X and Y . In case of a disease with higher prevalence in population X, the
affected sample will exhibit a higher contribution from population X near the disease
locus, as indicated by the graph on the left. Hence, in the affected individuals, the
distributions of alleles near the disease locus bears a higher resemblance to that of
population X. The healthy admixed individuals show a contribution of populations X
and Y that corresponds to the admixture process.

DNA Pooling has been suggested as a practical way to reduce the cost of
large-scale association studies [13]. Rather than analyzing thousands of cases
and controls that were sampled separately, association analysis was first applied
on pooled cases and pooled controls in the work of Arnheim et al [14]. Steer et al.
[15] have recently demonstrated the feasibility of pooled association studies using
high resolution microarrays for rheumatoid arthritis. Zeng and Lin [16] examined
the analysis of pooled DNA, extending the single-marker association methods
to haplotype association using a likelihood-based approach. Kirov et al. [17]
investigated the accuracy by which the allele frequency difference between pools
can be estimated. This work was extended by Wilkening et al. [18] for higher
resolution SNP microarrays of 250K. Pooling was also used in QTL studies.
For example, Darvasi and Soller [19] presented a statistical test of marker-QTL
linkage based on selective pools of individuals with extreme quantitative trait
values.
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The main contribution of this paper is the introduction of pooling to admix-
ture mapping, and the demonstration of its power to the mapping of disease
susceptibility loci. Pooling is a far more effective tool for admixture mapping in
comparison to association studies. In the case of a recently formed admixed pop-
ulation, the linkage-disequilibrium patterns generated by the admixture process
stretch over regions of several centimorgans, resulting in a wider effect which is
easier to detect. In addition, using ancestry informative markers improves the
ability to locate deviations of LD and marker distribution from those expected
by the admixture process alone. The efficiency of our pooled AAA method has
been established through simulation and via analysis of diseases that are cur-
rently being studied using the non pooled MALD approach. Specifically, we first
develop the aberration analysis method based on a window of markers while
accounting for linkage disequilibrium in the ancestral populations. We then de-
termine the method’s power through simulations. We show, for example, that
a power of over 70% is achieved in a simulated study of an African American
population carrying a disease with ethnicity relative risk of 1.3, comparable with
end-stage kidney disease, using 7 pools of 200 individuals with 4 repetitions. The
results in this case indicate a more than 25-fold decrease in genotyping versus
a non-pooled MALD method. We also demonstrate the strength of our pooled
method on a sample of African American cases of prostate cancer, replacing 600
independently measured individuals with a single simulated pool. The result
demonstrate that a significant signal (LOD 7.2) is obtained near the risk locus
found by Amundadottir et al. [20] and Freedman et al. [3]. Finally, we discuss the
robustness of our method to measurement errors and to deviation from model
assumptions.

2 Material and Methods

2.1 Definitions and Model Assumptions

The genome of a recently admixed individual is a mosaic of long, single ancestry,
chromosomal segments. We use the following definitions to describe these seg-
ments in admixed individuals. An admixed chromosome is a chromosome that
originated from more than one ancestral population. A Post Admixture Recom-
bination point (abbreviated PAR) is a recombination point in which either two
chromosomes from different populations crossed, or two chromosomes crossed
where at least one of the chromosomes is an admixed chromosome. A (PAR)
block is a chromosomal segment limited by two consecutive PAR points, or by a
chromosome edge and its closest PAR point. An immediate implication of these
definitions is that every PAR block originated from a single ancestral popula-
tion, designated as the ancestry of the block, for otherwise the block would have
been further divided. In our model, we assume that the ancestry of PAR blocks
are mutually independent. We further assume that given the ancestry of a PAR
block, the markers within that PAR block are independent of the markers out-
side the PAR block and are determined strictly according to the distribution
that corresponds to the ancestry of that PAR block [7]. The markers within a
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PAR block are assumed to be dependent, accounting for the background linkage-
disequilibrium in the ancestral populations.

