
Random Algorithms for the Loop Cutset Problem

ANN BECKER, REUVEN BAR-YEHUDA, DAN GEIGER*
Computer Science Department

Technion, ISRAEL
{anyuta,reuven,dang)@cs.technion.ac.il

Abstract

We show how to find a minimum loop cut-
set in a Bayesian network with high proba-
bility. Finding such a loop cutset is the first
step in Pearl's method of conditioning for in-
ference. Our random algorithm for finding a
loop cutset, called REPEATEDWGUESSI, out-
puts a minimum loop cutset, after O(c.6"n)
steps, with probability a t least 1 - (1 - $) c ~ * ,

where c > 1 is a constant specified by the
user, k is the size of a minimum weight loop
cutset, and n is the number of vertices. We
also show empirically that a variant of this al-
gorithm, called WRA, often finds a loop cut-
set that is closer to the minimum loop cutset
than the ones found by the best deterministic
algorithms known.

1 Introduction

All exact inference algorithms for the computation of
a posterior probability in general Bayesian networks
have two conceptual phases. One phase handles oper-
ations on the graphical structure itself and the other
performs probabilistic computations. For example, the
clique tree algorithm requires us to first find a "good"
clique tree and then perform probabilistic computa-
tions on the clique tree [LS88]. Pearl's method of con-
ditioning requires us first to find a "good" loop cutset
and then perform a calculation for each loop cutset
[Pe86, Pe881. Finally, Shachter's algorithm requires us
to find a "good" sequence of transformations and then,
for each transformation, to compute some conditional
probability tables [Sh86].

In the three algorithms just mentioned the first phase
is to find a good discrete structure, namely, a clique
tree, a cutset, or a sequence of transformations. The
goodness of the structure depends on a chosen param-
eter that, if selected appropriately, reduces the proba-

'On sabbatical at Microsoft Research.

bilistic computations done in the second phase. Find-
ing a structure that optimizes the selected parameter
is usually NP-hard and thus heuristic methods are ap-
plied to find a reasonable structure. Most methods
in the past had no guarantee of performance and per-
formed very badly when presented with an appropriate
example. Becker and Geiger offered an algorithm that
finds a loop cutset for which the logarithm of the state
space is guaranteed to be a constant factor off the op-
timal value [BG94, BG961. Bafna et al. and Fujito
developed similar algorithms [BBF95, Fu961.

While the approximation algorithms for the loop cut-
set problem are quite useful, it is worthwhile to invest
in finding a minimum loop cutset, rather than an ap-
proximation, because the cost of finding such a loop
cutset is amortized over the many iterations of the con-
ditioning method. In fact, one may invest an effort of
complexity exponential in the size of the loop cutset or
even larger in finding a minimum loop cutset because
the second phase of the conditioning algorithm, which
is repeated for many iterations, uses a procedure of
such complexity. The same considerations apply also
to constraint satisfaction problems [De90].

In this paper we describe several random algorithms
that compute a loop cutset. As in [BGNR94], our
solution is based on a reduction to the Weighted Feed-
back Vertex Set (WFVS) Problem, defined below. A
feedback vertex set F is a set of vertices of an undi-
rected graph G = (V, E) such that by removing F
from G, along with all the edges incident with F, a
set of trees is obtained. The weighted feedback vertex
set (WFVS) problem is to find a feedback vertex set
F of a vertex-weighted graph (G,w), w : V -t R+,
such that CvEF W(V) is minimized. When w(v) G 1,
this problem is called the FVS problem. The decision
version associated with the FVS problem is known to
be NP-complete [GJ79, pp. 191-1921. Note that also
the problem of finding a minimum loop cutset is NP-
complete [SC90].

Our random algorithm for finding a FVS, called RE-
PEATEDWGUESSI, outputs a minimum weight FVS,
after O(c . Gkkn) steps, with probability at least 1 -

50 Becker, Bar-Yehuda, and Geiger

(1 - &) c ~ ' , where c > 1 is a constant specified by the probability P(ui I v1 = ~ 1 , . . . , VI = vl) for
the user. k is the size of a minimum weictht FVS. and i = 1,. . . . n.
n is the'number of vertices. For unwekhted graphs
we present an algorithm that finds a minimum FVS
of a graph G, after 0(4kkn) steps, with probabil-

In comparison, several ity at least 1 - (1 - F)
deterministic algorithms for finding a minimum FVS
are described in the literature. One has a complexity
O((2k + l)kn2) [DF95] and others have a complexity
0((17k4)!n) [Bo90, DF921.

A final variant of our random algorithms, called WRA,
has the best performance because it utilizes informa-
tion from previous runs. This algorithm is harder
to analyze and its investigation is mostly experimen-
tal. We show empirically that the actual run time of
WRA is comparable to a Modified Greedy Algorithm
(MGA), devised by Becker and Geiger [BG96], which
is the best available deterministic algorithm for finding
close to optimal loop cutsets, and yet, the output of
WRA is often closer to the minimum loop cutest than
the output of MGA.

The rest of the paper is organized as follows. In Sec-
tion 2 we outline the method of conditioning, explain
the related loop cutset problem and describe the re-
duction from the loop cutset problem to the Weighted
Feedback Vertex Set (WFVS) Problem. In Section 3
we present three random algorithms for the WFVS
problem and their analysis. In Section 4 we compare
experimentally WRA and MGA wrt performance and
run time.

