
A fast algorithm for finding junction trees 81

A sufficientlyfast algorithm for finding close to optimal junction
trees

Ann Becker and Dan Geiger
ComputerScience Depar~meI~t

Technion
Haifa 32000, ISRAEL

any ut a(~ cs.technion.ac.il, dang(~_ cs.t echnion.ac.il

Abstract

Au algorithm is developed for findiug a close
to optimal junction tree of a given graph
Tile algorithm has a worst case co~nplexity
O(ckn~) where a and c are coustants,
the nmnber of vertices, and k is
largest clique in a juuction tree of G in which
this size is mini~nized. The algorithm guaran-
tees that the logarittHn of the size of the state
space of the heaviest clique in the junction
tree produced is less than a constant factor
off the optional value. Wt~en k =
our algoritlnn yields a polynomial inference
algorithm for Bayesian networks.

1 Introduction

All exact inference algorithms for tile computation
of a posterior probability in general Bayesian net-
works have two conceptual ptmses. One phase handles
operatious on the graphical structure itself and the
other performs probabilistic computatious; The june-
tion tree algorithm [LS88] requires us to first find a
"good" juuction tree cud theu perform probabilistic
computations on tile junction tree and tile method of
conditioniug [Pe86] requires to find a "good" loop cut-
set and then perform a calculatio,t using the loop cut-
set. In [BG94], we offered an algorith,n that finds a
loop cutset for which tile logarithm of the state space
is guaranteed to be a constant factor off tile optimal
value. In rids paper, we provide a similar optimization
for tim junction tree algorithm.

We st~all first restrict our discussiou to networks for
which all vertices tlave the same state space size and
to the optimality criterion which we cal! cliquewidth.
Tt~e cliquewidth of an undirected graph G is the size of
the largest clique in a juuction tree of G in which the
size of tile largest clique is minimized. A more common
term is treewidth which is the cliquewidttl miuus 1.

To date all methods in the AI cud Statistics co~mnu-
nities for finding a junction tree had no guarantee of
performance and could perform rather poorly when

presented with an appropriate example. Oue algo-
rittm~, due to Rose (1974), is as follows: repeatedly,
select a vertex v with minimum number of neighbors
N(v), delete v from the graph, and make a clique out
of N(v). Tt~e resulting sequence of cliques creates a
junction tree. This greedy algorith,n ,ninimizes tile
size of each clique as it is being created. However, it
could easily make a mistake at the first step that would
lead it to a junction tree far off the optimal size. An-
other algorithm, investigated by Kjaerulff (1990), is
simulating auuealiug which takes a long time to ruu
and has no guarantees on tile quality of the output.

Finding all optimal junction tree is NP-colnplete but
for a graph with n vertices and a cliquewidth k there
exits an O(nk+~) algorithm ttmt finds an optimal junc-
tion tree [ACP87]. Tiffs algorithm is not practical
for tile size of Bayesian networks dealt ill practice.
Other algorithms for finding an opthnal junctiou tree
have a complexity of O(f(k)n) where f(k) is a super-
exponential function of k [Bo93]. These algoritt~ms
are practical for cliques of size k = 5 at most. A more
practical algorithm for constructing an optimal junc-
tion tree when the largest clique size is 4 is given in
[AP86]. For targer values of k there is no algorittnn to
(late that cau find the opti~num junctiot~ tree quickly.
The exponential dependency in k camlot be improved
unless P = NP because finding an optimal clique tree
for k = O(n) is NP-complete [ACP87].

KIoks in his book treewidth [K194], which is devoted to
finding junction trees in various graphs, gives a poly-
nomial algorithm that finds a juuction tree of a given
graph G suctl that its maximal clique size is at most
12Alogn off optitnal where A is a large unspecified
constant (See also, [BGHK91]). KIoks states ttlat find-
ing a polynomial algorithm that constructs a junction
tree such that its maximal clique is a constaut factor
off optimal is a major open problem. The importance
of this problem stems from the fact that many NP-
complete problems on graphs can be solved polynomi-
ally if file input graph has a jnnction tree with fixed
sized cliques and if suctl a junction tree can be found
efficiently JAr85, ALS911. Some of these problems
are: INDEPENDENT SET, DOMINATING SET, GRAPH
K-C, OLORABILITY, HAMILTONIAN CIR(?UIT and CON-

82 Becket and Geiger

STRAINT SATISFACTION PR,OBLEMS [DP89].

Robertson and Seymour [RS95], among other key re-
sults, were the first to present an algorith~n that finds
a junctiou tree of a given graph G such teat its max-
imal clique size is at most a constant factor off opti-
mal (Tlley actually used a slightly different concept
termed branchwidth). Reed [Re92] presents Robertson
and Seymour’s algorithm in a more accessible form aud
shows teat its output is always less than 4 times the
cliquewidth and the complexity is O(k~3~kn2). Reed
also gives axx algorithm that errs by a factor of 5 and
has a complexity O(k234~nlogn). Lagergren [La96]
presents efficient parallel algoritlnns for this problem.

We offer an algorithm that finds a junction tree such
that ~ts largest clique is at most (2a + 1) times the
cliquewidth where a is the approximation ratio for
any approximation algorithm for the 3-way vertex cut
problem. When using a ~-approximation algorithm for
the 3-way vertex cut problem (a = -43) due to [GVY94],
our algorithm’s complexity is O(24’6~n ¯ poly (n)) and
it errs by a factor of 3.66 where poly(n) is the framing
time of linear programming.

When k = O(log n), our algorithm, like previous o~ms,
is polynmnial. Consequently, it yields a polynomial
inference algoritEm for the class of Bayesian networks
that lxave a logarithmic cliquewidth. Of course, one
does not know a priori what is the cliquewidth of a
given network and so a user must terminate the algo-
rithm if the rmming time is too long, in which case,
however, the tutoring time of exact inference must be
quite large as well. We show that for the class of
Bayesian networks having a slightly larger than loga-
rithmic cliquewidth, there exists no polynomial infer-
ence algorithm unless all NP-complete problems are
solvable i~l less than exponential time.