Consider an admixed population that originated from two ancestral popula-
tions X and Y . Each ancestral population may have a different prevalence for a
disease. A common way to characterize the disease risk attributed to the ances-
tral profile is by the ethnicity relative risk (ERR) which measures the increased
risk due to an additional allele from population Y . Under a multiplicative disease
model, ERR is defined as

r =
ψ(XY )
ψ(XX)

=
ψ(Y Y )
ψ(XY )

(1)

where ψ(·) is the probability of the disease given that the ancestry pair at the
disease susceptibility locus is either XX , XY , or Y Y .

When studying an admixed population with an hereditary disease character-
ized by an ERR �= 1, the regions around the disease loci are expected to show an
aberration towards the ancestry with the higher risk, shifting the distribution of
nearby allele frequencies. Our method scans through the genome, computing for
each examined location the ratio between the likelihood of the measured allele
frequencies under the assumption of a close disease locus and the likelihood of
the measured frequencies under the null assumption of no disease:

Λ0 =
P (S|nearby disease locus)

P (S|no disease)
(2)

where S are the observed allele frequencies. Since the computation of this like-
lihood becomes intractable as the number of samples and markers grow, we
approximate these probabilities via the multivariate central limit theorem over
a window of markers. This approximate measure, denoted Λ, is used in the re-
ported results. In the remaining method section, we derive the distribution of
alleles under the two hypothesis, and the Λ score. We first assume a window
with a single marker and then extend the results to multi-marker windows.

2.2 Single Marker Analysis

We first compute the probability P (J |d) of a bi-allelic marker J ∈ {0, 1} of an
individual, given the individual is affected (denoted by d). This probability is
given by

P (J |d) = P (J |r̄, d) · P (r̄|d) + P (J |r, d) · P (r|d) (3)

where r indicates that at least one recombination has occurred between the
disease locus and the location of allele J since the first admixture event, and r̄
is the complementary event.

The occurrence of post-admixture recombination points (PAR) can be mod-
eled as a Poisson process with rate λ which is derived from the admixture dynam-
ics. In the case of a hybrid-isolated admixture model [21], λ roughly corresponds
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to the number of generations since the admixture began. Hence, under the as-
sumption that the event of a recombination is independent of the disease status,
the probability of at least one PAR point between location l1 and l2 is

P (r|d) = P (r) = 1 − e−λ·|l1−l2| (4)

To compute P (J |r, d) in Equation 3, we note that given r, namely that at least
one PAR point occurred between sampled allele J and the disease locus, the
distribution of the allele is determined solely by the ancestry at the location and
the admixture coefficient P (Q):

P (J |r, d) =
∑

Q

P (J |Q, r, d) · P (Q|r, d) (5)

=
∑

Q

P (J |Q) · P (Q)

where Q is the ancestry at the marker location.
To compute P (J |r̄, d) in Equation 3, namely when assuming no PAR point

exist between the disease locus and the sampled allele, the distribution of the
allele is given by

P (J |r̄, d) =
∑

Q′
P (J |Q′) · P (Q′|d) (6)

where Q′ is the ancestry at the disease locus. The above equality relies on the as-
sumption that given the ancestry of the chromosomal segment containing marker
J , the affection status and the allele are independent, an assumption that is com-
mon in admixture mapping models [9]. The probability P (Q′|d) of the ancestry
of an affect individual at disease locus Q′ is formalized in terms of the multi-
plicative disease model. Let Z ′ ∈ {XX,XY, Y Y } denote the ancestry pair at the
disease locus. The probability of ancestry Q′ given the disease can be written as

P (Q′ = X |d) =
∑

Z′
P (Q′ = X |Z ′, d) · P (Z ′|d) (7)

= P (Z ′ = XX |d) +
P (Z ′ = XY |d)

2

The probability P (Z ′ = XX |d) is computed from ψ(·) as follows:

P (Z′ = XX|d) =
P (D|Z′ = XX) · P (Z′ = XX)∑

Z′ P (d|Z′) · P (Z′)

