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Abstract 
We consider the problem of performing Nearest-neighbor 
queries efficiently over large high-dimensional databases. To 
avoid a full database scan, we target constructing a multi- 
dimensional index structure. It is well-accepted that tradi- 
tional database indexing algorithms fail for high-dimensional 
data (say d > 10 or 20 depending on the scheme). Some ar- 
guments have advocated that nearest-neighbor queries do 
not even make sense for high-dimensional data. We show 
that these arguments are based on over-restrictive assump- 
tions, and that in the general case it is meaningful and possi- 
ble to build an index for such queries. Our approach, called 
DBIN, scales to high-dimensional databases by exploiting 
statistical properties of the data. The approach is based on 
statistically modeling the density of the content of the data 
table. DBIN uses the density model to derive a single index 
over the data table and requires physically rewriting data in 
a new table sorted by the newly created index (i.e. create a 
clustered-index). The indexing scheme produces a mapping 
between a query point (a data record) and an ordering on 
the clustered index values. Data is then scanned according 
to the index. We present theoretical and empirical justifi- 
cation for DBIN. The scheme supports a family of distance 
functions which includes the traditional Euclidean distance 
measure. 

1 Introduction 

Nearest-neighbor queries (NN), also known as similarity 
queries [19], are an important class of queries in data 
mining applications. The basic problem is: given a data 
table of records, find the nearest (most similar) records 
to a given query record. Specifically, given a data record 
represented as a d-dimensional vector of values q, and 
a data set D, determine a record x E D such that 
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Dist(z,q) = (z - q)TS(x - q) is minimized. S is a 
positive semi-definite matrix. If the distance measure is 
the Euclidean distance or 2-norm, then S is the identity 
matrix. This definition can be generalized to retrieving 
the k nearest records. 

The many applications of NN queries include: predic- 
tive modeling, product catalog navigation (find similar 
products based on a long list of specifications), fraud de- 
tection, customer support, problem diagnosis, and man- 
agement of knowledge bases. NN queries also provide a 
more flexible means for querying databases by support- 
ing a “find similar” capability useful in text or image 
databases, e.g., finding similar documents based on long 
vectors of keyword counts, or retrieving an image from a 
large database of images based on a query image. Even 
if comparisons are not done on a per-pixel basis, typi- 
cally feature extraction over an image or document will 
result in many features and a dimensionality in the tens 
or hundreds. With the growth of Data Warehousing, 
NN queries are also useful for flexible querying as well 
as data cleaning applications (e.g. matching records for 
merge-purge, or retrieving partial matches). 

Defining efficient methods for indexing very large 
databases to support NN queries remains an unsolved 
problem despite a large literature on the topic. The 
obvious approach to finding the NN is to scan the 
data and compute the distance between every record in 
the database and the query record - an unacceptable 
solution in massive databases. Indexing schemes 
developed in the database literature focused primarily 
on efficient data structures for retrieving matches from 
disk. Many studies have found that the traditional 
indexing methods frequently fail to be useful if the 
dimensionality of the data is high [16, 1, 5, 4, 3, 20, 
14, 181. There is increasing interests in avoiding this 
“curse of dimensionality” by performing approximate 
NN queries [13]. In data mining applications, the 
NN distance metric is a mathematical approximation 
of a user-defined similarity criterion which is often 
vague. Thus, improving performance by providing good 
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Figure 1: Overview of derivation of index structure 

approximate NN estimates is an appropriate tradeoff. 
In this work we introduce a probability density based 

indexing (DBIN) method for calculating probabilistic 
or p-approximate NN queries (p-NN). A point s 
is a p-NN of q if with probability greater than 1 - p, 
s is a NN of q. Note that p-NN differs from the 
prior c-approximate NN (e-NN) [13]. A point s is 
the E-NN of q if for all z E D, dist(s,q) 5 (1 + 
E)diSt(z, q). We assume the data table is modeled 
as a probability density function (pdf) consisting of a 
mixture of components (e.g. Gaussians). The offline 
component of DBIN estimates this pdf and uses it to 
construct a clustered index of the data. At query time 
this pdf is used to prioritize and terminate the search 
for the NN. 

In the offline phase described in Section 3 and 
illustrated in Figure 1, the estimated pdf is calculated 
using scalable clustering algorithms [8, 71. Each 
cluster corresponds to a Gaussian. Using the pdf, we 
produce a global ordering on the data records that 
maximizes proximity of records that are “near” each 
other according to a family of distance measures. The 
resulting data clusters are used to decide the ordering of 
the records in the table. Essentially the records need to 
be sorted by their cluster ID and the table materialized. 
This table will be scanned via a clustered index for the 
purposes of finding NN. 

Section 4 describes the query process. The query 
point is mapped to relevant values of the index column. 
The estimated pdf is used to prioritize search by 
producing an ordering by which the data pages should 
be scanned. As data is scanned, the statistical model 
is used to calculate the probability that the current 
NN or Ic-NN estimate is correct. When this estimated 
probability attains some threshold, the scan is stopped. 
It is important to note that at query time we require 
one additional query lookup stage to determine the 
cluster to be scanned next. The lookup consists of 
using the model to determine which cluster to scan 
next for the given query item. The clustered index is 
then used to scan the members of that cluster. In a file 
system implementation we simply write all members of 

a cluster in a separate file. This provides a simple means 
of scanning the file containing all the data items that 
belong to the cluster under consideration. 