][n Section 3, we describe the algoritt~m and prove its
performance guarantee. This algoritEm is made
si~nple as possible to faciEtate tim proof, tn Section 4,
we describe several Eeuristics ttxat improve the algo-
rithxn’s average case performance. In Section 5, we
scribe the changes needed so that the algorithm takes
into account vertices with different state space sizes.
The modified algorithm guarantees ttlat the logaritE~n
of the size of the state space of the heavies~ clique
the junction tree found is less than a constant factor
off tlm opthnal value. In Section 6 we describe ex-
periments made using the graph Medianus I. In xnost
i~xstances our algoritt~m was superior to an enhanced
greedy algorithm both in terms of tim largest state
space and in terms of the total state space. In Sec-
tion 7 we discuss the extend to welch our resuks can
be improved.

2 The Junction Tree Algorithm

The junction tree algorithm is currently the ,nost
practical inference method for Bayesian networks. In
this section we provide the relevant highlights of

the junction tree algorithm. For details, consult
[LS88, JLO90].

Definition A directed acyclic grape (DAG) is a graph
with no directed cycles. In a DAG, pa(v) denotes tile
set of parents of a vertex v. A Bayesian nelwork is a
DAG such that with eacE vertex v we associate a fi~dte
set D(v) called the s~ate space of v and a probability
distribution P(vlpa(v)). The joint distributiou of V is

TEe updating problem is to compute tile posterior prob-
ability of a certain vertex given specific values to a set
of other vertices.

Tile junction tree algorithm solves the updating prob-
lem as follows. For every vertex v, it connects every
pair of v’s parents and removes tee direction of all
edges in tee graph. The resulting graph is undirected
(called the moral graph). Then, the moral graph is tri-
angulated; edges are added until every cycle of lengtE
more ttmn ttxree has a chord. These are called fill-in
edges. Once tim grape is triangulated (or chordal), a
tree of cliques, called the junction tree, is constructed.
The junction tree algoritEm then loads all probabilities
into the junction tree and performs the calculations on
the t~ew structure.

Definition Let G = (V,E) be a chordal graph. A
junction tree of G is a tree ~/such ttlat each ,naximal
clique C of G is a node in "H, and for every vertex v
of G, if we remove from J/all nodes not containing v,
the remaining (hyper) graph stays connected.

The single ~nost i~nportmlt step of this algorithm is
triangulation. There are many ways to add edges to
a given graph until it becomes chordal. In particular~
one can shnply make a single large clique. However,
the time for loading the probabilities and performing
tile calculations is proportional to tile total state space
given by ~c:~_74 H~ec: ID(v)l, which is dominated by
the size of the maximal clique if aI1 vertices have tim
same state space size. For example, if a maximal clique
contains m vertices and if their state space is of size
two, then the probability table for tiffs clique is of size
2m. The objective of triangulation is to find a trian-
gulation such that the ,naximal clique size is as s~nall
as possible. Sections 3 and 4 are doing just that. ln
section 5, we describe the changes needed in order to
account for varying state space sizes.

3 The Triangulation Algorithm

A natural approach to triangulate a graph G = (V, E)
is to use a divide a~d conquer technique. In each it-
eration a minimum set of vertices X is foulld which
removal from G splits G into two disconnected com-
poneuts having vertex sets A and B suct~ that A U B O
X = V. The set X is called a minimum vertex cut.
The algorith~n proceeds o~ the two smaller problems
G[X U A] and G[X U B], the subgraphs induced from
G by the vertex sets X U A and X tO B respectively.

A fast algorithm for finding junction trees 83

Each subgraph is triangulated such that X becoInes a
clique in it.

While this approach yields a triangulated graph, the
size of the cliques produced 1nay grow up to an O(n)
factor off their iuitial size if in each step one of the
graphs shrinks only by a coustant number of vertices
and the vertex cut found in each step has many edges
connecting it to previously found cuts. Robertson and
Seymour, Reed, and Kloks all provide clever modifi-
cations that prevent the initial clique X from growing
beyond a constant factor off its initial size.

~Ve provide an algorith~n that is similar to previous
ones except that rather than dividing the graph to
two subproblems, we divide it to three subproblems.
As a procedure, we use an a-approximation algorith~n
for the 3-way vertex cut problem. The 3-way vertex
cut problmn is defined as follows: given a weighted
undirected graph and three vertices, filld a set of ver-
tices of minimmn weight whose removal leaves each
of the three vertices discommcted from tile other two.
This problem is known to be NP-hard [Cu913. There
exists a simple 2-approximation algorithm, that is,
tl~e weight of its output is no more than twice tile
weight of an optimal 3-way vertex cut. A polynomial
~-approximation algorithm for the 3-way vertex cut
problem is reported in [GVY94] (Actually, their algo-
rithm is a (2 - ~)-approximation algori~h~n that finds
k-way vertex cuts).

Our algorithm produces a triangulated graph whose
maximal clique size is less than (2c~+1)k where k is the
cliquewidth of G and a is the ratio between the weight
of the a-way vertex cut found by the algorith~n we use
and the optitnal 3-way vertex cut. For rt = -4a, obtained
by usiug Garg et al’s algorithm, our approximation
algorithm yields a triangulation having a cliquewidth
bounded by 3~ k.

Definition Let G = (V, E) be a graph. A decompo-
sition of G is a partition (X, A, B, C) of V, where A
and B are non-empty sets, such that there are no edges
betweeu A,/? and C.

Definition Given an integer k _> 1, a real number
c~ _> 1, a graph G = (V,E) such that IVl _> (2~ + 1)k,
and a subset of vertices W C_ V, a decomposition
(X,A,B, C) of G is called a W-decomposition wrt
(k,a) iflwI < (a + 1)k, IxI ~ak, I(W~A) VXI <
(a+~)k, I(Wn~)uXl < (a+~)~, and I(WnC)~X~ <
(a + 1)k.