=
ψ(XX) · p2

X

ψ(XX) · p2
X + 2ψ(XY )pX(1 − pX) + ψ(Y Y )(1 − pX)2

where pX is the a priori probability of ancestry X in an admixed individual. The
probabilities P (Z ′ = XY |d) and P (Z ′ = Y Y |d) are derived in a similar fashion.
This completes the derivation of all terms of Equation 3.
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We continue by considering a set of independent marker observations J1, J2, ...
Jn sampled from n affected admixed individuals. We need to compute the like-
lihood ratio L of these observations, namely the probability of the observations
under the hypothesis of a nearby disease susceptibility locus divided by the
probability under the null hypothesis of no disease

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

As we assume independent and identically distributed Ji, we conclude that
(

n

|{Ji|Ji = 1}|
)
· P (J1, .., Jn) = P (Sn)

where Sn =
∑

i Ji. Hence, the likelihood ratio can be rewritten as follows

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

=
P (Sn|H1)
P (Sn|H0)

We now explicate how to approximate the probabilities P (Sn|H0) and P (Sn|H1).
According to the central limit theorem, the standardized sum of n observations

converges to the standard normal distribution N(0, 1) as n grows

S∗
n =

∑
Ji − n · μ
σ
√
n

→ N(0, 1)

where μ and σ are determined by the distribution of J . For the two hypotheses,
we use the following means and variances:

μ0 = P (J |r, d), σ0 =
√
P (J |r, d) · (1 − P (J |r, d))

μ1 = P (J |d), σ1 =
√
P (J |d) · (1 − P (J |d))

Note that P (J |d) is given by Equation 3, and that P (J |r, d) is given by Equa-
tion 5. The use of P (J |r, d) for the null hypothesis is justified because this case is
equivalent to an infinitely distant disease locus. Each hypothesis yields a different
distribution of the markers hence a different standardization, and in turn, a cor-
responding probability for the sum of observations. We denote the standardized
sums of Sn according to hypotheses H0 and H1 by SH0

n and SH1
n , respectively.

The likelihood ratio of the observations under the two hypothesis can now be
approximated as follows

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

→ P (SH1
n )

P (SH0
n )

= Λ (8)

The log10 of Λ is called the LOD score; high LOD scores are indicative of a
nearby disease locus.

In the above derivation, we assumed that the n marker observations are in-
dependent even though each affected individual contributes two observations to
the sample. The effect of this discrepancy weakens as the sample size increases.
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As a final note consider the case of fully informative markers. Such markers
have one allele with probability 1 in the first ancestral population and the other
allele with probability 1 in the second ancestral population. When using fully
informative markers and assuming no errors reading them, the ancestry at each
marker location is known with certainty using a single marker readings. In this
case, a non-pooled MALD locus statistic such as the one described in [9], reduces
to the ratio between the probability of ancestry given a nearby disease locus and
the a priori probability of ancestry (rather than a ratio between probabilities of
marker data). This ratio exactly equals, in the limit of sufficiently large samples,
to our Λ statistic under fully informative markers. Consequently, for sample
sizes that one normally deals with in MALD studies (> 500 samples), our AAA
method retains the same statistical power as non-pooled MALD but at orders of
magnitude less genotyping under this scenario. A comparison of the power of the
two methods is further studied in Section 3 without assuming fully informative
markers.

2.3 Multi-marker Analysis

We now extend our analysis from a single marker to the case of haplotypes where
m bi-allelic markers are sampled. First, we derive the probability P (J |d) of an
individual to carry haplotype J ∈ {0, .., 2m − 1} given that the individual is
affected (denoted by d). This probability can be written via

P (J |d) =
∑

π

P (J |π, d) · P (π) (9)

where π is a partition of the haplotype into PAR blocks. The probability of a
partition p(π) is determined by the independent PAR points that either occurred
or did not occur between sampled markers

∏m−1
i=1 P (Ri), where the variable

Ri ∈ {0, 1} denotes whether a PAR point occurred between markers i and i+1,
and the probability P (Ri = 1) is given by Equation 4.