The basic intuition behind the method is that clus- 
ters exist in real data and that there is a strong corre- 
spondence between cluster membership and proximity 
according to the distance measure. In this paper we 
develop a theory and empirical evidence to justify this 
intuition. Much of the existing database literature has 
analyzed the NN problem under assumptions that data 
is identical and independently distributed (iid) in each 
dimension. Under these assumptions Beyer et al. [6] 
showed that NN queries in high dimensions are asymp- 
totically meaningless-the ratio of the nearest-neighbor 
and the farthest-neighbor distance approaches one as 
the dimensionality increases. So, for example, if data 
is drawn from a single Gaussian in high dimensions, 
then all the points are roughly the same distance apart. 
Herein we extend their results to show that for clus- 
tered data generated from a mixture model of well- 
separated Gaussians, NN is meaningful. In addition, 
efficient p-NN indexing methods exist based on clus- 
tering the data and modeling the contents statistically. 
We derive stability conditions under which DBIN (our 
indexing method) will perform optimally. Our com- 
putational results in Section 6, show that when these 
stability conditions are violated the performance of the 
method degrades slowly and is still more efficient than 
a full scan. The statistical model we utilize also allows 
us to detect when our indexing structure is unlikely to 
be useful. Hence an optimizer may use this informa- 
tion to decide the tradeoff between a sequential scan 
and using the index structure. The result is an efficient 
technique for indexing databases for multi-dimensional 
p-NN queries for a general family of distance functions 
that includes the most commonly used ones. 

2 Related Indexing Met hods 

Much of the existing work on L-NN queries use tree- 
based indexing. Some strategy is used to group 
the data by proximity. Each group is characterized 
by some bounding object and the bounding objects 
are organized in a tree structure to support efficient 
querying. For example Vornoi-based indexing and X- 
trees use bounding boxes [5, 41, SS-Trees use bounding 
hyperspheres [20]. Consequently, points or regions of 
the data space can be eliminated as possible candidate 
NN. Most methods work well in low dimensions but 
exhibit poor behavior in high-dimensions [13]. A 
common strategy is to map the data into a lower- 
dimensional space and perform the NN search in that 
space [lo]. Some hope has been expressed for avoiding 
the “curse of dimensionality” by using approximate NN 
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queries [13]. Locality-Sensitive Hashing [12] provides 
a general scheme for mapping data into a lower- 
dimensional space and finding NN in the reduced space 
that are approximate c-NN in the original space. DBIN 
also finds approximate NN but in a probabilistic sense. 

Why are approximations needed? Bounding objects 
do not effectively constrain search in high-dimensional 
spaces. For exact NN queries, if the estimated query 
ball intersects the bounded regions, that region must 
be investigated. Unfortunately, as the dimensionality 
grows, the intersected area grows dramatically. Con- 
sider this simple example. Suppose a cluster of data 
is in a d-dimensional sphere of radius r inscribed in a 
minimum bounding box. The ratio of the volume of the 
inscribed sphere to the volume of the minimum bound- 
ing box converges rapidly to 0 as d goes to infinity’. 
When d is large, most of the box volume is in the cor- 
ners (i.e. outside the ball) which contain no data. A 
NN query will intersect most data pages, causing them 
to be scanned needlessly. Increase in overlap with di- 
mensionality is a manifestation of this phenomena [5]. 
In contrast our probabilistic approximate NN identifies 
data partitions most likely to contain relevant data and 
avoids regions unlikely to contain relevant points. 

3 Preparing the Index: Offline Phase 

Step 1 (Estimating Density): The first step in 
the offline preprocessing phase is estimating the density 
of the data. By density we mean a joint probability 
density function f governing the distribution of data 
values. We chose to model the data using a mixture 
of Gaussians. Hence the pdf has the form: f(z) = 
x2, piG(z]pi, Ci) where G(z]pi, Xi) is a Gaussian pdf 
parameterized with a mean vector pi and a covariance 
matrix C 2. There are several desirable properties of the 
Gaussian mixture model for this problem including: 

1. Expressive power: any distribution can be repre- 
sented as a mixture of Gaussians [17]. 

2. Computational efficiency: using our existing scal- 
able approaches to estimate the density in this 
form [8]. 

3. Suitability to distance measure. We can exploit this 
form to help construct index structures for a large 
family of distance functions. 

4. Ability to analyze the model, study its properties, 
and convenience of its use to compute probabilities 
of regions and events of interest. 

‘Specifically, 

‘Recall that a given Gaussian G with dimension d, mean 
vector p and covariance matrix C is given by the standard form: 

G(+C) = m Aexp (-i(z - ,u)~C-~(Z - Jo)). 