For example, suppose G is the chain a - b - e - d - e.
Tile triplet X = {e},A = {a,b}, B = {d,e} and C =
~ is a decomposition of G. Given .W = {b,d}, this
decomposition is a W-decomposition of G wrt k =
1 and a = 2. Given W = {b,c}, tile triplet X =
{d},A = {a,b,c}, B = {e} and C = ~ is not a W-
decomposition of G wrt (k = 1, a = 2) because I(W cl
A) U.XI =a.

The triangulation algorithm is given in Figure 1. In

ALGORITHM Triangulate(G,W,k)
Input: An undirected graph G(V,E),W C_ V,k.
Output: A triangulation of G such that W

is made a clique and such that the size
of the largest clique < (2c~ + 1)k (Success)
or, a valid statement that the cliquewidth
of G is larger than k (Failure).

If IvI < + 1)k then make a clique out of G
else
Find a W-decomposition

(X, A, B, C) of G wrt (k,
If not found returu "cliquewidth > k"
WA 4--W~A, Wr~ ~- W ~B, We: +-WVIC;
call Triangulate(G[A U X], WA U X, k);
call Triangulate(G[B tO X], Wr~
call Triaugulate(G[C U X], We: ~ X, k);
make a clique of G[W O X].

Figure I: Tile triangulation algorithm

order to triangulate a graph G having a cliquewidth k
we call Triangulate (G,O, k). When the algorithm is
called with W = 0, the size of the second argument of
Triangulate iu each recursive call is (strictly) less than
(a+l)k because, when [V] _> (2a+l)k, by defiuition of
W-decompositioas, the sets WA U X, Wr~ U X, g@ U
X which are the argmnents passed in the recursive
calls, contain less than (c~ + 1)k vertices, respectively.
Figure 2 shows a graph and how it splits into three
subgraphs in a recursive call of Triangulate . The set
W serves to monitor the shrinking rate of the size of
the subproblems in each reeursive call.

The next two lemmas show that a W-decompositiou
must exist or tile cliquewidtt~ is greater than k, in
which case tile algorithm outputs correctly this fact.
Consequently, a naive way to use this algorithm is
to repeatedly cal! TI~IANC, ULATE(G,¢,k) starting with
k = 1 and incrementing k by 1 whenever the algorithm
fails to triangulate G. In the next section, we provide
implmnentation details and a complexity analysis.

Lemma 1 Given a graph G(V; E) with a cliquewidth
<_ k, IVI _> k+2, and a subset of vertices W,IwI > 1,
there exists a decomposition (X,A,B,C) of G such
that IXl _< IW AI < ½1’Wl, Iw n. l _< ½1wl
IW n cI < ½1wI.

Proofi A constructive proof of similar claims is given
in [K194, Lemma 2.2.9]. Let H(G) be a junction tree of
G with a eliquewidth _< k. Add edges until all cliques
in this junction tree become of size k. Call the result-
ing junction tree T(G). Now consider the fotlowiug
algorithm. Start with any clique X in T(G). If there
is no connected component in G[V \ X] which has more
than ½1WI vertices of W, then stop. Otherwise, let S
be a component in G[V\X] which has more than ½1wI
vertices of W. There exists a vertex y in S which has
k- 1 neigt~bors in X in the graph T(G) (viewed as a

84 Becker and Geiger

Figure 2: Au example of one level of a recursive call
with k = 3 and c~ = 1. Highlighted vertices are iu W
aud X = {f, g}. The three graphs at the botto~n are
passed as arguments to the next level of recursiou.

chordal graph). Let x be the vertex in X that is not a
ueighbor ofy in T(G). Define Y = X\{x}U{y}. Note
that Y also has k vertices. The algorithm continues
with Y.

To show that this algorithm terminates~ we prove that
in eadl step of the algorithm one of two conditions
is met. Hereafter, the component which iucludes the
largest part of W will be called the main compouent.
The first coudition is tt~at tile nmnber of vertices iu the
main co~npoueut decreases and the nuinber of vertices
of W in tim main co~nponent does not increase. The
second condition is that the number of vertices of W
in tile main compouent decreases.

Notice that G[V\Y] has two types of compouents. One
type consist only of vertices in S \ {y}. If the maiu
component of G[V \ Y] is mnong these, the nmnber
of vertices is decreased and the number of vertices of
W does not increase. The other type of components
consist only of vertices of {x} U V \ (S (2 X). The
total nmnber of vertices of Wiu this set is less than
--21WI because S contains ~nore titan half the vertices
of W. Hence, in this case, the nmnber of vertices froln
W in the main colnpouent decreases by at least one.
Consequently, the algorithm terminates.

Suppose now that X is tile final clique considered by
this algorithm. If G[V \ X] has two or ~nore non empty
co~nponents, then group thegn into three sets to form
the desired decomposition. Otherwise, there is only
one compouent in G[V \ X]. Cousequentty, the clique
X is a leaf in the junction tree T(G). Since IVI con-
rains at least k + 2 vertices, aud there is ouly oue com-
poneut in G[V\X], there exists a unique clique Y that

contains k - 1 vertices of X and which is not a leaf in
T(G). The graph G[V \ Y] t~as at least two co,mected
components aud each contains less than half the ver-
tices of W (because IWI > 1). []

Lemma 2 Given an integer k >_ 1, a real number ct >_
1, a graph G(V, E) with IVl k (2a + 1)k and a subset
of vertices W such that]WI < (a + 1)k, there exists
a W-decomposition (X, A, B, C) of G wrt (k, ct) or the’.
cliquewidth of G is larger than k.

Proof! Let G be a graph with a cliquewidth _< k.
K]W] _< 1, then let X be any iniuiinal vertex cut
that does not contain a vertex of W. If IX] _< k,
the resulting decompositiou is a W-decmnposition wrt
(k, a). Otherwise, the cliquewidth is larger than k.