To compute the remaining term p(J |π, d) in Equation 9, recall that our ad-
mixture model assumes that markers within a PAR block are independent of
markers outside the PAR block given the ancestry of the block. Hence, given
partition π, the probability of haplotype J is given by

P (J |π, d) =
∏

b

P (Jb|d) (10)

=
∏

b

∑

Qb

P (Jb|Qb, d) · P (Qb|d)

where b is a block in partition π, Jb are the markers within block b, and Qb is the
ancestry of that block. The probability of a block’s ancestry given an affected
individual is determined by whether or not the disease locus is within the PAR
block in question, hence is

P (Qb|d) =

{
P (Q′|d) ld ∈ b

πQ otherwise
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where ld is the tentative disease locus, πQ is the a prior probability of ancestry
Q, and P (Q′|d) is given in Equation 7.

Our model assumes that given the ancestry of a block, the haplotype dis-
tribution is independent of the disease status. Hence, the term P (Jb|Qb, d) in
Equation 10 is equals the probability P (Jb|Qb) which can be computed via sam-
ples taken from the ancestral populations. For example, European and West
African individuals phased in the HapMap project [22] were used in Section 3 to
construct the ancestral haplotype distribution P (J |Q) for the analysis of African
American. This concludes the derivation of all the terms used in the computation
of Equation 9.

Finally, we consider a set of independent haplotype observations J1, J2, ...Jn

sampled from n affected admixed individuals. We compute the likelihood ratio
of the pooled observations, dividing the probability under the hypothesis of a
nearby disease susceptibility locus by the probability under the null hypothesis
of no disease:

L =
P (Sn|H1)
P (Sn|H0)

where Sn is the sum of observations Ji.
We continue by explicating the computation of the probabilities P (Sn|H0)

and P (Sn|H1). According to the multivariate central limit theorem, under the
assumption that the covariance matrix of J is positive-definite, the standard-
ized sum of n observations converges towards the standard normal distribution
N(0, Σ) as n grows

S∗
n =

∑
Ji − n · μ√

n
→ N(0, Σ)

where μ and Σ are determined by the distribution of J assuming an affected
admixed individual. For the two hypotheses, we use the following means and
covariance matrices:

μ0 =
∑

J

J · P (J |d, ld = ∞)

μ1 =
∑

J

J · P (J |d, ld = l)

Σ0
i,j = E

(
(J i − J̄ i)(Jj − J̄j)

∣∣∣ ld = ∞)

Σ1
i,j = E

(
(J i − J̄ i)(Jj − J̄j)

∣∣∣ ld)

where J i indicates the ith component of haplotype J . Under the alternative
hypothesis, the distribution P (J |d, ld = l) equals P (J |d) given by Equation 9,
setting ld to equal the suspected locus l. When assuming no disease locus, the
distribution P (J |d, ld = ∞) equals P (J |d) from Equation 9 under the assump-
tion ld = ∞.

We denote the standardized sums of Sn according to hypotheses H0 and H1

by SH0
n and SH1

n , respectively. The likelihood ratio under the two hypothesis can
now be approximated as follows
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L =
P (Sn|H1)
P (Sn|H0)

→ P (SH1
n )

P (SH0
n )

= Λ (11)

The AAA method is defined to be the process of computing the LOD score
log10 Λ via Equation 11 at examined locations along the genome, declaring a
region that shows a LOD above 3.3 as a suspect area that may contain a dis-
ease locus. Subsequently, significant peaks serve as candidates for fine-mapping.
Section 3 details the process of selecting the LOD threshold.

2.4 Pooling Strategies

In the case of DNA pooling, two parameters affect the number of panels used,
namely the pool size k and the number of pool repetitions l. It was shown that
these two parameters can increase the accuracy of allele frequency estimation in
the pooled sample which affects the method’s statistical power [13]. Based on
previous studies, when using a high-throughput platform for genotyping, pooling
is recommended to be applied in quadruplets (l = 4). An empirical study of
pooling examined the efficiency of this approach in association studies, using
pools of k = 250 individuals [15]. We report our results with l = 4 and k = 200.