There are many ways to find a mixture-of-Gaussians 
pdf that fits data. We use data clustering (a.k.a. 
segmentation) algorithms as an efficient means of 
obtaining the statistical model [8]. In clustering, 
the input is a number of clusters, an initial guess 
at where the clusters are centered, and what their 
initial parameters (means and covariances) are. The 
initial guess is typically some random setting unless one 
has prior knowledge of the data. We use a scalable 
EM algorithm [8] that was developed to cluster large 
databases using a mixture-of-Gauss&s pdf model. The 
actual algorithm is discussed in detail in [8] and can 
build models over large databases in a single scan. 
In this paper we assume that the clustering model is 
given as an input. We focus on its use to derive a 
multidimensional index. 
Step 2 (Determine Clusters): The model consist- 
ing of a mixture of K Gaussians determined by scalable 
EM [8] is used to precompute the index structure based 
on cluster membership. Membership of a data point 
z E D in a cluster Cj E {Cl, . . . , CK} is determined to 
be the cluster with highest probability: 

Pr(z]Cj) = Gbh, Cj) 

C:, G(4~ui, W 

where G(zJpi, Ci) is the Gaussian representing cluster 
Ci. The optimal Bayes decision rule for a mixture-of- 
Gaussians pdf [9, Chapter 21 is as follows: a data point z 
is assigned to cluster Cl if i = I maximizes the quantity 

si = -;(s-Wmz-pi)- ;loglci(+logpi. (1) 

This decision rule maximizes the probability that z 
is generated by the .th 2 Gaussian distribution (cluster 
Ci) and in that sense it is an optimal decision. This 
decision rule defines a set of K regions RI, . . . , RK in 
high-dimensional Euclidean space where Ri contains the 
set of points assigned to cluster Ci. We define R(s) 
to be the region-identification function; that is, each 
data point z belongs to region R(z) where R(z) is one 
of the K regions RI,. . . , RK. An in-memory directory 
structure consisting of the means, variances and weights 
of the K Gaussians is required to determine R(z). 
Step 3 (Materialize Sorted Data Table): The 
next step is to materialize the table on disk sorted by 
cluster membership. If this new table is to be used 
within a database, then we assume a clustered index 
will be created on the new column. Alternatively, data 
from each cluster can be written in a separate file if the 
scheme is to be used with a file system (no DBMS). The 
primary distinguishing characteristic of DBIN is its use 
of a model of the density to reorganize the data. Most 
other indexing schemes, due to efficiency considerations, 
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Figure 2: Stable Query Example 

define regions by examining one dimension at a time. 
Projections to a single dimension can cause confusion 
when the data is high-dimensional. In contrast, 
clustering works on all dimensions simultaneously. 

4 The Query Algorithm and Its 
Probabilistic Analysis 

The second component of DBIN is activated at query 
time. It finds with high probability a NN of a query 
point q, denoted by n(q). The probability model is used 
to prioritize the order of clusters to be scanned and to 
terminate search once the NN has been estimated with 
high probability. For its description we use the notation 
B(q,r) to denote the query ball, a sphere centered on 
q and having radius r. We also denote by E the set of 
regions scanned so far, and by e the knowledge learned 
by scanning the regions in E. A NN of q is then found 
as follows. 
NearestNeighbor (q ; RI,. . . , RK, f) 

Let Cj be the cluster assigned to q using the optimal 
Bayes decision rule (Equation 1); 
Scan data in Rj and determine nearest neighbor n(q) 
in Rj and its distance T from q; 
Set E = {Rj}; 
While P(B(q,r) is Empty ] e) < tolerance 

a. Find a cluster Cj not in E which minimizes 
P(B(q,r) n Rj is Empty 1 e); 

b. Scan the data in Rj; Set E = E U {Rj}; 
c. If a data point closer to q is found in Rj, let n(q) 

be that point, 
and set r to be the new minimum distance. 

The quantity P(B(q,r) is Empty ] e) is the proba- 
bility that B(q, r) is empty, given the evidence e col- 
lected so far. The evidence consists simply of the list of 
points included in the regions scanned so far. Before we 
show how to compute this quantity and how to compute 
Pr(B(q, T-) fl Ri is Empty ] e), we explain the algorithm 
using the simple example depicted in Figure 2. 

P(xi E B(q,r) I xi E R(G)) = 
P(xi E B(q,r) ] zi generated by Cj) (3) 

where Cj is the cluster assigned to zi using the optimal 
Bayes decision rule. The same reasoning as above and 
the fact P(z~ E B(q, r) n Rjlxi E Rj) = P(z~ E 

B(q,r)lxi E Rj), 
P(B(q,r) n Rj is Empty ] e) 

= [l - P(z~ E B(q,r) ] Xi E Rj)lncRj’ 
w [l - P(xi E B(q,r) ] xi generated by Cj)]“(Rj) 

