
Density-Based Indexing for Approximate Nearest-Neighbor Queries

Kristin P. Bennett Usama Fayyad Dan Geiger
Rensselaer Polytechnic Inst. Microsoft Research Computer Science, Technion

and Microsoft Research One Microsoft Way and Microsoft Research
bennek@rpi.edu Redmond, WA 98052 dang@cs.technion.ac.il

fayyad@microsoft .com

Abstract
We consider the problem of performing Nearest-neighbor
queries efficiently over large high-dimensional databases. To
avoid a full database scan, we target constructing a multi-
dimensional index structure. It is well-accepted that tradi-
tional database indexing algorithms fail for high-dimensional
data (say d > 10 or 20 depending on the scheme). Some ar-
guments have advocated that nearest-neighbor queries do
not even make sense for high-dimensional data. We show
that these arguments are based on over-restrictive assump-
tions, and that in the general case it is meaningful and possi-
ble to build an index for such queries. Our approach, called
DBIN, scales to high-dimensional databases by exploiting
statistical properties of the data. The approach is based on
statistically modeling the density of the content of the data
table. DBIN uses the density model to derive a single index
over the data table and requires physically rewriting data in
a new table sorted by the newly created index (i.e. create a
clustered-index). The indexing scheme produces a mapping
between a query point (a data record) and an ordering on
the clustered index values. Data is then scanned according
to the index. We present theoretical and empirical justifi-
cation for DBIN. The scheme supports a family of distance
functions which includes the traditional Euclidean distance
measure.

1 Introduction

Nearest-neighbor queries (NN), also known as similarity
queries [19], are an important class of queries in data
mining applications. The basic problem is: given a data
table of records, find the nearest (most similar) records
to a given query record. Specifically, given a data record
represented as a d-dimensional vector of values q, and
a data set D, determine a record x E D such that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed Ibr profit or commercial advantage and that
copies hear this notice and the full citation on the first page. TO copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
KDD-99 San Diego CA USA
Copyright ACM 1999 l-581 13-143-7/99/08...$5.00

Dist(z,q) = (z - q)TS(x - q) is minimized. S is a
positive semi-definite matrix. If the distance measure is
the Euclidean distance or 2-norm, then S is the identity
matrix. This definition can be generalized to retrieving
the k nearest records.

The many applications of NN queries include: predic-
tive modeling, product catalog navigation (find similar
products based on a long list of specifications), fraud de-
tection, customer support, problem diagnosis, and man-
agement of knowledge bases. NN queries also provide a
more flexible means for querying databases by support-
ing a “find similar” capability useful in text or image
databases, e.g., finding similar documents based on long
vectors of keyword counts, or retrieving an image from a
large database of images based on a query image. Even
if comparisons are not done on a per-pixel basis, typi-
cally feature extraction over an image or document will
result in many features and a dimensionality in the tens
or hundreds. With the growth of Data Warehousing,
NN queries are also useful for flexible querying as well
as data cleaning applications (e.g. matching records for
merge-purge, or retrieving partial matches).

Defining efficient methods for indexing very large
databases to support NN queries remains an unsolved
problem despite a large literature on the topic. The
obvious approach to finding the NN is to scan the
data and compute the distance between every record in
the database and the query record - an unacceptable
solution in massive databases. Indexing schemes
developed in the database literature focused primarily
on efficient data structures for retrieving matches from
disk. Many studies have found that the traditional
indexing methods frequently fail to be useful if the
dimensionality of the data is high [16, 1, 5, 4, 3, 20,
14, 181. There is increasing interests in avoiding this
“curse of dimensionality” by performing approximate
NN queries [13]. In data mining applications, the
NN distance metric is a mathematical approximation
of a user-defined similarity criterion which is often
vague. Thus, improving performance by providing good

233

Figure 1: Overview of derivation of index structure

approximate NN estimates is an appropriate tradeoff.
In this work we introduce a probability density based

indexing (DBIN) method for calculating probabilistic
or p-approximate NN queries (p-NN). A point s
is a p-NN of q if with probability greater than 1 - p,
s is a NN of q. Note that p-NN differs from the
prior c-approximate NN (e-NN) [13]. A point s is
the E-NN of q if for all z E D, dist(s,q) 5 (1 +
E)diSt(z, q). We assume the data table is modeled
as a probability density function (pdf) consisting of a
mixture of components (e.g. Gaussians). The offline
component of DBIN estimates this pdf and uses it to
construct a clustered index of the data. At query time
this pdf is used to prioritize and terminate the search
for the NN.

In the offline phase described in Section 3 and
illustrated in Figure 1, the estimated pdf is calculated
using scalable clustering algorithms [8, 71. Each
cluster corresponds to a Gaussian. Using the pdf, we
produce a global ordering on the data records that
maximizes proximity of records that are “near” each
other according to a family of distance measures. The
resulting data clusters are used to decide the ordering of
the records in the table. Essentially the records need to
be sorted by their cluster ID and the table materialized.
This table will be scanned via a clustered index for the
purposes of finding NN.