Suppose IWI > 1. Let (X, A, B, C) be a decolnposition
of G with the properties guaranteed by Lmnma 1. We
will prove that (X, A, B, C) is also a W-decomposition
wrt (k, ~). If it were not, then assmne that I(W ~ A) tO
XI _> (a + 1)k, this inequality implies that /W C~ AI >
c~k because IXI _< k. But according to Lmmna 1, we
have [WI > 2IW ~ AI. Consequently, [W[> 2ak in
contradictiou to its given size which is smaller than
(a+ 1)k. Heuce, if tim cliquewidth of G <_ k, then there
is a W-deco~nposition wrt (k, a). Equivalently, if there
isn’t a W-decotnposition wrt (k,a), the cliquewidth
must be larger thauk. []

Theorem 3 If G(V, E) is a graph with n vertices,
k >_ 1 an integer, a k 1 a real number, and W
is a subset of V such that [W] < (a + 1)k, then
Triangulate(G, W, k) triangulates G such that the ver-
tices of W]orm a clique and such that the size of a
largest clique of the triangulated graph < (2a + 1)k or
the algorithm correctly outputs that the cliquewidth of
G is larger than k.

Proofi If the algorithm outputs that tile cliquewidth
of G is larger than k, then this is a valid statement by
lemma 2. Assume tile algorithm does not produce this
output.

The algorithm always terminates because in every re-
cursive call of Triangulate the graphs G[A ~ X], G[B Ca
X] aud G[CUX] have less vertices than G[AuBUCOX]
since A aud B are not empty.

Next, we show that the algorithm retunts a triangu-
lated graph. We prove this by induction using the
recursive structure of the algorithm. Clearly ~l~e claim
is ~rue iflVI < (2c~+l)k. Assume IV] _> (2c~+
By iuductiou the recursive call Triangulate (G[A U
W,4 ~ X,k) returus a triangulatiou of G[A U X], such
that WA ~3 X is a clique. Si~nilarly, for B and C.
The algorithm then makes a clique of W u X. Conse-
quently, tile graphs C[A tO W ~2 X], G[B U W U X] and
G[C tO W U X] are triangulated as well Since the in-
tersection of these triangulated graphs is a clique,
union must also be triangulated.

It remains to show that the cliquewklth of the trian-
gulated graph is less than (2(t + 1)k. This is clearly

A fast algorithm for finding junction trees 85

true if IVl < (2(~+1)k. Hence assume 1VI _> (2c~+1)k.
Let M be a largest clique in the triangulated graph.
There are two cases to consider. If M co~,taius no ver-
tex of A ~ W, B ~ W 3lld C ~ W, then M contains only
vertices of W ~ X. Consequently, ~M[= {W U X[~
~W~ + iX] < (a + 1)k +c~k, and the cliquewidth is less
than (2a + 1)k as claimed. If M contains a vertex of
A ~ W, then it contains no vertex of B U C because
there are uo edges between A and B U C, Heuce M is
a clique in the triangulation of G[A UX]. By induction
we know that]M] < (2~ + 1)~. ~

Note that Lemma 2 and Theorem 3 hold for every
~ >~ 1. However, in order to find a W-decomposition
wrt (k,a) sufficiently fast (Lmmna 2 only guarantees
existence), we choose c~ to be the approximation fac-
tor of an algorithm for tile a-way vertex cut prob-
lem, an algorithm which we employ for finding a W-
decomposition. W~ now give an algorithm that finds a
W-decomposition wrt (k, a) where ~ is chosen as just
described. Then we will argue for correctness.

For every possible selection of four disjoint suD-
sets WA,WB, W(:,Wx of W, such that IWAI >_
[Wul >_ I Wc:I, we show how to check if there exists
a W-decomposition (X, A, B, C) wrt (k, c~), such that
WA g A,W~ g B,W<: g C and Wx g X. There
are at most 4Iwl choices to divide W into four set of
vertices WA, W,, We:, ~.

Let WA, WB, W(:, Wx be a particular selection. We
consider two cases, !) tWAI < k a~(l 2) IWAI >_ k.
Race case uses a different procedure.

Procedure I ([WAt < k): Remove Wx from the graph,
add three dummy vertices v~, v~ and v~ each commeted
to all the vertices in Wa, W~ and We, respectively.
Set the capacity of al! vertices in WA ~ Ws ~ We: to
infinity and the capacity of all other vertices to one.
Find an a-approxhnatiou a-way vertex cut Y which
splits v,, vb and vc into three disconimcted co~npo-
nents. Note that, due to the capacities selected, it
must split WA,W~ and We: to three disconnected com-
ponents as weII. Now let X be YOWx, A be the union
of the connected components of G[V ~ X] such that
W~ ~ A, B be the tll.fion of the commcted components
of G[V~X] such that W~ g B, and C = V~(AUBUX).
If [A"I < (c~ + 1)k- [WA[and {X[~ ~k then out-
put (X, A, B, C) as th~ desired W-decomposition wrt

Procedure II (IWAI ~ k): Remove Wx from the graph,
add a dummy vertex % that is connected to all the
vertices in WA, attd add another dummy vertex
that is connected to all vertices in W~ and We:. Set
the capacity of all vertices in WA UW~ UW~: to infinity
and the capacity of all other vertices to one. Find a
miniznmn vertex cut Y which splks v~ and v~c into
two disconnected components. Note that it must split
WA and W~ U We’ as well. Finding a mini,num vertex
cut is done by any of the well known max-flow/mh~-
ctt~ algorithms. Now let X be Y U Wx, A be the
union of the connected cmnponents of G[V ~ X] such
that WAg A, B = Vk(AuX), m~d C = ¢. If

IX] < (c~ + t)k -]WA[,]XI < (c~ + 1)k-]W~ U
and IXI _< c,/~ then output (X,A,B,C) as the desired
W-decomposition wrt (k, ~).