(4 
In this example, the optimal Bayes decision rule gen- where n(Rj) is the number of points falling in region 

erated three regions RI, RS and RB whose boundaries Rjs 

are shown, A given query point q is found to reside 
in region RI. The algorithm scans RI, a current NN 
estimate is found, a current minimum distance r is 
determined, and a query ball B(q,r) is formed. The 
query ball is shown in the figure. If our algorithm 
was deterministic it would be forced to scan Rs and 
R3 since they intersect the query ball. Instead the 
algorithm determines the probability that the ball is 
empty given the fact that region RI has been scanned. 
Suppose this probability does not exceed the toler- 
ance. The algorithm must now choose between scan- 
ning Rz and scanning Rs. A choice should be made 
according to the region that maximizes the probabil- 
ity to find a NN once that region is scanned, namely, 
the algorithm should scan the region that minimizes 
P(B(q,r) n Ri is Empty j e). This quantity is hard to 
compute and so the algorithm approximates this quan- 
tity (using Equation 4 which we develop below). In this 
example, region Rz is selected to be scanned. The al- 
gorithm now halts because P(B(q,r) is Empty I e) is 
sufficiently large once RI and Rz have been scanned. 

We compute P(B(q,r) is Empty I e) based on 
the assumption that the points are independent and 
identically distributed (iid) samples from the estimated 
mixture-of-Gaussians pdf f. In other words, we take 
f to be the true model that generated the database. 
The sensitivity of the algorithm to this assumption must 
be tested using real data sets. By the iid assumption, 
the probability the ball is empty is the product of the 
probabilities that each point does not fall in the ball. 
Consequently, we have 

P(B(q,r)is empty le) = (2) 

where R(zi) is the region of zi and n is the number 
of of data points. If R(Q) has been scanned then 

PC% 6 B(q,r) I zi E R(zi)) = 0. In general, 

PC% E B(q,r) I zi E R(zi)) is not computable. 
Fortunately, Theorem 4.1 below shows that we can use 
the approximation 

236 



The remaining task of computing 

P(x E B(q,r) ] x generated by 4) 

has been dealt with in the statistical literature in a 
more general setting. This probability can be calculated 
numerically using a variety of approaches [15]. In 
particular, numerical approaches have been devised to 
calculate probabilities of the form P[(x - q)TD(x - q) 5 
r2] where x is a data point assumed to be generated by a 
multivariate Gaussian distribution G(s]p, C) and D is a 
positive semi-definite matrix. When Euclidean distance 
is used to measure distances between data points, as 
we do herein, D is simply the identity matrix. Since 
numerical methods apply to distance functions of the 
form d(z, q) = (x - q)TD(x - q) where D is a positive 
semi-definite matrix, DBIN can be readily applied to 
any distance metric of this form. 

The pdf of the random variable (x - q)TD(x - q) 
is a x2 distribution when D = I and q = h. It is a 
noncentralized x2 when D = I and q # CL. It is a sum of 
non-centralized x2 pdfs in the general case of a positive 
semi-definite quadratic form. The general method uses 
a linear transformation to calculate the cumulative 
distribution of a linear combination of chi-squares. We 
use the method of Sheil and O’Murcheartaigh [15]. 

Note that the needed probability is computable for 
the general case, but we illustrate the idea of the 
computation assuming that C is diagonal and that the 
Euclidean distance metric is used (D is the identity 
matrix). We start with 

(x - #‘D(x - q) = k(xj - qjj2, (5) 
j=l 

where qj is the j-th component of q, and transform zj 
to a standard normal random variable zj. 

(Xj - qj)2 = 0; (Cxj - Pj) + CL% - %)I2 = +2(zj + bjj)2 

cl; 3 

where Sj = (‘jkPj) and pj is the j-th component of p. 

NOW (Z - Sj)2 has a noncentral chi-square distribution 
with 1 degree of freedom and noncentrality parameter 
6;. We denote this as x2 (1, Sj”) . The final result is 

P[(x - q)*D(x - q) 5 r2] = P 

[ 

~~$x~(l,s,“) 5 r2 
j=l 1 

This cumulative distribution function (cdf) can be 
expanded into an infinite series. In our implementation 
we used, AS 204 [ll], the terms of the series are 
calculated until an acceptable bound on the truncation 

error is achieved. Other techniques for calculating or 
estimating quadratic normal forms have been proposed 
[15] and may also be suitable. 

The next theorem shows that what we compute with 
these known techniques is not very far from what is 
desired. Let B be the event “B(q,r) is Empty,” Cl be 
the event “x is 
generated by Ci ,” and Ri be the event “x E Ri”. 

Theorem 4.1 Let the events B, Rx, and Ci be as 
defined above. Then, IP(BIR1) - P(BICl)I is bounded 

by 

p(B”R,“Cl). 