Section 4 describes the query process. The query
point is mapped to relevant values of the index column.
The estimated pdf is used to prioritize search by
producing an ordering by which the data pages should
be scanned. As data is scanned, the statistical model
is used to calculate the probability that the current
NN or Ic-NN estimate is correct. When this estimated
probability attains some threshold, the scan is stopped.
It is important to note that at query time we require
one additional query lookup stage to determine the
cluster to be scanned next. The lookup consists of
using the model to determine which cluster to scan
next for the given query item. The clustered index is
then used to scan the members of that cluster. In a file
system implementation we simply write all members of

a cluster in a separate file. This provides a simple means
of scanning the file containing all the data items that
belong to the cluster under consideration.

The basic intuition behind the method is that clus-
ters exist in real data and that there is a strong corre-
spondence between cluster membership and proximity
according to the distance measure. In this paper we
develop a theory and empirical evidence to justify this
intuition. Much of the existing database literature has
analyzed the NN problem under assumptions that data
is identical and independently distributed (iid) in each
dimension. Under these assumptions Beyer et al. [6]
showed that NN queries in high dimensions are asymp-
totically meaningless-the ratio of the nearest-neighbor
and the farthest-neighbor distance approaches one as
the dimensionality increases. So, for example, if data
is drawn from a single Gaussian in high dimensions,
then all the points are roughly the same distance apart.
Herein we extend their results to show that for clus-
tered data generated from a mixture model of well-
separated Gaussians, NN is meaningful. In addition,
efficient p-NN indexing methods exist based on clus-
tering the data and modeling the contents statistically.
We derive stability conditions under which DBIN (our
indexing method) will perform optimally. Our com-
putational results in Section 6, show that when these
stability conditions are violated the performance of the
method degrades slowly and is still more efficient than
a full scan. The statistical model we utilize also allows
us to detect when our indexing structure is unlikely to
be useful. Hence an optimizer may use this informa-
tion to decide the tradeoff between a sequential scan
and using the index structure. The result is an efficient
technique for indexing databases for multi-dimensional
p-NN queries for a general family of distance functions
that includes the most commonly used ones.

2 Related Indexing Met hods

Much of the existing work on L-NN queries use tree-
based indexing. Some strategy is used to group
the data by proximity. Each group is characterized
by some bounding object and the bounding objects
are organized in a tree structure to support efficient
querying. For example Vornoi-based indexing and X-
trees use bounding boxes [5, 41, SS-Trees use bounding
hyperspheres [20]. Consequently, points or regions of
the data space can be eliminated as possible candidate
NN. Most methods work well in low dimensions but
exhibit poor behavior in high-dimensions [13]. A
common strategy is to map the data into a lower-
dimensional space and perform the NN search in that
space [lo]. Some hope has been expressed for avoiding
the “curse of dimensionality” by using approximate NN

234

queries [13]. Locality-Sensitive Hashing [12] provides
a general scheme for mapping data into a lower-
dimensional space and finding NN in the reduced space
that are approximate c-NN in the original space. DBIN
also finds approximate NN but in a probabilistic sense.

Why are approximations needed? Bounding objects
do not effectively constrain search in high-dimensional
spaces. For exact NN queries, if the estimated query
ball intersects the bounded regions, that region must
be investigated. Unfortunately, as the dimensionality
grows, the intersected area grows dramatically. Con-
sider this simple example. Suppose a cluster of data
is in a d-dimensional sphere of radius r inscribed in a
minimum bounding box. The ratio of the volume of the
inscribed sphere to the volume of the minimum bound-
ing box converges rapidly to 0 as d goes to infinity’.
When d is large, most of the box volume is in the cor-
ners (i.e. outside the ball) which contain no data. A
NN query will intersect most data pages, causing them
to be scanned needlessly. Increase in overlap with di-
mensionality is a manifestation of this phenomena [5].
In contrast our probabilistic approximate NN identifies
data partitions most likely to contain relevant data and
avoids regions unlikely to contain relevant points.

3 Preparing the Index: Offline Phase

Step 1 (Estimating Density): The first step in
the offline preprocessing phase is estimating the density
of the data. By density we mean a joint probability
density function f governing the distribution of data
values. We chose to model the data using a mixture
of Gaussians. Hence the pdf has the form: f(z) =
x2, piG(z]pi, Ci) where G(z]pi, Xi) is a Gaussian pdf
parameterized with a mean vector pi and a covariance
matrix C 2. There are several desirable properties of the
Gaussian mixture model for this problem including:

1. Expressive power: any distribution can be repre-
sented as a mixture of Gaussians [17].

2. Computational efficiency: using our existing scal-
able approaches to estimate the density in this
form [8].

3. Suitability to distance measure. We can exploit this
form to help construct index structures for a large
family of distance functions.

4. Ability to analyze the model, study its properties,
and convenience of its use to compute probabilities
of regions and events of interest.

‘Specifically,

‘Recall that a given Gaussian G with dimension d, mean
vector p and covariance matrix C is given by the standard form:

G(+C) = m Aexp (-i(z - ,u)~C-~(Z - Jo)).