2.5 Leave-One-Out Filter

The leave-one-out (LOO) approach is a common filtering method that can be
used in this context to discard false-positive signals originating from markers
with erroneous frequencies. One potential source for bias is the inaccurate esti-
mation of the allele frequencies in the ancestral populations. Biased genotyping
errors can also result in false signals. Both error sources are assumed to occur
independently between the markers and with low probability. When applying
the AAA method, the robustness of a high LOD signal is examined via LOO by
repeatedly removing markers and evaluating the effect on the LOD; the minimal
LOD is reported, conferring with a conservative approach. A significant signal
that persists after the removal of the marker with the highest contribution to
the LOD is less likely to be false. LOO is especially effective in admixture map-
ping because suspected regions are usually supported by multiple SNP markers,
retaining the method’s power throughout the filterring phase as opposed to as-
sociation studies, which often pinpoints a small suspected region with a single
SNP marker.

3 Results

In this section we evaluate the performance of AAA through simulations, show-
ing that the method has high statistical power and can detect loci of disease
genes with even modest ethnicity relative risk. We investigate our statistics in
the absence of a disease, bounding the false-positive rate to 5% genome-wide. We
examine the effect of deviation from model assumptions, showing that for many
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realistic disease models (ERR > 1.4) the method is robust to the inaccuracies
expected in real data, and for milder ERR, the power can be retained through
additional samples. We compare our AAA method to non-pooled MALD, demon-
strating significant reduction in panel assays due to pooling at the cost of an
increase in sample size. Finally, we validate our method by replicating the result
of a prostate cancer risk locus using real data.

To evaluate the performance of our proposed method, we simulated data fol-
lowing the characteristics of recent MALD studies. We examined a range of dis-
ease models, including a mild value of ERR = 1.3 (corresponding to end-stage
kidney diseases) which produces signals that are harder to detect in compar-
ison to diseases with higher ERR values such as hypertension (ERR 1.6) [2].
The population of African Americans was simulated using the haplotypes of 60
unrelated European and 60 unrelated West African individuals phased in the
HapMap project [22].

The simulation assumed a Hybrid-Isolated admixture model with 0.2 Euro-
pean contribution, 0.8 African contribution, and 8 generations of admixture.
The simulated individuals were sampled according to a published panel of 1955
ancestry informative SNP markers [7], of which approximately 150 SNPs are on
chromosome 1.

Figure 2 illustrates the output of the AAA method, using pools of 500,1000,
1500 and 2000 affected individuals. The disease susceptibility locus was set to
50cM and the simulated disease ERR was 1.3. A 3-marker sliding window was
used to examine chromosome 1. One can clearly note that the evident peak, co-
located with the disease locus, becomes significantly differentiated from distant
locations with every increase in sample size.

We evaluated the distribution of our LOD statistic in the absence of a disease
by performing simulations of pools of 500, 1000 and 2000 admixed controls, ana-
lyzing the sample using a window of 2, 3 and 4 markers at 1cM steps. We assume
an ERR between 1.3 and 1.8 using a multiplicative increase risk model (Equa-
tion 1) with a higher prevalence in Africans. Each configuration was repeated
2500 times. The results illustrate that the gap between random and significant
signals increases markedly with both the sample size and the window size (see
Table 2 in the appendix for more details). The 95th percentile was approximately
LOD = 3.3 when a pool of 1000 individuals was analyzed using a window of 2-4
markers over the entire genome, assuming an ERR of 1.3. This means that by
defining the significance threshold to be a LOD > 3.3, we consequently confer a
less than 5% type I error under the unfavorable condition of a hard to detect dis-
ease. Our recommended threshold of LOD > 3.3 is applicable for a wide range of
parameters, as seen in Table 2, but can be relaxed depending on the admixture
model and sample size, as can be determined through appropriate simulations.