Proof. Using the definition of conditional probability 
and the triangle inequality, we have 

lP(BI&) - W4Cd1 
= 

’ 

P(Byp1) I P’Bn$C’) 
P[B&yC) P(B&“CI) 

= IP(B n Rl*” GN&“)&, 

+ P(B)(P(&IR~ n B) - P(RlICl n BNI 
= Ip(B%l tic&=&- &j+ 

W)(P(RllCl “B) - P(GI& ” B))I 
= IW ” RI ” C&&j - j&J+ 

WP’(BnR1 “W(P~ - &])I 
sW”fh”Cd[I&-&I+ 

P~%&BJ - F&clqI] . 
cl 

The bound gets arbitrarily tight as the sample size 
increases because the radius of NN ball converges to 
zero as the sample size increases. Also the smaller the 
probability the ball intersects the region the better the 
bound. The optimal Bayes decision rule minimizes the 
differences between P(Ci) and P(Ri) which means that 
this bound for a typical pair Ri, Ci is on average as tight 
as possible when the optimal Bayes decision rule is used 
to cluster 

5 Nearest-Neighbor Behavior within 
Gaussian Mixtures 

Under what conditions should DBIN perform well? 
Assuming a mixture of Gaussians, we define stability 
conditions that ensure that NN queries are meaningful 
and that the NN of a point is in the same cluster as the 
point itself. If the NN is always in the same cluster, 
then DBIN need only scan one cluster. Note that these 
results are asymptotic in the sense that they hold as the 
attribute dimensionality increases to infinity. 
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Our results extend those of Beyer et al [6]. They 
proved the disturbing result that NN neighbor queries 
are meaningless in high dimensions under commonly 
used assumptions pertaining to data distributions. The 
concern raised in their work is that the ratio of nearest 
and farthest neighbor distance converges in probability 
to 1 as the dimensionality increases. We show that 
under reasonable assumptions this negative result is not 
applicable. We first present the notation and results in 

PI. 

Definition 5.1 (Notation) 
d is dimensionality of a Euclidean space. 
n is.number of samples taken. 
F1,i, F2,i,. . ., i = 1,. . . , n are sequences of data 
distributions. 

&1,&z,... is a sequence of query distributions. 

For any 4 xd,l, xd,2,. . . , X&n are n independent data 
points per d such that xd,i is generated from Fd,i. 
qd is a query point generated from Qd. 
We use the squared Euclidean distance ]]&j,i - Qd]12, 
however, our results generalize to other distance mea- 
sures as well. 
DMINd = mini{llXd,i - qd112 1 1 5 i 5 n}. 
DMA& = maxi{]] xd,i - qd112 1 1 5 i 5 n}. 

Theorem 5.1 (Meaningless NN Queries [S]) ,%X&i 
and Qd be random variables with pdf Fd,i and Qd, respec- 
tively. If 

?Jar(lbd,i - qd112) 

dt’% E[llxd,i - qdl12]2 = ” 
(6) 

then for every E > 0, 
limd+, P[DMA& 5 (1 + c)DMINd] = 1. 

In a mixture of Gaussian distributions, each data 
point or query is generated by a single Gaussian 
distribution. We can think of a random set of points 
generated by such a mixture model as being clustered 
by the Gaussian distribution that generated them. 
Theorem 5.1 applies in particular to data generated 
by a single Gaussian distribution and so it shows 
that the distance between arbitrary two points in the 
same cluster approach the mean within cluster distance 
as the dimensionality d increases. We say that the 
within cluster distance is unstable because roughly 
every point in a cluster is the same distance apart. 
Specifically, 

Figure 3: Unstable Query Example 
I 

Similarly, the distance between any two points from two 
distinct clusters approaches the mean between cluster 
distance. 

Corollary 5.2 ( Between Cluster Dist. Converge) Lc 
zd,i, xd,j, and qd be random variables with pdf Fd,i, Fdj, 
and Qd, respectively. If 

and 

v4llXd,j - 4dl12) 
)%I E(llxd,i - qdl12)2 = ’ 

E(lh,j - !?dl12) = A 
d%% E(IIxd,i - qdl12) ’ 

then .w ---So A. 

If for two clusters, the between cluster distance 
dominates the within cluster distance, we say the 
clusters are stable with respect to each other. In 
Figure 3, Clusters 1 and 2 are stable and Clusters 2 
and 3 are not stable. 

Definition 5.2 (Pairwise Stability) Let x&i, 
xd,j, and qd be random variables with pdf F&i, Fd,j, 

and &d, respectively. If .s -sp 1 and 
bd ‘--9dl12 em jP A > 1, then Clusters i and j are 

pairwise stable with parameter A. 

Theorem 5.2 (Stable Cluster Distances) If 
Clusters i and j are pairwise stable with parameter A, 
then for any E > 0, 

lim p(llzd,j - Qd/i2 2 (A - f)bd,i - 4dii2) = 1 
d-too 

PrOOf. Let pd = E(IIXd,i - qdl12). 
Let vd = bd,;;qdl? and let wd = bd,;-dqdl12. We 

know vd -+P 1 and wd +P A. Thus m = 

E -Jo A. By definition o f convergence 

Corollary 5.1 ( Within Cluster Dist. Converge) If lim&.+ 
0, 
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implies limd,, p(ibd,j - qdij2 > (A - ~)bd,i - qdii2) = 

1. Cl 

If every cluster is stable with respect to at least one 
other cluster then NN is well defined in the sense that 
the nearest and farthest neighbor distances are bounded 
apart. With probability 1 as d grows, the ratio of the 
farthest and NN is bigger than some constant greater 
than 1. For example in Figure 3, Cluster 1 is stable with 
respect to both Clusters 2 and 3 so NN is well defined. 