Now we will straw that if a W-decomposition wrt (k, ~)
exists, as guaranteed by Lemma 2, then either proce-
dure I or procedure II will fiz~d a W-decomposition
wrt (k, t~) for some choice of WA, Wry, We, Wx. Let
(X’, A’, B’, C’) be a decomposition of G with the prop-
erties guaranteed by Lmnma 1. Let WA = A’ r~ W,
W~ = B’ ~ W,Wc = C’ ~ W and Wx = X’r~W,
and assmne without loss of generality that
IWBi >_ [We:[. Procedure I for [WA] < k, and proce-
dure II for IW~[>_ k both generate for this choice of
WA, WB, We:, Wx, a decomposition (X, A, fit, C). We
now show tt~at in either case this decomposition is a
W-decomposition wrt (k,

Case 1: [IYAI <: k. The set of vertices X’ \ Wx is a
a-way vertex cut for the sets WA, WB, and I~Vc: in tile
graph G[V ~ Wx]. An (~-approximation algorithm for
the 3-way vertex cut problem outputs a cut Y, suclx
~l~at ~Y} ~ ~X’~Wx~. Since ~ 2 1, weget ~YUWx~ ~
~[X’I. Consequently, ~YUWx[~ ak because IX’l ~ ~.
Fitfully, IWA U (Y U Wx)l < k + ak = (~ + 1)k. Thus
all tee conditions for a W-decompositio~ wrt (k, a) are
met.

Case 2: IWn[>_ k. The set of verticesX’\Wx is a
vertex cut for the sets WA, WB O W(: in G[V \ Wx].
A max flow/~nin-cut algorithm outputs a vertex cut
Y such ttmt IYI ! IX’ k Wx[. Consequently [Y U
W_v~ ~ k because [X’] ~ k. Finally, since]W] ~ 2]WA]
(Lemmal), weget ~Waw(YUWx)] < ~ ..+k <
(a + 1)k. Hence from JWB UWc:)] < <t~ it follows that
[(Wu O We:) 0 (Y U Wx)[< ak + k = (~ + 1)k. Thus
all the conditions for a W-decomposition wrt (k, a) are
1net.

4 Implementation and Complexity

The algorithm presented in the previous section can
be improved substantially by three adjust~nents: pro-
cessing the input of tile algorithm, chai~ging the termi-
nation condition of tile recursion, and processing the
output of the algorithm. We shall first describe these
changes and demonstrate the algorithm on a simple
example. Then, we provide further implementation
details and analyze tile algorithm’s complexity.

The iuput graph of the algorithm ~nay contain vertices
such that all their neighbors are connected. A vertex
v is called simplicial ia G if its neighbors N(v) form
a clique. Before calling Triangulate, startiag with
input graph G, we repeatedly remove every simplieial
vertex frmn the current graph. Tile resulting graph
G’ has a cliquewidth no larger than tlmt of G, al~d
if G’ is triangulated, then G is triangulated as well.
Hence, this preprocessing step retains the validity of
the algorithm. This step improves the rumfing time
complexity whenever simplicial vertices are fouud.

The termination condition of the recursion is that

86 Becker and Geiger

whenever IVI < (2a + 1)k a clique is formed out of
G. However, instead of a clique, it suffices to produce
a junetiou tree of G in which W is a clique. This step
is done by forming a clique of I47 and then complet-
ing it to a junction tree of G by any of the knowu
greedy heuristics. TILe proof of Theorem 3 remains
valid without any change. Consequently, the worst
case approximation is not affected. However, in many
iustances tile approximation is i~nproved.

The output of the algorithm is a triangulated graph
T(G) which is not necessarily minimai. This means
that some edges that were added (fill-in edges) ~night
possibly be removed and the resulting graph remains
triangulated. Kjaerulff provides an algorith~n that,
given a triangulation of a graph G m~d an ordering
on its vertices, produces a minimal triangulated graph
[Kjg0]. We use Kjaerulff’s algorighm with an ordering
that is determined as follows. Firs~ in the ordering are
the si~nplicial vertices in the order in whid~ they are
removed from G. The order of the remaining vertices
is determined recursively while running T~angulate;
In each level of the recursion, the vertices in X ~ W
follow those in A ~ W, those in B ~ W and those in
c w.
We uow demonstrate tile effects of these modifications
on tile graph depicted in Figure 2 (assmning W = ~).
If simplicial vertices are rmnoved, then the remaining
graph does not contain the vertices a and b. The aext
phase, wheu k = 3 alLd ~ = 1, creates three cliques:
{c,d,e,f,g}, {f,g,h,i} and {/,g,j,k}, in addition to
{a,c} and {b, c} due to the simplicial vertices. Fi-
nally, applying Kjaerulff’s minimization algorithm re-
moves the edges (], i), (f, j), (c, f), (c, g), (d, g) yielding
an optimal juuction tree.

The total complexity of running Triangulate with a
given k is the time it takes to find a W-decomposition
times the number of nodes in the recursion tree
which is at most n. Tile time it takes to verify
whether a choice WA,WB,Wc:,Wx can generate a
W-decomposition with respect to (k,a = ~) takes
poly(n) which is the time it takes to run Garg et al’s
a4--approximation algoritlnn for the 3-way vertex cut
problem. This polynom is quite high as it is the com-
plexity linear progralnming. (A more practical algo-
rithm, without a complexity guarantee, is the simplex
algorithm). Thus the complexity of running Trian-
gulate with a given k is O(40+c~)~n- polyO~)) where
a -- 34-, because there are at most 4IWI choices and
[WI < (r~ + 1)k. Since, in the worst ease, the algo-
rith~n is run for i = 1 up to the cliquewidth of G,

k 42.33iltthe total running time is 0(~=1 ¯ poly(n)))
which is O(24"~n - poly(n)). The size of the largest
clique ill the output is at lnost 2~, + 1 = 3.66 times tile
cliquewidth.

In a simpler implementation we use a straightforward
2-approximation algorithm for finding a a-way vertex
cut; Find a minimmn a - b vertex cut between v= and
Vb~ a Inillimum vertex CUt (t -- �2 betweeu Va slid vc and

a lninimmn vertex cut b - c between vb and re. The
output vertex cut is the union of auy two of the three
vertex cuts. This output is clearly a a-way cut and
it is at most twice the optimal weight because each
of the three cuts weighs less than an optimal a-way
vertex cut. Finding each vertex cut is done using
mmx ~ow!min-cut aigorittnn which takes O(kn~ log
This algorithm for the a-way vertex cut is analogous to
the one described in [DJPSY92] for the edge multiway
cut. A ~nore clever implementation using Reed’s
ments can find an appropriate vertex cut in
Consequently, since ~ = 2, the total complexity is
O(k~4a~n~) and the largest clique in the output is at
~nost 5 times the cliquewidth.