To establish the statistical power of AAA we simulated a range of models
with ERR values ranging from 1.2 to 1.8. For each disease model, we evaluated
the performance for a single pool of 500, 750, 1000, 1500 and 2000 cases. In
each simulation, a uniformly random locus along chromosome 1 was chosen as
the disease locus. Each configuration, consisting of a specific sample size and
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Fig. 2. LOD score along chromosome 1 showing a peak co-located with disease locus at
50 cM. The significant signal is enhanced with the increase of sample size while nearby
LOD scores drop. The simulated disease ERR (1.3) is comparable to end-stage kidney
disease. Chromosome 1 was sampled using 147 ancestry informative markers.

an ethnicity relative risk, was repeated 2500 times. Figure 3 summarizes the
results of applying AAA using a window of 4 markers. A successful detection
was defined as a peak with LOD > 3.3 within 5cM of the actual disease locus.
The results indicate high statistical power (over 80%) under disease models that
are considered difficult to detect (e.g., ERR of 1.3) when a pool of 1500 affected
individual is used. We further found that 500 cases suffice to detect a disease of
ERR ≥ 1.6 with a power of approximately 80%, and 1000 cases yield a power of
over 83% in the analysis of a disease with ERR ≥ 1.4.

To evaluate the robustness of AAA to deviation from model assumptions,
we examined the performance under inaccuracies in the admixture parameters.
Namely, the inaccurate estimate λ of the number of generations since first ad-
mixture, and the inaccurate estimate of the ancestral distribution P (Q). Using a
simulated population with African American admixture characteristics we con-
clude that the statistical power is insensitive (less than 1% decrease in power)
to an inaccuracy of up to 5% in λ. Error in the estimate of P (Q) has a greater
effect on power. In particular, a 5% overestimation of the contribution of the
ancestry with the higher risk yields a 4.8% drop in power for a study with 2000
cases and ERR ≥ 1.5, and a 1.8% drop for a study with 1000 cases and ERR 1.8.
When only 1000 cases are used to study a disease with a milder ERR of 1.5, the
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Fig. 3. Statistical power of 4-marker window analysis under different disease models
and sample sizes

power drops significantly from 95% to 72%. The inaccuracies in the estimation
of these admixture parameters are expected to be lower than 5% in the case of
African Americans [9].

To investigate the extent of genotyping reduction due to pooling we examined
the number of SNP assays needed in order to achieve 70% power using our
AAA method versus MALD. The MALD method performance was evaluated
under the optimal condition where the ancestries are perfectly inferred by a
fully informative single marker (as described in Section 2). The performance of
AAA was examined over 2500 uniformly chosen locations along chromosome 1,
using a window of 4 markers. In the case of AAA, we report the results under
the configuration of k = 200 and l = 4 which resembles the choice of [13] and
[15]. The results are shown in Table 1. For ERR = 1.3, MALD requires a sample
of 700 affected individuals, with one assay per individual. For the same disease
model, AAA uses 28 assays, which suggests a 96% reduction in genotyping.
The disadvantage of AAA is the need to collect additional affected individuals.
However, for less than doubling the number of individuals, a 25-fold reduction in
the number of assays is achieved. The performance of AAA was evaluated using a
real panel for admixture mapping. When considering only perfect markers, AAA
performance improves even when a single marker window analysis is applied,
reducing the number of cases from 1300 to 1200, and the number of assays from
28 to 24. Similar results are obtained for ERR = 1.4.
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Table 1. The number of SNP assays needed to achieve a power of 70% using MALD
and AAA. The AAA method yields over 25-fold decrease in the number of SNP assays
when using pool size k = 200 and number of replicates per pool l = 4.