There are many ways to find a mixture-of-Gaussians
pdf that fits data. We use data clustering (a.k.a.
segmentation) algorithms as an efficient means of
obtaining the statistical model [8]. In clustering,
the input is a number of clusters, an initial guess
at where the clusters are centered, and what their
initial parameters (means and covariances) are. The
initial guess is typically some random setting unless one
has prior knowledge of the data. We use a scalable
EM algorithm [8] that was developed to cluster large
databases using a mixture-of-Gauss&s pdf model. The
actual algorithm is discussed in detail in [8] and can
build models over large databases in a single scan.
In this paper we assume that the clustering model is
given as an input. We focus on its use to derive a
multidimensional index.
Step 2 (Determine Clusters): The model consist-
ing of a mixture of K Gaussians determined by scalable
EM [8] is used to precompute the index structure based
on cluster membership. Membership of a data point
z E D in a cluster Cj E {Cl, . . . , CK} is determined to
be the cluster with highest probability:

Pr(z]Cj) = Gbh, Cj)

C:, G(4~ui, W

where G(zJpi, Ci) is the Gaussian representing cluster
Ci. The optimal Bayes decision rule for a mixture-of-
Gaussians pdf [9, Chapter 21 is as follows: a data point z
is assigned to cluster Cl if i = I maximizes the quantity

si = -;(s-Wmz-pi)- ;loglci(+logpi. (1)

This decision rule maximizes the probability that z
is generated by the .th 2 Gaussian distribution (cluster
Ci) and in that sense it is an optimal decision. This
decision rule defines a set of K regions RI, . . . , RK in
high-dimensional Euclidean space where Ri contains the
set of points assigned to cluster Ci. We define R(s)
to be the region-identification function; that is, each
data point z belongs to region R(z) where R(z) is one
of the K regions RI,. . . , RK. An in-memory directory
structure consisting of the means, variances and weights
of the K Gaussians is required to determine R(z).
Step 3 (Materialize Sorted Data Table): The
next step is to materialize the table on disk sorted by
cluster membership. If this new table is to be used
within a database, then we assume a clustered index
will be created on the new column. Alternatively, data
from each cluster can be written in a separate file if the
scheme is to be used with a file system (no DBMS). The
primary distinguishing characteristic of DBIN is its use
of a model of the density to reorganize the data. Most
other indexing schemes, due to efficiency considerations,

235

Figure 2: Stable Query Example

define regions by examining one dimension at a time.
Projections to a single dimension can cause confusion
when the data is high-dimensional. In contrast,
clustering works on all dimensions simultaneously.

4 The Query Algorithm and Its
Probabilistic Analysis

The second component of DBIN is activated at query
time. It finds with high probability a NN of a query
point q, denoted by n(q). The probability model is used
to prioritize the order of clusters to be scanned and to
terminate search once the NN has been estimated with
high probability. For its description we use the notation
B(q,r) to denote the query ball, a sphere centered on
q and having radius r. We also denote by E the set of
regions scanned so far, and by e the knowledge learned
by scanning the regions in E. A NN of q is then found
as follows.
NearestNeighbor (q ; RI,. . . , RK, f)

Let Cj be the cluster assigned to q using the optimal
Bayes decision rule (Equation 1);
Scan data in Rj and determine nearest neighbor n(q)
in Rj and its distance T from q;
Set E = {Rj};
While P(B(q,r) is Empty] e) < tolerance

a. Find a cluster Cj not in E which minimizes
P(B(q,r) n Rj is Empty 1 e);

b. Scan the data in Rj; Set E = E U {Rj};
c. If a data point closer to q is found in Rj, let n(q)

be that point,
and set r to be the new minimum distance.

The quantity P(B(q,r) is Empty] e) is the proba-
bility that B(q, r) is empty, given the evidence e col-
lected so far. The evidence consists simply of the list of
points included in the regions scanned so far. Before we
show how to compute this quantity and how to compute
Pr(B(q, T-) fl Ri is Empty] e), we explain the algorithm
using the simple example depicted in Figure 2.

P(xi E B(q,r) I xi E R(G)) =
P(xi E B(q,r)] zi generated by Cj) (3)

where Cj is the cluster assigned to zi using the optimal
Bayes decision rule. The same reasoning as above and
the fact P(z~ E B(q, r) n Rjlxi E Rj) = P(z~ E

B(q,r)lxi E Rj),
P(B(q,r) n Rj is Empty] e)

= [l - P(z~ E B(q,r)] Xi E Rj)lncRj’
w [l - P(xi E B(q,r)] xi generated by Cj)]“(Rj)

(4
In this example, the optimal Bayes decision rule gen- where n(Rj) is the number of points falling in region

erated three regions RI, RS and RB whose boundaries Rjs

are shown, A given query point q is found to reside
in region RI. The algorithm scans RI, a current NN
estimate is found, a current minimum distance r is
determined, and a query ball B(q,r) is formed. The
query ball is shown in the figure. If our algorithm
was deterministic it would be forced to scan Rs and
R3 since they intersect the query ball. Instead the
algorithm determines the probability that the ball is
empty given the fact that region RI has been scanned.
Suppose this probability does not exceed the toler-
ance. The algorithm must now choose between scan-
ning Rz and scanning Rs. A choice should be made
according to the region that maximizes the probabil-
ity to find a NN once that region is scanned, namely,
the algorithm should scan the region that minimizes
P(B(q,r) n Ri is Empty j e). This quantity is hard to
compute and so the algorithm approximates this quan-
tity (using Equation 4 which we develop below). In this
example, region Rz is selected to be scanned. The al-
gorithm now halts because P(B(q,r) is Empty I e) is
sufficiently large once RI and Rz have been scanned.