In practice, our algorithm eucountered complexity is
substautially less. The set W is almost always less
than (1 + c~)k and iu ~nost cases it is less then k
which implies that the colnplexity encountered is pro-
portional to 22k rather than to 2466k. Furthermore,
when a W-deco~nposition (X, A, B, C) exists, it is of-
ten the case that W consists of two subsets and the
third is empty, in which case the algorithm for finding
a 3-way vertex cut is not activated (as is the case in the
graph of Section 6). In addition, instead of increasing
k by one whenever Triangulate fails on the input k,
we can increase it to tile ,niuimal value k* for which
a decomposition that was tested wrt (k, ~) was fouud
to be a W-decomposition wrt (k*,a) (k* > k).

Finally, note that Theormn 3 provides ouly a worst
case bound of 2a + 1 for the ratio between the size
of the largest clique and the cliquewidth of tile given
graph. However, if for an it~teger k, Triangulate pro-
duees a triangulation having a largest clique of size l
and the algorithm fails for k - ! (it is run for i = 1..k
until in succeeds), then the ratio 1/k is an upper bound
for the ratio between the output and the cliquewidth
of G because the cliquewidth must be greater than
k - 1. This bound is much tighter than 2c~ + 1 be-
cause it takes into account the giveu graph a,~d the
specific steps made by Triangulate. It is an insgance-
specific posteriori bound rather than a worst case a
priori bound. TILe bound I/k is produced by the algo-
rithm in order to inform the user about the quality of
the junction tree found.

5 The Weighted Problem

It retnains to describe the changes needed in order to
account for different state spaces of each vertex. The
weight w(v) of a vertex v is the logarithm (base 2) of its
state space size and tile weight of a clique is the sum
of tile weights of its co~mtituent vertices. Note that
the weight of a vertex with a biuary state space is 1
and the weight of other vertices is larger than 1. Our
optimality criterion is now the weighted cliquewidth
of G. The weighted cliquewidgh of G is the weight of
the heaviest clique in a j unction tree of G in which the
weight of tile heaviest clique is minimized.

To miifimize the heaviest clique, we ~nodif~v tile algo-

A fast algorithm for finding junction trees 87

rithm as follows. We find a weighted W-decomposition
wrt (m, c~), nainely, a decomposition (X, A, B~ C) of
G = (>%E), where w(V) ~ (2a + 1)m, such that
w(W) < (a + 1)m, w(X) ~ am, w((W ~ A) ~
X) < (a + 1)m, w((W < B) U X) < (a + 1)m and
w((W ~ C) U X) < (a + 1)m. Once the termination
condition is tnet, namely, w(V) < (2~ + 1)m, we ap-
ply the following greedy algorithm which is called the
minimum weight heuristics: repeatedly, select a vertex
v wkick forms with ~ts neighbors N(v) a set of mira
i~nmn weight, remove it from the current graph, and
make N(v) a clique. We call this modified algorithm
W- Triangulate.

The followiug claim holds.

Theorem 4 If G is a graph with n vertices, m and
o¢ > I are real numbers, and W is a subset o] V such
tha~ w(W) < (a + 1)m, then W-Triangulate(G,W,m)
triangulates G such that the vertices of W form a
clique and such that the weight of a heaviest clique of
the triangulated graph < (2~ + 1)m or the algorithm
correctly outputs that the weighted cliquewidth of G is
larger than m.

Proofi Theorem 3 and Lemmas 1 and 2 remain valid
when the cardinallty of sets is replaced with ~heir
weight and k is replaced with m. []

Theorem 4 states that in the junctior, tree found by
W-Triangulate tile weight of the heaviest clique is less
then 2~ + 1 times the weighted cliquewidth.

The cmnplexity of W- Triangulate depends on the max-
imum size of W throughout tile recursive calls which
we denote by, s. The complexity of W-Triangulate is
O(k24a*n~) when the 2-approximation algorithm for
the a-way vertex cut problem is used. The heaviest
clique in the resulting junctiol~ tree is at most 5 times
the weighted cliquewidth. Since, k < s < lnin {re, n},
this complexity is comparable to the complexity of in-
ference on the resulting junction tree wifich is O
and it is smaller than the colnplexity of inference if
state spaces are sufficiently large. Usually s is closer
to the cliquewidth k than to m or n.

Indeed, a more subtle ~nodification of Triangu-
late yields an algorithln that is exponeatial in the
cliquewidth k rather than in s.

Theorem 5 Let G be a graph with n vertices hav-
ing a weighted cliqucwidth m and a cliquewidth k.
Ti~en, there: exists an algo~thm W*-Tviangulate hav-
ing a complexity o] O(cana), where a and c are con-
stants, which finds a junction tree such that the weight
of its heaviest clique is at most a constant [actor off

The algorithm W*-Triangulate gets two paraineters k
and m. h~ cacti step, it finds a decomposition which is
bounded both by (2~ + 2)m aud by (2a + 2)k. Titus,
it guarantees that the weigt~t and, simultaneously, the
size of W will not grow too much. This algorithm
cannot outperform W-Triangulate (in the experilnents

W-~I~rianguiate Eq Greedy

M 75 .62 2.35 16 9 .3 .93
T ra u.ar 11 16 .42 1.22

Figure 3: The results for 100 runs on Medianus I. The
first line records tile differences on the average and
in the extreme case of the logarithm of the heaviest
clique. Ill 16 instances tim algorithms produced equal
output. Tim second line records the same inforlnation
regarding the logarithtn of the rural state space.

reported herein) because in all our experi,nents wheu-
ever the weight of W was small, the size was smatl as
well.