Cases Assays
ERR MALD AAA MALD AAA

1.3 700 1300 700 28

1.4 470 820 470 20

To evaluate the performance of AAA on real data, we examined a sample of
1646 African Americans with prostate cancer that were genotyped using 1985
ancestry informative SNPs. This sample led to the confirmation of prostate can-
cer risk locus in African American men through admixture mapping [3]. We
simulated a pool using 600 cases that were genotyped with the same 1276 mark-
ers. The allele frequencies in the ancestral populations were estimated using a
sample of 343 Europeans and 183 Africans. An ERR of 1.65 was used for the
analysis based on [2]. A European genetic contribution of 0.215 was estimated
using a maximum likelihood approach on the pooled sample of affected admixed
individuals.

Applying AAA using a window of 4 markers results in a significant signal
near a known risk locus (see Figure 4 in the appendix for more details). The
peak on chromosome 8 (LOD 7.2) is less than 5Mb from the susceptibility locus
reported by [3]. Applying the AAA method genome-wide yielded 2 additional
less significant signals on chromosomes 5 and 9 (LOD 3.7−3.8). To evaluate the
robustness of the three significant signals, we applied AAA with 4-marker and
LOO filterring. The analysis shows that only the known locus on chromosome 8
persist, with a significant LOD of 5.88, while the other two peaks at chromosomes
5 and 9 drop to 0.2 and 1.46, respectively. We attribute the two additional signals
to biased markers.

4 Discussion

Pool-based methods rely on estimates of the allele frequencies in the pooled
sample. It is known that pool-based association analysis is sensitive to errors in
these estimates. Previous studies evaluated an error in the estimation of allele
frequency difference between pools of less than 1.4% in 10K SNP arrays [17]. We
now discuss the effects of these errors on AAA.

Themodelweused to simulate allele frequencies assumed independent normally-
distributed errors with zero mean. Three error levels were tested, adjusting the
variance of the error so as to reflect a 95th percentile of 1, 3 and 5 percent error in
observed allele frequency. We performed simulations using pools of 500, 1000 and
2000 admixed controls, analyzing a window of 4 markers while using LOO filtering
at 1cM steps, and assuming an ERR between 1.3 and 1.8. Each configuration was
repeated 2500 times. The results are that the selected threshold of LOD = 3.3 is
still valid for up to 5% error in allele frequencies for the case of ERR 1.3− 1.5 and
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500− 1000 affected individuals. These results further suggest that the analysis of
the prostate cancer sample is robust to 5% allele frequency estimation error. Error
in the estimation of allele frequencies has a greater impact on the false-positives
rate in the case of a disease with a higher ERR or a larger sample, increasing the
needed significance threshold defined by the 95th percentile. One should adjust the
significance threshold according to the expected allele frequency error via appro-
priate simulation.

We also repeated the experiment with cases, evaluating the impact of allele
frequency estimation errors on the statistical power of AAA. The power of an-
alyzing a disease with ERR 1.5 using 1000 cases decreases from 95% to 82%.
The tested error levels had a smaller effect on the analysis of a larger sample or
a disease with a higher ERR value, still retaining a power of over 90%. In the
analysis of a smaller sample size or a disease with a lower ERR, that achieved
a power between 50% and 60% under accurate allele frequency estimation, the
power decreased to 33−38% once such errors were introduced. However, in most
of these settings, our simulated experiments on pooled controls suggest that a
less stringent LOD threshold can be used without sacrificing the low level of
false-positives.

The AAA method has an advantage over pooled association studies with re-
spect to allele frequency estimation errors because (1) only a small fraction of
SNP markers are required for the analysis, enabling the use of higher accuracy
genotyping platforms, and (2) the chosen panel of markers are biased towards
a high minor allele frequency in the admixed population, which increases the
expected accuracy [18]. The common enhancements applied in pool-based asso-
ciation studies of repeated measures and the subdivision of samples into pools
should also increase the robustness of our method considerably.

Another source of error lies in the inaccurate estimation of allele frequencies of
the ancestral populations which may lead to an increase in the number of false-
positive signals. Indeed, initial experiments indicate that errors in the ancestral
allele distribution increase the false-positive signals as these mimic the effect of a
true risk allele. Such results may explain few of the additional suspected regions
in the prostate cancer sample that were detected prior to applying LOO.