We compute P(B(q,r) is Empty I e) based on
the assumption that the points are independent and
identically distributed (iid) samples from the estimated
mixture-of-Gaussians pdf f. In other words, we take
f to be the true model that generated the database.
The sensitivity of the algorithm to this assumption must
be tested using real data sets. By the iid assumption,
the probability the ball is empty is the product of the
probabilities that each point does not fall in the ball.
Consequently, we have

P(B(q,r)is empty le) = (2)

where R(zi) is the region of zi and n is the number
of of data points. If R(Q) has been scanned then

PC% 6 B(q,r) I zi E R(zi)) = 0. In general,

PC% E B(q,r) I zi E R(zi)) is not computable.
Fortunately, Theorem 4.1 below shows that we can use
the approximation

236

The remaining task of computing

P(x E B(q,r)] x generated by 4)

has been dealt with in the statistical literature in a
more general setting. This probability can be calculated
numerically using a variety of approaches [15]. In
particular, numerical approaches have been devised to
calculate probabilities of the form P[(x - q)TD(x - q) 5
r2] where x is a data point assumed to be generated by a
multivariate Gaussian distribution G(s]p, C) and D is a
positive semi-definite matrix. When Euclidean distance
is used to measure distances between data points, as
we do herein, D is simply the identity matrix. Since
numerical methods apply to distance functions of the
form d(z, q) = (x - q)TD(x - q) where D is a positive
semi-definite matrix, DBIN can be readily applied to
any distance metric of this form.

The pdf of the random variable (x - q)TD(x - q)
is a x2 distribution when D = I and q = h. It is a
noncentralized x2 when D = I and q # CL. It is a sum of
non-centralized x2 pdfs in the general case of a positive
semi-definite quadratic form. The general method uses
a linear transformation to calculate the cumulative
distribution of a linear combination of chi-squares. We
use the method of Sheil and O’Murcheartaigh [15].

Note that the needed probability is computable for
the general case, but we illustrate the idea of the
computation assuming that C is diagonal and that the
Euclidean distance metric is used (D is the identity
matrix). We start with

(x - #‘D(x - q) = k(xj - qjj2, (5)
j=l

where qj is the j-th component of q, and transform zj
to a standard normal random variable zj.

(Xj - qj)2 = 0; (Cxj - Pj) + CL% - %)I2 = +2(zj + bjj)2

cl; 3

where Sj = (‘jkPj) and pj is the j-th component of p.

NOW (Z - Sj)2 has a noncentral chi-square distribution
with 1 degree of freedom and noncentrality parameter
6;. We denote this as x2 (1, Sj”) . The final result is

P[(x - q)*D(x - q) 5 r2] = P

[

~~$x~(l,s,“) 5 r2
j=l 1

This cumulative distribution function (cdf) can be
expanded into an infinite series. In our implementation
we used, AS 204 [ll], the terms of the series are
calculated until an acceptable bound on the truncation

error is achieved. Other techniques for calculating or
estimating quadratic normal forms have been proposed
[15] and may also be suitable.

The next theorem shows that what we compute with
these known techniques is not very far from what is
desired. Let B be the event “B(q,r) is Empty,” Cl be
the event “x is
generated by Ci ,” and Ri be the event “x E Ri”.

Theorem 4.1 Let the events B, Rx, and Ci be as
defined above. Then, IP(BIR1) - P(BICl)I is bounded

by

p(B”R,“Cl).

Proof. Using the definition of conditional probability
and the triangle inequality, we have

lP(BI&) - W4Cd1
=

’

P(Byp1) I P’Bn$C’)
P[B&yC) P(B&“CI)

= IP(B n Rl*” GN&“)&,

+ P(B)(P(&IR~ n B) - P(RlICl n BNI
= Ip(B%l tic&=&- &j+

W)(P(RllCl “B) - P(GI& ” B))I
= IW ” RI ” C&&j - j&J+

WP’(BnR1 “W(P~ - &])I
sW”fh”Cd[I&-&I+

P~%&BJ - F&clqI] .
cl

The bound gets arbitrarily tight as the sample size
increases because the radius of NN ball converges to
zero as the sample size increases. Also the smaller the
probability the ball intersects the region the better the
bound. The optimal Bayes decision rule minimizes the
differences between P(Ci) and P(Ri) which means that
this bound for a typical pair Ri, Ci is on average as tight
as possible when the optimal Bayes decision rule is used
to cluster

5 Nearest-Neighbor Behavior within
Gaussian Mixtures

Under what conditions should DBIN perform well?
Assuming a mixture of Gaussians, we define stability
conditions that ensure that NN queries are meaningful
and that the NN of a point is in the same cluster as the
point itself. If the NN is always in the same cluster,
then DBIN need only scan one cluster. Note that these
results are asymptotic in the sense that they hold as the
attribute dimensionality increases to infinity.

237

Our results extend those of Beyer et al [6]. They
proved the disturbing result that NN neighbor queries
are meaningless in high dimensions under commonly
used assumptions pertaining to data distributions. The
concern raised in their work is that the ratio of nearest
and farthest neighbor distance converges in probability
to 1 as the dimensionality increases. We show that
under reasonable assumptions this negative result is not
applicable. We first present the notation and results in

PI.

Definition 5.1 (Notation)
d is dimensionality of a Euclidean space.
n is.number of samples taken.
F1,i, F2,i,. . ., i = 1,. . . , n are sequences of data
distributions.

&1,&z,... is a sequence of query distributions.