Theorem 5.3 (NN Well-Defined) If Cluster i and 
Cluster j are pairwise stable with parameter A, then 
for any 6 > 0, 
limd+, P[DMA& 2 (A - E)DMINd] = 1 

Proof. By conditions of the theorem 

&$f&$& +p 1 and -+pA. 
By definition of minimum and m:ximum 

that for any c > 0, lim,,, P[/~~;~I~$ 2 A - E] = 1. 
From the last two statements, 

bd ‘--Qdi? 
limd+rnP[~~f~; 2 e 2 A - 4 = 1. 0 

If every cluster is stable with respect to every other 
cluster then if a point belongs to one cluster, its NN 
also belongs to that cluster. Therefore if we partition 
our data by cluster membership then with probability 1, 
as d grows, our index will only need to visit one cluster 
to find the NN. With probability one, other clusters can 
be skipped with no false drops of points. 

Theorem 5.4 (Nearest Neighbor in Cluster) If CZu 
ter i is pairwise stable with every Cluster j, j = 
1 . . 7 n, j # i, with parameter Aij > A > 1 respec- 
tzkely, then for any point zd,j from cluster j # i, and 
any E > 0, 
limd+co p[jlzd,j - qd112 > (A - e)llxd,i - qd112] = 1. 

Proof. By Theorem 5.2 for every zd,j j # i and every 
E > 0, 
1imd-m p[llxd,j - qdj12 > (& - E)llxd,i - qd112] = 1. 

Since Ai,j > A, the result follows. 0 
These results show that if we have a stable mixture 

of Gaussians where the between cluster distance domi- 
nates the within cluster distance, then if we partition by 
a cluster membership function that assigns all data gen- 
erated by the same Gaussian to the same partition, the 
index would work perfectly for NN queries generated by 
the same distribution. The higher the dimensionality, 
the better it would work. There is no “curse of dimen- 
sionality” in this case. For example in [2], it was shown 

that clusters generated by a mixture of spherical Gaus- 
sian with identical covariance matrices C such that the 
Mahalanobis distance between the cluster centers grows 
at least as fast as & then the clusters are stable. 

Note that we actually do not know which Gaussian 
generates a data point. But, as discussed in Section 
4, we can use the optimal Bayes decision rule [9] to 
estimate the Gaussian that generated a point with 
minimum error. Figure 2 illustrates stable clusters and 
the corresponding partitioning of the data space into 
regions. 

6 Computational Results 

Our initial experimental goals were to confirm the 
validity of the theoretical results, to determine the 
accuracy of the probability estimates, and to establish 
that DBIN would be practical on real-world data 
with unknown distribution. We assumed that if a 
cluster is visited that the entire cluster is scanned. 
We did not address paging of data within a cluster. 
We experimented with both synthetic and real-world 
databases. The purpose of synthetic databases is 
to study the behavior of DBIN in well-understood 
situations. The experiments on the real data sets verify 
that our assumptions are not too restrictive and apply 
in natural situations. 

6.1 Synthetic Databases 

First we verified the stability theory introduced in 
Section 5 by applying DBIN to both stable and unstable 
mixtures of Gaussian data. We used synthetic data 
sets drawn from a mixture of ten Gaussians. First, 
we used stable clusters with a known generating model, 

,s- then unstable clusters with a known generating model, 
and finally, stable clusters with an unknown generating 
model, i.e. a situation in which we had to estimate the 
density (and do the clustering). 
Stable Case, Known Probability Density: We 
generated a mixture of ten Gaussians in d dimensions 
with distance rd between the means of the distribution. 
Each Gaussian had covariance matrix u2 I where I is the 
identity matrix and (T 2 = .Ol. As discussed in Section 5 
and [2], if rd > aa, the clusters are stable. In order to 
fix the distance between the means to be rd apart, we 
set the ith mean pi = mei where ei is a vector of 
zeros with a one in the ith component. The size of the 
database was fixed and we generated 500000/d points 
for d < 100 dimensions and 1000000/d for d 2 100. 
DBIN was used to find the 2 NN for 250 query points 
randomly selected from the database. To remove any 
variation due to inaccuracies in clustering, we first used 
the true generating density as input to DBIN. Hence, 
this represents an extreme for a best-case scenario. 
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Figure 4: Fraction scanned: unstable case rd = 21s. 

The stable case, with rd = ad was evaluated on 10, 
20, 30, 40, 50, 60, 70, 100, 200, and 500 dimensions. 
In every case the 2 NN were found by examining only 
one cluster. In addition DBIN correctly determined 
that no additional clusters needed to be searched. 
Since each cluster contained ten percent of the data, 
each query required a scan of ten percent of the 
data. Similar experiments for 10 NN produced the 
same conclusion. In the best of worlds when the 
clusters are stable and the model is known, DBIN works 
perfectly. As the theory in Section 5 predicted, the 
curse of dimensionality vanishes when the distributions 
are stable. 
Unstable Case, Known Probability Density For 
unstable data, we fixed 7d = 2g. With this distribution, 
any problem with dimensionality over 4 is unstable. 
The amount of overlap of the Gaussians is growing 
exponentially with d. This is a worst-case scenario 
as there is no separation between the clusters and the 
asymptotic stability theory does not apply. 