6 Experimental Results

Kjaerulff (1990) has tested several heuristic algorithms
for constructing j unction trees for two graphs that were
used for a medical application: Medianus I and Me-
dianus II. His experiments show that the ,nini,num
weight heuristics enhanced by removing redm~dant fiI1-
in edges is superior to all other heuristics that were
considered. We wil! compare W-Triangulate wlti~ this
e~lhanced minimmn weight heuristics on Medimms I.
This graph contains 43 vertices and 110 edges. We use
twu optiinalit.y criteria for the comparison, the loga-
rithm of the state space size of the heaviest clique de-
noted by M and the logarithm of the ~otal state space
deao~ed by T. Criterion M is the one that served to de-
velop W-Triangulate and T is the oue that optimizes
tile construction of the probability tables for the re-
sulti,~g j unction tree.

The two algorith~ns were run on Medianus I with state
sizes randomly selected frown the range a to 21 with
an average of approximately 6 (as in [Kjg0]). One
hundred random runs were made. In 68 runs our
algorithin has outperformed the enhanced milfimutn
weight heuristics ill both optimality criteria. Fig-
ure 3 shows that the averaged improvement of T was
0.64 and tile lnaxi~num improvement was 2.37 which
amounts to a reduction of storage by a factor of about
5. Ia the 16 instances il~ which the greedy method was
more successful, the differelme was at most 1.22. Of
course, to obtain tim best results one can simply run
both algorithms.

When the state space size of each vertex was selected
between 6 and 32 with an average of 13, ~’e fou,d
two graphs in which T is approxilnately 30 using W-
Triangulate and T is approxiinately 34.5 using the en-
hanced greedy algoritlun which implies that instead of
1CB of ~nemory which we need for storing the condi-
tional probabilities, the greedy algorittnn would kave
used over 20GB. In general, as tile state spaces increase
our algorithm becomes far better tltan the enhanced
minimum weight het, ristics.

88 Becker and Geiger

Recall that the algorithm W-Triangulate(G,O,k) is
rtm with iucreasit~g values of k until a
is found. We have recorded the number of vertices l
the largest clique (in size) of the junction tree found
by W- Triangulate(G: O, k) when it succeeded and com-
pared it to the value of k. Let A = l- k. The m~imal
clique size found is of size l while the cliquewidth is
larger than k - 1 (because the algorithm failed with
k - 1 as an input). Then, A was 0 in 6 graphs (prov-
ably optimum size)~ 1 it~ t4 graphs (at most one vertex
off optimum), 2 in 29 graphs, 3 in 48 graphs and 4 in 3
graphs. The worst case upper bound on the ratio b~
tween the size of the largest clique and the unknown
cliquewidth was 1/k = 10/6 rather than 3.66 which
is guaranteed in theory. Indeed, one ca,mot hope
improve the junction tree too much on this graph.

We also collected some statistics on the running time
complexity. We counted the number of partitions
~nade each time a W-deemnposition is constructed.
The count for Medianus I was always far less than 4~
rather ~han 4a~ which is the worst case bound. The
recursion depth was at ~nos~ 3. The algorithm runs in
less than a miuute for ~nost graph instances but occa-
sionally it takes up to two minutes. On these examples
Robertson mid Seymour’s algorithm runs faster and
obtains identical results.

7 Discussion

We presented an algorithms that finds a junction tree
in which the largest clique is no more than 3.66 ti~nes
tile cliquewidth. If the cliquewidth of G is of size
k = O(logn), then our approximation algorithm is
polynomial since its complexity is O(24’6~n-poly(n))
where poly(n) is the complexity of linear program-
ruing. It is well known that inference in an optimal
j unetiou tree with binary variables takes O(2~ n) which
is polynomial for a logarithmic cliquewidth. Thus, in-
ference done using the junction tree produced by our
algoriflnn, as well as by Robertson aud Seymou~’s al-
gorithm, is guaranteed to be polynomial as well b~
cause if we err at most by a constant factor, the time
of inference is at most the optional ti~ne raised to some
power and so inference stays polyno~nial. Note that
tile heuristic constructions of junction trees whiclf do
slot guarantee a constant error bound are not polyno-
miah

Tile claim that finding the cliquewidth of a graph is
polynomial if k = O(logn) means that for every se-
quence of graphs G~,,~,,, n = I,..., wi~h n vertices and
a cliquewidth kn, our algorithm finds the eliquewidth
in polynomial time if k,~ < c log n for n ~ u0 where n0
and e are constants.

The uatural question to raise is whether a poly~mnial
infermme algorithm exists if the cliquewidth grows a
bit faster thau logarithmic, say k,~ = O(log~+~ n) for
~ > 0. We now show that if a polynomial infer-
ence algorithm exists for all networks having such a
cliquewidth growth, then every inference problem can

be solved in subexponential time which implies that
every NP-comple~e problem can be solved in subex-
ponential time due to Cooper’s reduction from 3-SAT
[Co90]. Let Gz,k~ be a sequence of graphs for which the
cliquewidth grows at a slightly faster rate than loga-
rithmic. Suppose an inference problem is given on each
network in this sequence. Examine tile network in tile
sequence with l vertices. Add isolated vertices to the
given network. The cliquewidth remains unchanged
and is at moslo l. Whes~ enough vertices are added
(i.e., l = O(log~+~ n)), we use the assumed polynomial
inference algorithm to solve the inference problem of
the augmented graph which also solves the original
inference problem. The complexity of this assmned
algorithm is polynmnial in n--the number of vertices
with the added isolated ones--which is subexponential
in 1. Consequently, this algorithm solves an arbitrary
inference problem in less than exponentiM time (in I).

One tnust emphasize that this negative result means
that probably there are some hard graphs for inference
among those having a supper logarithmic cliquewidth.
We believe that actually all such graphs are hard for
inference if tile proper conditional tables are used (e.g.
polytrees can have an arbitrary large cliquewidth and
they are still solvable for specific conditional tables,
i.e., tile noisy-or model [Pe88]).