For any 4 xd,l, xd,2,. . . , X&n are n independent data
points per d such that xd,i is generated from Fd,i.
qd is a query point generated from Qd.
We use the squared Euclidean distance]]&j,i - Qd]12,
however, our results generalize to other distance mea-
sures as well.
DMINd = mini{llXd,i - qd112 1 1 5 i 5 n}.
DMA& = maxi{]] xd,i - qd112 1 1 5 i 5 n}.

Theorem 5.1 (Meaningless NN Queries [S]) ,%X&i
and Qd be random variables with pdf Fd,i and Qd, respec-
tively. If

?Jar(lbd,i - qd112)

dt’% E[llxd,i - qdl12]2 = ”
(6)

then for every E > 0,
limd+, P[DMA& 5 (1 + c)DMINd] = 1.

In a mixture of Gaussian distributions, each data
point or query is generated by a single Gaussian
distribution. We can think of a random set of points
generated by such a mixture model as being clustered
by the Gaussian distribution that generated them.
Theorem 5.1 applies in particular to data generated
by a single Gaussian distribution and so it shows
that the distance between arbitrary two points in the
same cluster approach the mean within cluster distance
as the dimensionality d increases. We say that the
within cluster distance is unstable because roughly
every point in a cluster is the same distance apart.
Specifically,

Figure 3: Unstable Query Example
I

Similarly, the distance between any two points from two
distinct clusters approaches the mean between cluster
distance.

Corollary 5.2 (Between Cluster Dist. Converge) Lc
zd,i, xd,j, and qd be random variables with pdf Fd,i, Fdj,
and Qd, respectively. If

and

v4llXd,j - 4dl12)
)%I E(llxd,i - qdl12)2 = ’

E(lh,j - !?dl12) = A
d%% E(IIxd,i - qdl12) ’

then .w ---So A.

If for two clusters, the between cluster distance
dominates the within cluster distance, we say the
clusters are stable with respect to each other. In
Figure 3, Clusters 1 and 2 are stable and Clusters 2
and 3 are not stable.

Definition 5.2 (Pairwise Stability) Let x&i,
xd,j, and qd be random variables with pdf F&i, Fd,j,

and &d, respectively. If .s -sp 1 and
bd ‘--9dl12 em jP A > 1, then Clusters i and j are

pairwise stable with parameter A.

Theorem 5.2 (Stable Cluster Distances) If
Clusters i and j are pairwise stable with parameter A,
then for any E > 0,

lim p(llzd,j - Qd/i2 2 (A - f)bd,i - 4dii2) = 1
d-too

PrOOf. Let pd = E(IIXd,i - qdl12).
Let vd = bd,;;qdl? and let wd = bd,;-dqdl12. We

know vd -+P 1 and wd +P A. Thus m =

E -Jo A. By definition o f convergence

Corollary 5.1 (Within Cluster Dist. Converge) If lim&.+
0,

238

implies limd,, p(ibd,j - qdij2 > (A - ~)bd,i - qdii2) =

1. Cl

If every cluster is stable with respect to at least one
other cluster then NN is well defined in the sense that
the nearest and farthest neighbor distances are bounded
apart. With probability 1 as d grows, the ratio of the
farthest and NN is bigger than some constant greater
than 1. For example in Figure 3, Cluster 1 is stable with
respect to both Clusters 2 and 3 so NN is well defined.

Theorem 5.3 (NN Well-Defined) If Cluster i and
Cluster j are pairwise stable with parameter A, then
for any 6 > 0,
limd+, P[DMA& 2 (A - E)DMINd] = 1

Proof. By conditions of the theorem

&$f&$& +p 1 and -+pA.
By definition of minimum and m:ximum

that for any c > 0, lim,,, P[/~~;~I~$ 2 A - E] = 1.
From the last two statements,

bd ‘--Qdi?
limd+rnP[~~f~; 2 e 2 A - 4 = 1. 0

If every cluster is stable with respect to every other
cluster then if a point belongs to one cluster, its NN
also belongs to that cluster. Therefore if we partition
our data by cluster membership then with probability 1,
as d grows, our index will only need to visit one cluster
to find the NN. With probability one, other clusters can
be skipped with no false drops of points.

Theorem 5.4 (Nearest Neighbor in Cluster) If CZu
ter i is pairwise stable with every Cluster j, j =
1 . . 7 n, j # i, with parameter Aij > A > 1 respec-
tzkely, then for any point zd,j from cluster j # i, and
any E > 0,
limd+co p[jlzd,j - qd112 > (A - e)llxd,i - qd112] = 1.

Proof. By Theorem 5.2 for every zd,j j # i and every
E > 0,
1imd-m p[llxd,j - qdj12 > (& - E)llxd,i - qd112] = 1.

Since Ai,j > A, the result follows. 0
These results show that if we have a stable mixture

of Gaussians where the between cluster distance domi-
nates the within cluster distance, then if we partition by
a cluster membership function that assigns all data gen-
erated by the same Gaussian to the same partition, the
index would work perfectly for NN queries generated by
the same distribution. The higher the dimensionality,
the better it would work. There is no “curse of dimen-
sionality” in this case. For example in [2], it was shown

that clusters generated by a mixture of spherical Gaus-
sian with identical covariance matrices C such that the
Mahalanobis distance between the cluster centers grows
at least as fast as & then the clusters are stable.

Note that we actually do not know which Gaussian
generates a data point. But, as discussed in Section
4, we can use the optimal Bayes decision rule [9] to
estimate the Gaussian that generated a point with
minimum error. Figure 2 illustrates stable clusters and
the corresponding partitioning of the data space into
regions.