To evaluate how well DBIN estimated when to stop 
scanning, we compared it with the Ideal approach that 
scans the clusters in the prioritized order predicted by 
DBIN and stops scanning additional clusters once the 
NN is found. DBIN stops scanning when the NN is 
found with high confidence. Since this case is very 
unstable, we would expect any algorithm to require 
a scan of much of the database. The percentages 
of data scanned by a full scan, DBIN, and the Ideal 
approach are given in Figure 4. Table 1 provides the 
percentage accuracy of DBIN on this unstable data. 
An estimate is considered correct if the estimated k- 
nearest neighbor distance does not exceed the actual 
k-NN distance. The percentage of the data scanned 
increased gradually with dimensionality. The Ideal 
algorithm scanned less data. This difference between 
the Ideal algorithm and DBIN indicates that the DBIN 
probability estimate is conservative. In many cases 
DBIN slightly overestimates the probability of a NN 
residing in a cluster so there may be an opportunity for 
tightening the probability estimate used. 

Dim. ] 10 1 20 1 30 1 40 1 50 1 60 1 70 
Act. ( 98.8 1 96.4 1 93.6 1 93.2 1 94.8 1 96.4 1 92.4 

Table 1: Percentage accuracy of DBIN on unstable data 

100 5” 40 2” 1” 

Figure 5: Scan fraction: unknown stable model. 

Random Stable Clusters, Unknown Probability 
Density, Varying K: In the next set of experiments 
we applied the full DBIN approach to generated data. 
We utilized some data and corresponding clusters 
generated originally for [8]. The data were generated 
from 10 Gaussians with means independently and 
identically distributed in each dimension from a uniform 
distribution on [-5,5]. Each diagonal element of 
covariance matrices was generated from a uniform 
distribution on [0.7,1.5]. Hence this data is well- 
separated and should be stable, but is not at an 
extreme of stability. We used clusters generated by the 
EM algorithm without using knowledge of the known 
distribution except the number of clusters. Results on 
problems with 10 to 100 dimensions, with K (number 
of nearest neighbors to find) varying from 2 to 50, are 
given in Figure 5. Note that DBIN made no errors at 
all in finding the nearest neighbors for all values of K. 
Hence there is no point in plotting those results. 

It turns out this distribution is stable in practice. 
This is no surprise since in high dimensions the distance 
between the uniformly generated means approaches the 
expected value which is proportional to &. The 20- 
dimensional result is an artifact of the fact that our EM 
clustering algorithm happened to find a non-optimal 
solution. hence more than 1 cluster is scanned on 
average. Note that because we limited ourselves to 
10 clusters, 0.1 is the minimum possible scan fraction 
here. hence we are near the optimal. Larger number of 
clusters will result in less data scanning. 

6.2 Real Database Results 

We experimented on real-world datasets. Overall the 
results are promising, but we found some additional 
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K 2 5 10 50 
Accuracy 99.0% 100% 100% 97.1% 
Fraction Scanned 12.5% 13.9% 14.2% 16.6% 

Table 2: Accuracy and Fraction Scanned Results for 
11-dimensional Census Data 

K 1 2 1 5 1 10 1 50 
Accuracy ( 94.7% 1 90.0% 1 85.0% 1 78.6% 
Disc. Accuracy 1 97.3% 1 96.4% 1 95.6% 1 95.2% 
Fraction Scanned I 16.8% I 17.2% I 17.4% I 17.8% 

Table 3: Accuracy and Fraction Scanned Results for 
29-dimensional Astronomy Data 

issues to resolve. In the current implementation of 
DBIN, we did not address categorical data fields. Some 
numerical stability problems occur with sparse datasets 
that result in zero variance clusters. The algorithm 
still performed as we expected. We need to extend the 
theory to the case where data is not truly continuous. 
Since our primary goal in this paper is to introduce 
the basic idea, and demonstrate that it is possible to 
index higher dimensional data, the results presented 
here are not optimized (i.e. we did not build the best 
possible clustering model). Nor did we optimize the 
algorithm to gracefully deal with small variances or 
discrete data masquerading as continuous values. The 
goal is to demonstrate that in principle we can derive 
useful indexing information from statistical structure. 
All results are averaged over 1000 query points drawn 
randomly from the data. 
U.S. Census Data: publicly available U.S. Census 
Bureau data set consisting of 300K records, and we 
selected the 11 dimensions that appeared to be numeric. 
These were fields such as ages, incomes, taxes, etc. 
Table 2 shows the results for varying K. The model 
we constructed had 100 clusters, so in principle the 
minimum possible scan fraction is around 0.01. 
Astronomy Data: This data set consists of 650K 
records of measurements on sky objects. For each object 
there are 29 measurements and we clustered the data 
into 10 clusters. Again, this was by no means an 
optimized clustering, and a larger number of clusters 
would imply a lower possible minimum fraction of data 
to scan. Results are shown in Table 3. 