Our results could possibly be i~nproved in the following
direction. One extension of our work is to construct
an algorithm that finds an optimal junction tree wrt
the weighted cliquewklth with a complexity of optimal
inference, i.e., O(2~n), or errs by a factor smaller than
3.66. Our algorithm can yield at best a factor of 3 if
an efficient exact algorithm is found for tt~e a-way ver-
tex cut problem for graphs with bounded cliquewidth
(The existence of such an algorithm is hinted paren-
ttletically in [DJPSY92] but we have not yet pursued
this directiou).
As a final comment, let us shed light oll the tom, non
utterance used by the AI co,mnmfity, that "inference is
em~y in sparse graphs". Recall ~hat if the cliquewidth
is of size k, theu the graph has no ~nore than kn edges
(see e.g., Section 4). Hence, sparse graphs in the con-
text of easy inference should mean that tile cliquewidth
is of size 0(log n), which allows a polynomial inference
algoritlnn, and i~nplies that there are no ~nore than
O(n log n) edges in tile graph.

Acknowledgment

We thank SeN Naor for pointiug us to the term
treewidth, for helping us prove that a polynomial infer-
ence algorithm is slot likely to exist if the cliquewidth
is larger than logarithmic, and for poiming us to
[GVY94]. We thank Leonid Zusin for showing us
examples of poor junction trees produced by various
greedy algorithms. We thank the reviewers for their
helpful com~nents and for the references they provided
us, in particular, Reed’s paper.

A fast algorithm for finding junction trees 89

References

fAr85] Arnborg S., Efficient algorithms for cmnbina-
torial problems on graphs with bounded decompos-
ability, BIT 25, pp. 2 23, 1985.

[ACP87] Aruborg S., Corneil D.G., and Proskurowski
A. Complexity of finding e~nbeddings in a k-tree,
SIAM ,L All. Disc. Meth. 8, pp. 277-284, 1987.

[ALS91] Arnborg S., Lagergren J., and Seese D., Easy
problmns for tree-decolnposable grapt~s, J. of All.
12, pp. 308-340, 1991.

[AP86] Arnborg S. and Proskurowski A. Characteri-
zation and recognition of partial 3-trees, SIAM
Alg. Disc. Meth. 7, pp. 30 -314, 1986.

[BG94] Becker A., and Geiger D. The loop cutset
problem, Proceedings of the te,xth conference on Un-
certainty in artificial intelligence, Seattle, Waslfing~
ton, pp. 60 68, 1994.

[BGHK91] Bodlaender H.L., Gilbert J.R., Hafsteins-
son H. and Kloks T. Approximating treewidth~
part,width, and mini~num elimination tree height,
Graph-theoretic concepts in computer science, In
proceedings: 17th Inter,lational workshop, WG’91,
Fischbacl~au, Germany, L~cture notes in Computer
Science, Springer-Verlag, #570, 1991.

[Bo93] Bodlaender H.L., A linear time algorithm for
finding tree-decotnpositions of small treewidth, Pro-
ceedings of the 25th ACM STOC, pp. 226 234.

[Cu911 Cunningham W.H. The optimal tnultiter,ninal
cut problem. DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, 5, pp.105-
120,1991.

[CLR90] Cormen T.H., Leiserson C.E., and Rivest
R.L., Introduction to algorithms, The MIT press,
London, England, 1990.

[Co90] Cooper G. The co~nputational complexity of
probabilistic inference using Bayesian belief net-
works, Artificial Intelligence, 42, pp.393-405, 1990.

[DJPSY92] Dahlbaus E., Johnsou D.S., Papadi~n-
itriou C. H., Seymour P.D., and Yammkakis M., The
complexity of multiway cuts, Ia Proceedings: 24th
Ammal ACM STOC, pp. 241 251, 1994.

[DP89] Dect~ter R. and Pearl J., Tree clustering for
constraint networks, Artificial Intelligence, 38
(t989), 353 366.

/GVY94] Garg N., Vazirani V. V., and Ya*makakis
M., Multiway cuts in directed and node weighted
graptts, In Proceedings: Automata, Languages
and Programming, 21st International Colloquium,
ICALP94, .Jerusalem, Israel, 1994, Lecture Notes in
Computer Science #820, pp. 487 498.

[JLO90] Jensen F. V., Lauritzen S.L., and Olesen
K.G., Bayesian updating in causal probabilistic net-
works by local computations, Computational Statis-
tics Quarterly 4 (1990), 269-282.

[Kj90] KjaerulffU., Triangulation of grapt>algorithms
giving s~nall total state space. Technical Report R
90-09, Department of Mathematics and Computer
Scim~ce, Aatborg university, Denmark, March 1990.

[K194] T. Kloks, Treewidth, Springler-Verlag, Lecture
notes in Co,nputer Science #842, 1994.

[La96] J. Lagergren. Efficient parallel algorithms for
graphs of bounded treewidth, Journal of Algo-
rithms, 20:20-44, 1996.

[LS88] Lauritzen, S.L. and Spiegelhalter, D.J. Lo-
cal Computations with Probabilities o~ Graptfical
Structures and Their Application to Expert Syste~ns
(with discussion). Journal Royal Statistical Society,
B, 1988, 50(2):!57-224.

[Pe88] Pearl, J., Probabilistic reasoning in intelligent
systems: Networks of plausible inference. Morgan
Kaufmann, San Mateo, California, 1988.

[Pe86] Pearl, J., Fusiox~, propagatioz~ and structur-
ing in belief networks, Artificial Intelligence, 29:3
(!986), 241-288.

[Re92] Reed B., Finding approximate separators and
computing treewidth quickly~ Proceedings of the
24th Annual Symposium on Theory of Computing,
pp. 221 228, NY, 1992, ACM Press.

[RS95] Robertson N. and Seymour P.D., Graplt mi-
nors XIII. The disjoint paths problem, J. Comb,
Theory, Series B, 63:65-110, 1995.

[Ro74] Rose D., Triangulated graphs and the elimina-
tion process, ~L Math. anal. appl., 32 (1974), 597-
609.