6 Computational Results

Our initial experimental goals were to confirm the
validity of the theoretical results, to determine the
accuracy of the probability estimates, and to establish
that DBIN would be practical on real-world data
with unknown distribution. We assumed that if a
cluster is visited that the entire cluster is scanned.
We did not address paging of data within a cluster.
We experimented with both synthetic and real-world
databases. The purpose of synthetic databases is
to study the behavior of DBIN in well-understood
situations. The experiments on the real data sets verify
that our assumptions are not too restrictive and apply
in natural situations.

6.1 Synthetic Databases

First we verified the stability theory introduced in
Section 5 by applying DBIN to both stable and unstable
mixtures of Gaussian data. We used synthetic data
sets drawn from a mixture of ten Gaussians. First,
we used stable clusters with a known generating model,

,s- then unstable clusters with a known generating model,
and finally, stable clusters with an unknown generating
model, i.e. a situation in which we had to estimate the
density (and do the clustering).
Stable Case, Known Probability Density: We
generated a mixture of ten Gaussians in d dimensions
with distance rd between the means of the distribution.
Each Gaussian had covariance matrix u2 I where I is the
identity matrix and (T 2 = .Ol. As discussed in Section 5
and [2], if rd > aa, the clusters are stable. In order to
fix the distance between the means to be rd apart, we
set the ith mean pi = mei where ei is a vector of
zeros with a one in the ith component. The size of the
database was fixed and we generated 500000/d points
for d < 100 dimensions and 1000000/d for d 2 100.
DBIN was used to find the 2 NN for 250 query points
randomly selected from the database. To remove any
variation due to inaccuracies in clustering, we first used
the true generating density as input to DBIN. Hence,
this represents an extreme for a best-case scenario.

239

IO 20 30 40 50 60 70

Dimensionality

Figure 4: Fraction scanned: unstable case rd = 21s.

The stable case, with rd = ad was evaluated on 10,
20, 30, 40, 50, 60, 70, 100, 200, and 500 dimensions.
In every case the 2 NN were found by examining only
one cluster. In addition DBIN correctly determined
that no additional clusters needed to be searched.
Since each cluster contained ten percent of the data,
each query required a scan of ten percent of the
data. Similar experiments for 10 NN produced the
same conclusion. In the best of worlds when the
clusters are stable and the model is known, DBIN works
perfectly. As the theory in Section 5 predicted, the
curse of dimensionality vanishes when the distributions
are stable.
Unstable Case, Known Probability Density For
unstable data, we fixed 7d = 2g. With this distribution,
any problem with dimensionality over 4 is unstable.
The amount of overlap of the Gaussians is growing
exponentially with d. This is a worst-case scenario
as there is no separation between the clusters and the
asymptotic stability theory does not apply.

To evaluate how well DBIN estimated when to stop
scanning, we compared it with the Ideal approach that
scans the clusters in the prioritized order predicted by
DBIN and stops scanning additional clusters once the
NN is found. DBIN stops scanning when the NN is
found with high confidence. Since this case is very
unstable, we would expect any algorithm to require
a scan of much of the database. The percentages
of data scanned by a full scan, DBIN, and the Ideal
approach are given in Figure 4. Table 1 provides the
percentage accuracy of DBIN on this unstable data.
An estimate is considered correct if the estimated k-
nearest neighbor distance does not exceed the actual
k-NN distance. The percentage of the data scanned
increased gradually with dimensionality. The Ideal
algorithm scanned less data. This difference between
the Ideal algorithm and DBIN indicates that the DBIN
probability estimate is conservative. In many cases
DBIN slightly overestimates the probability of a NN
residing in a cluster so there may be an opportunity for
tightening the probability estimate used.

Dim.] 10 1 20 1 30 1 40 1 50 1 60 1 70
Act. (98.8 1 96.4 1 93.6 1 93.2 1 94.8 1 96.4 1 92.4

Table 1: Percentage accuracy of DBIN on unstable data

100 5” 40 2” 1”

Figure 5: Scan fraction: unknown stable model.

Random Stable Clusters, Unknown Probability
Density, Varying K: In the next set of experiments
we applied the full DBIN approach to generated data.
We utilized some data and corresponding clusters
generated originally for [8]. The data were generated
from 10 Gaussians with means independently and
identically distributed in each dimension from a uniform
distribution on [-5,5]. Each diagonal element of
covariance matrices was generated from a uniform
distribution on [0.7,1.5]. Hence this data is well-
separated and should be stable, but is not at an
extreme of stability. We used clusters generated by the
EM algorithm without using knowledge of the known
distribution except the number of clusters. Results on
problems with 10 to 100 dimensions, with K (number
of nearest neighbors to find) varying from 2 to 50, are
given in Figure 5. Note that DBIN made no errors at
all in finding the nearest neighbors for all values of K.
Hence there is no point in plotting those results.

It turns out this distribution is stable in practice.
This is no surprise since in high dimensions the distance
between the uniformly generated means approaches the
expected value which is proportional to &. The 20-
dimensional result is an artifact of the fact that our EM
clustering algorithm happened to find a non-optimal
solution. hence more than 1 cluster is scanned on
average. Note that because we limited ourselves to
10 clusters, 0.1 is the minimum possible scan fraction
here. hence we are near the optimal. Larger number of
clusters will result in less data scanning.