Here we introduce the notion of Discounted Accuracy. 
Our accuracy measure counts a full error if for K=50, we 
found 49 out of 50 true nearest neighbors. Discounted 
accuracy gives an error of & in this case and gives more 
insight into what is happening. 

Investor Data Sets: The last data set we evaluated 
is derived from a financial database consisting on 
historical stock prices, market valuations and so forth. 
In all, we used 34 dimensions. The data consisted of 
834K records. We tried two experiments, one with 20 
clusters and one with 47 clusters. Again these clusters 
were not optimized. The results for K=2 gave an 
error of 0.01 with 45% of the data scanned in case of 
20 clusters. With 47 clusters the accuracy was 100% 
with 42% of the data scanned. As we increased K, 
performance deteriorated quickly. This, we believe is 
due to problems in fitting a model to data. We need 
to optimize the model. Also, numerical instability and 
the problem of zero variances showed up in spades in 
this data set. However, the results at least show than 
in principle the structure is useful (i.e. we did not have 
to scan 100% of the data). 

7 Conclusions and Future Work 

In the discussion so far, we have not addressed the 
issue of determining the number of clusters required. 
From the perspective of indexing, the more clusters 
we have, the less data we are likely to have to scan. 
However, recall that determining which cluster to scan 
next requires a lookup into a table of clusters. If 
there are too many clusters, this lookup becomes too 
expensive. Consider the extreme case where each point 
in the database is its own cluster. In this case, each 
cluster identifies the result directly but the lookup into 
the cluster table is as expensive as scanning the entire 
database. 

Generally, we use a small number of clusters (5 
to 100). The cost of computing probabilities from 
the model in this case is fairly negligible. Note that 
with 5 clusters, assuming well-separated clusters, we 
can expect an 80% savings in scan cost. So not 
many clusters are needed. There are also clustering 
algorithms that choose K as part of the clustering 
session. In this case, we let the algorithm choose the 
most appropriate K to fit the data, so long as K does 
not get too large. The trade-off between cluster lookup 
cost and data scan cost can be optimized on a per 
application basis. 

We presented DBIN, a scheme that exploits structure 
in data to derive a multi-dimensional index for NN 
queries. We also developed a probabilistic theory to 
support the method. We analyzed the NN query 
problem under the assumption that data is modeled 
by a mixture of Gaussians. We defined the notion of 
cluster stability which gives us the means to assess if a 
data set is amenable to our method. We derived two key 
results. The first is that nearest neighbor queries can 
be meaningful in high dimensions. The second is that 
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it is possible to exploit the statistical structure of the 
data to construct a multi-dimensional indexing scheme. 
We derived a criterion for estimating the likelihood of 
payoff of scanning further, enabling a stopping criterion. 
The result is a new indexing algorithm based on density 
estimation. It provides a confidence level in the answer 
found so far. Because it is based on modeling the 
data content, DBIN provides sufficient information 
regarding the suitability of its indexing scheme to a 
given database. This can enable an optimizer to decide 
whether to invoke DBIN’s indexing structure or opt for 
the sequential scan when appropriate. 

We showed empirically that the proposed algorithm 
works when the data is stable. We used synthetic data 
to verify this and to study behavior when data is dra- 
matically unstable. We also demonstrated for several 
real-world databases that real data is not uniformly dis- 
tributed or concentrated in a single cluster. Our method 
showed significant improvement over a sequential scan. 

DBIN has many properties that are desirable from a 
data mining perspective. It is an anytime algotithm: it 
can provide the “best answer so far” whenever queried. 
The user can then stop the scan if the answer is 
satisfactory. It also provides a confidence level on the 
answer found so far. It can provide accurate estimates 
of how much work is left, allowing the user application 
to perform a cost-benefit analysis. It can utilize much of 
the existing SQL backend assuming clustered indices are 
supported. It leverages new work on scalable clustering 
techniques. Finally, we have found empirically that a 
full data scan is almost always avoided. 

The results indicate that visiting data in order of 
nearest clusters first is sound. In fact, we have found 
that in many of the instances when our stopping 
criterion does not cause us to stop after the first cluster, 
the actual NN turned out to be in the first scanned 
cluster after all. This suggests that it is possible to 
derive improved bounds for stopping earlier. 

Additional steps are needed to make- DBIN into 
a practical system. A full comparison with existing 
indexing methods is needed to assess the overall 
advantages of DBIN and whether performance increases 
are due to improved clustering or approximate NN 
processing. One challenge associated with DBIN is 
that it must sometimes calculate probabilities that are 
very close to zero without underflowing. In these cases, 
we run into numerical stability issues. Numbers get 
small due to high dimensionality and to large numbers 
of records. While high-dimensionality is handled by 
the theory we develop, in practice we are left with 
computing vanishingly small probabilities. A more 
robust scheme for computing these is desirable. This 
paper validates the basic framework and theory rather 
than provide complete details for implementation. We 

would like to generalize the theory to models other than 
Gaussians. Also, an evaluation of an implementation 
tied to a SQL backend that utilizes native indexing 
structures would be useful to demonstrate practical 
feasibility. 
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