Our analysis assumes knowledge of the admixture coefficient P (Q), and the
number of generations since the first admixture λ. While reasonable estimates
of these parameters exists for some admixed populations, such as the African
American and the Latino populations, it is recommended to tune the λ and
P (Q) estimates using the sampled cases. We evaluated the genetic contribution
of Europeans by applying a maximum likelihood approach on our prostate cancer
cases pool, computing P (Q = Europe) = 0.215.

One of the properties of admixture mapping is that it can be applied on cases
only, a property which holds for AAA as well. Nevertheless, similar to the use of
control samples in MALD, healthy admixed individuals can increase the statis-
tical power and decrease the rate of false-positives by providing a more accurate
estimation of the allele frequencies in the ancestral population P (J |Q) as well as a
more accurate estimation of the admixture parameters. Admixed controls pooled
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in several groups, each of similar admixture coefficient, can be used to adjust the
estimates of ancestral allele frequencies using a maximum likelihood approach.
In particular, measuring a marker’s frequency in two African American control
groups with a known and different admixture coefficient allows the estimation of
the marker’s frequencies in the ancestral populations via Equation 5.

The AAA method presented in Section 2 is developed for the case of an
admixed population that was formed by two ancestral populations. Supporting
admixed populations with more than two ancestral populations, as is the case
with the Latino admixed population who are descendants of Native Americans,
Europeans, and Africans, can be achieved through an adjustment of Equation 7.
Another approach is to model all low risk populations as one ancestral population
and the high risk population as the second ancestral population, applying the
method as is.

Our multi-marker AAA method takes into account knowledge of linkage-
disequilibrium evident in the ancestral population. Such inherent and complete
incorporation of LD in the analysis further increases the method’s statistical
power, whereas other MALD methods do not fully benefit from this information,
ranging from partial to no support of background LD. In addition, the analysis
we developed is applied on a window of markers, while common MALD statis-
tics employ an analysis of a single locus. Interestingly, the development steps
presented in Section 2 imply that non-pooled MALD methods can also benefit
from a multi-marker approach by deriving a statistic that evaluates aberration
of inferred ancestries in a region, examining a range of marker locations rather
than a single marker location at a time.

The goal of this work has been to alleviate the considerable cost of mapping.
As the results indicate, a high power of 70% can be achieved for a disease with
ethnicity prevalence differences comparable with end-stage kidney disease by
pooling 1300 affected individuals, yielding a 25-fold reduction in genotyping
in comparison to previous non-pooled MALD methods. We showed that AAA
can be used by gene mapping groups as an economical, practical and powerful
approach for the initial localization of regions containing disease genes.
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Appendix

Table 2. The 95th percentile of LOD scores using pools of 500, 1000 and 2000 simulated
controls analyzed using a window of 2, 3 and 4 markers under the false assumption
of ERR between 1.3 and 1.8. All tested configurations exhibit a score lower than 3.3
in the 95th percentile. The simulations demonstrate that in most cases an increase in
either sample size or in the size of the sliding window results in a reduction of the
threshold.

2 Markers Window 3 Markers Window 4 Markers Window

Sample Size 1.3 1.5 1.8 1.3 1.5 1.8 1.3 1.5 1.8

500 2.8 3.28 3.12 2.83 3.28 2.99 2.84 3.26 2.72
1000 3.29 3.14 1.72 3.3 2.89 0.78 3.28 2.75 0.26
2000 3.28 1.56 -1.78 3.06 0.65 -4.4 2.93 0.05 -6.39

Fig. 4. The analysis of 600 prostate cancer cases using AAA and a 4 markers win-
dow. (a) The significant peak of 7.2 LOD is evident in close proximity to a validated
prostate cancer risk locus at 129 Mb (marked by a triangle) that was previously dis-
covered through a linkage scan by Amundadottir et al. [20] and later reported by
Freedman et al. [3] using admixture mapping. Two additional significant signals are
evident on chromosome 5 and 9. (b) Only the validated locus passes the LOO filter
with a significant LOD of 5.88.
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