6.2 Real Database Results

We experimented on real-world datasets. Overall the
results are promising, but we found some additional

240

K 2 5 10 50
Accuracy 99.0% 100% 100% 97.1%
Fraction Scanned 12.5% 13.9% 14.2% 16.6%

Table 2: Accuracy and Fraction Scanned Results for
11-dimensional Census Data

K 1 2 1 5 1 10 1 50
Accuracy (94.7% 1 90.0% 1 85.0% 1 78.6%
Disc. Accuracy 1 97.3% 1 96.4% 1 95.6% 1 95.2%
Fraction Scanned I 16.8% I 17.2% I 17.4% I 17.8%

Table 3: Accuracy and Fraction Scanned Results for
29-dimensional Astronomy Data

issues to resolve. In the current implementation of
DBIN, we did not address categorical data fields. Some
numerical stability problems occur with sparse datasets
that result in zero variance clusters. The algorithm
still performed as we expected. We need to extend the
theory to the case where data is not truly continuous.
Since our primary goal in this paper is to introduce
the basic idea, and demonstrate that it is possible to
index higher dimensional data, the results presented
here are not optimized (i.e. we did not build the best
possible clustering model). Nor did we optimize the
algorithm to gracefully deal with small variances or
discrete data masquerading as continuous values. The
goal is to demonstrate that in principle we can derive
useful indexing information from statistical structure.
All results are averaged over 1000 query points drawn
randomly from the data.
U.S. Census Data: publicly available U.S. Census
Bureau data set consisting of 300K records, and we
selected the 11 dimensions that appeared to be numeric.
These were fields such as ages, incomes, taxes, etc.
Table 2 shows the results for varying K. The model
we constructed had 100 clusters, so in principle the
minimum possible scan fraction is around 0.01.
Astronomy Data: This data set consists of 650K
records of measurements on sky objects. For each object
there are 29 measurements and we clustered the data
into 10 clusters. Again, this was by no means an
optimized clustering, and a larger number of clusters
would imply a lower possible minimum fraction of data
to scan. Results are shown in Table 3.

Here we introduce the notion of Discounted Accuracy.
Our accuracy measure counts a full error if for K=50, we
found 49 out of 50 true nearest neighbors. Discounted
accuracy gives an error of & in this case and gives more
insight into what is happening.

Investor Data Sets: The last data set we evaluated
is derived from a financial database consisting on
historical stock prices, market valuations and so forth.
In all, we used 34 dimensions. The data consisted of
834K records. We tried two experiments, one with 20
clusters and one with 47 clusters. Again these clusters
were not optimized. The results for K=2 gave an
error of 0.01 with 45% of the data scanned in case of
20 clusters. With 47 clusters the accuracy was 100%
with 42% of the data scanned. As we increased K,
performance deteriorated quickly. This, we believe is
due to problems in fitting a model to data. We need
to optimize the model. Also, numerical instability and
the problem of zero variances showed up in spades in
this data set. However, the results at least show than
in principle the structure is useful (i.e. we did not have
to scan 100% of the data).

7 Conclusions and Future Work

In the discussion so far, we have not addressed the
issue of determining the number of clusters required.
From the perspective of indexing, the more clusters
we have, the less data we are likely to have to scan.
However, recall that determining which cluster to scan
next requires a lookup into a table of clusters. If
there are too many clusters, this lookup becomes too
expensive. Consider the extreme case where each point
in the database is its own cluster. In this case, each
cluster identifies the result directly but the lookup into
the cluster table is as expensive as scanning the entire
database.

Generally, we use a small number of clusters (5
to 100). The cost of computing probabilities from
the model in this case is fairly negligible. Note that
with 5 clusters, assuming well-separated clusters, we
can expect an 80% savings in scan cost. So not
many clusters are needed. There are also clustering
algorithms that choose K as part of the clustering
session. In this case, we let the algorithm choose the
most appropriate K to fit the data, so long as K does
not get too large. The trade-off between cluster lookup
cost and data scan cost can be optimized on a per
application basis.

We presented DBIN, a scheme that exploits structure
in data to derive a multi-dimensional index for NN
queries. We also developed a probabilistic theory to
support the method. We analyzed the NN query
problem under the assumption that data is modeled
by a mixture of Gaussians. We defined the notion of
cluster stability which gives us the means to assess if a
data set is amenable to our method. We derived two key
results. The first is that nearest neighbor queries can
be meaningful in high dimensions. The second is that

241

it is possible to exploit the statistical structure of the
data to construct a multi-dimensional indexing scheme.
We derived a criterion for estimating the likelihood of
payoff of scanning further, enabling a stopping criterion.
The result is a new indexing algorithm based on density
estimation. It provides a confidence level in the answer
found so far. Because it is based on modeling the
data content, DBIN provides sufficient information
regarding the suitability of its indexing scheme to a
given database. This can enable an optimizer to decide
whether to invoke DBIN’s indexing structure or opt for
the sequential scan when appropriate.

We showed empirically that the proposed algorithm
works when the data is stable. We used synthetic data
to verify this and to study behavior when data is dra-
matically unstable. We also demonstrated for several
real-world databases that real data is not uniformly dis-
tributed or concentrated in a single cluster. Our method
showed significant improvement over a sequential scan.

DBIN has many properties that are desirable from a
data mining perspective. It is an anytime algotithm: it
can provide the “best answer so far” whenever queried.
The user can then stop the scan if the answer is
satisfactory. It also provides a confidence level on the
answer found so far. It can provide accurate estimates
of how much work is left, allowing the user application
to perform a cost-benefit analysis. It can utilize much of
the existing SQL backend assuming clustered indices are
supported. It leverages new work on scalable clustering
techniques. Finally, we have found empirically that a
full data scan is almost always avoided.

The results indicate that visiting data in order of
nearest clusters first is sound. In fact, we have found
that in many of the instances when our stopping
criterion does not cause us to stop after the first cluster,
the actual NN turned out to be in the first scanned
cluster after all. This suggests that it is possible to
derive improved bounds for stopping earlier.

Additional steps are needed to make- DBIN into
a practical system. A full comparison with existing
indexing methods is needed to assess the overall
advantages of DBIN and whether performance increases
are due to improved clustering or approximate NN
processing. One challenge associated with DBIN is
that it must sometimes calculate probabilities that are
very close to zero without underflowing. In these cases,
we run into numerical stability issues. Numbers get
small due to high dimensionality and to large numbers
of records. While high-dimensionality is handled by
the theory we develop, in practice we are left with
computing vanishingly small probabilities. A more
robust scheme for computing these is desirable. This
paper validates the basic framework and theory rather
than provide complete details for implementation. We

would like to generalize the theory to models other than
Gaussians. Also, an evaluation of an implementation
tied to a SQL backend that utilizes native indexing
structures would be useful to demonstrate practical
feasibility.

Acknowledgments
This work was done while Kristin Bennett and Dan
Geiger were visiting researchers at Microsoft Research.

References

PI

PI

[31

141

151

161

[71

181

[91

[lOI

1111

N. Beckmann, H.P. Kriegel, R. Schneider, and
B. Seeger. The R* tree: an efficient and robust access
method for points and rectangles. In Proc. of ACM
SIGMOD Int’l Conf. on Management of Data, pages
323-331, 1990.

K. Bennett, U. Fayyad, and D. Geiger. Density based
indexing for nearest-neighbor queries. Technical Report
MSR-TR-98-58, Microsoft Research, Redmond, WA,
1998.

S. Berchtold, D. Keim B. Ertl, and H.-P. Kriegel. Fast
nearest neighbor search in high-dimensional space. In
Proc. 14th Int. Conf. on Data Engineering, Orlando,
Fl, 1998.

S. Berchtold, C. Bohm, and H.-P. Kriegel. The
pyramid-technique: Towards breaking the curse of
dimensionality. In Proc. of ACM SIGMOD, Seattle,
WA, pages 142-153, 1998.

S. Berchtold, D. Keim, and H-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In Proc.
of the 22nd Conf. on Very Large Databases, Bombay,
India, pages 28-39, 1996.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is nearest neighbor meaningful? In Proc. of the
7th Int’l Conf. on Database Theory (ICDT), Jerusalem,
Israel,1999, 1998. To appear.

P. Bradley, U. Fayyad, and C. Reina. Scaling clustering
algorithms to large databases. In Proceedings of Fourth
International Conference on Knowledge Discovery and
Data Mining, pages 9 - 15, 1998.

P. Bradley, U. Fayyad, and C. Reina. Scaling EM (ex-
pectation maximization) clustering to large databases.
Technical Report MSR-TR-98-35, Microsoft Research,
Redmond, WA, USA, 1998.

R.C. Duda and P.E. Hart. Pattern Classification and
Scene Analysis. John Wiley and Sons, New York, 1973.

C. Faloutsos and K.-I Lin. Fastmap: a fast algorithm
for indexing, data-mining and visualization of tradi-
tional and multimedia datasets. In Proceeding of ACM
SIGMOD Int’l Conf. on Management of Data, San
Jose, pages 231-262, 1995.

R. Farebrother. Algorithm as 204: The distribution
of a positive linear combination of chi-square random
variables. Applied Statistics, 32(3):332-337, 1983.

242

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions. Submitted for publication, 1998.

[13] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
STOC’98. Proceedings of the Thirteenth annual ACM
symposium on Theory of computing, pages 604 - 613,
1998.

[14] N. Katayama and S. Satoh. The SR-tree: An
index structure for high-dimensional nearest neighbor
queries. In Proc. of ACM SIGMOD Int’l Conf. on
Management of Data, Tuson, Arizona, 1997.

[15] A. Mathai and S. Provost. Quadratic Forms in Random
Variables. Marcel Dekker, Inc, New York, 1992.

[16] J. T. Robinson. The K-D-B tree: A search structure
for large multidimensional indexes. In Proc. of ACM
SIGMOD Int’l Conf. on Management of Data, Ann
Arbor, MI, pages 10-18, 1981.

[17] D. W. Scott. Density Estimation. Wiley, New York,
1992.

[18] T. Seidl and H.-P. Kriegel. Optimal multi-step k-
nearest neighbor search. In Proc. of ACM SIGMOD,
Seattle, WA, pages 154-165, 1998.

[19] K. Shim, R. Srikant, and R. Agrawal. High-dimensional
similarity joins. In 13th Int’l Conf. on Data Engineer-
ing, 1997.

[20] D. White and R. Jain. Similarity indexing with the
SS-tree. In Proc. of the 12th Int’l Conf. on Data
Engineering, New Orleans, pages 516-523, 1996.

243