2 Background: The loop cutset
problem

Pearl's method of conditioning is one of the best known
inference methods for Bayesian networks. I t is a
method of choice in some genetic linkage programs
[Ot91, BGS981. A short overview of the method of
conditioning, and definitions related to Bayesian net-
works, are given below. See [Peg81 for more details.
We then define the loop cutset problem.

Let P(ul , . . . , un) be a probability distribution where
each ui draws values from a finite set called the domain
of ui. A directed graph D with no directed cycles
is called a Bayesian network of P if there is a 1-1
mapping between {ul, . . . , u,) and vertices in D , such
that ui is associated with vertex i and P can be written
as follows:

where i l , . . . , ij(q are the source vertices of the incom-
ing edges to vertex i in D.

Suppose now that some variables {vl, . . . , vl) among
(211,. . . , un) are assigned specific values {vl, . . . , vl)
respectively. The updating problem is to compute

A tmil in a Bayesian network is a subgraph whose un-
derlying graph is a simple path. A vertex b is called a
sink with respect t o a trail t if there exist two consec-
utive edges a + b and b t c on t. A trail t is active
by a set of vertices Z if (1) every sink with respect to
t either is in Z or has a descendant in Z and (2) every
other vertex along t is outside Z. Otherwise, the trail
is said to be blocked (d-separated) by Z.

Verma and Pearl [VP88] have proved that if D
is a Bayesian network of P (u l , . . . ,un) and all
trails between a vertex in {rl, . . . , rl) and a ver-
tex in {sl, . . . , s k) are blocked by {tl, . . . , t,), then
the corresponding. sets of variables {u,,, . . . ,u,,)
and {u,, , . . . , u,,) are independent conditioned on
{ut, , . . . , ut,). Furthermore, Geiger and Pearl proved
a converse to this theorem [GPgO]. Both results are
presented and extended in [GVPgO].

Using the close relationship between blocked trails and
conditional independence, Kim and Pearl [KP83] de-
veloped an algorithm UPDATE-TREE that solves the
updating problem on Bayesian networks in which ev-
ery two vertices are connected with a t most one trail
(singly-connected). Pearl then solved the updating
problem on any Bayesian network as follows [Pe86].
First, a set of vertices S is selected such that any two
vertices in the network are connected by a t most one
active trail in S U Z, where Z is any subset of ver-
tices. Then, UPDATE-TREE is applied once for each
combination of value assignments to the variables cor-
responding to S, and, finally, the results are combined.
This algorithm is called the method of conditioning
and its complexity grows exponentially with the size
of S. The set S is called a loop cutset. Note that when
the domain size of the variables varies, then UPDATE-
TREE is called a number of times equal to the product
of the domain sizes of the variables whose correspond-
ing vertices participate in the loop cutset. If we take
the logarithm of the domain size (number of values)
as the weight of a vertex, then finding a loop cutset
such that the sum of its vertices weights is minimum
optimizes Pearl's updating algorithm in the case where
the domain sizes may vary.

We now give an alternative definition for a loop cutset
S and then provide a probabilistic algorithm for find-
ing it. This definition is borrowed from [BGNR94].
The underlying graph G of a directed graph D is the
undirected graph formed by ignoring the directions of
the edges in D. A cycle in G is a path whose two
terminal vertices coincide. A loop in D is a subgraph
of D whose underlying graph is a cycle. A vertex v
is a sink with respect to a loop r if the two edges ad-
jacent to v in r are directed into v. Every loop must
contain at least one vertex that is not a sink with re-
spect to that loop. Each vertex that is not a sink with
respect to a loop r is called an allowed vertex with re-

Random Algorithms for the Loop Cutset Problem 51

spect to I?. A loop cutset of a directed graph D is a
set of vertices that contains at least one allowed ver-
tex with respect to each loop in D. The weight of a
set of vertices X is denoted by w(X) and is equal to
CvEX w(v) where w(x) = log(lx() and 1x1 is the size
of the domain associated with vertex x. A minimum
loop cutset of a weighted directed graph D is a loop
cutset F* of D for which w(F*) is minimum over all
loop cutsets of G. The Loop Cutset Problem is defined
as finding a minimum loop cutset of a given weighted
directed graph D.

The approach we take is to reduce the weighted loop
cutset problem to the weighted feedback vertex set
problem, as done by [BGNR94]. We now define the
weighted feedback vertex set problem and then the re-
duction.

Let G = (V, E) be an undirected graph, and let
w : V + R+ be a weight function on the vertices
of G. A feedback vertex set of G is a subset of ver-
tices F V such that each cycle in G passes through
a t least one vertex in F. In other words, a feedback
vertex set F is a set of vertices of G such that by re-
moving F from G, along with all the edges incident
with F, we obtain a set of trees (i.e., a forest). The
weight of a set of vertices X is denoted (as before) by
w(X) and is equal to C,,, w(v). A minimum feed-
back vertex set of a weighted graph G with a weight
function w is a feedback vertex set F* of G for which
w(F*) is minimum over all feedback vertex sets of G.
The Weighted Feedback Vertex Set (WFVS) Problem
is defined as finding a minimum feedback vertex set of
a given weighted graph G having a weight function w .

The reduction is as follows. Given a weighted directed
graph (D, w) (e.g., a Bayesian network), we define the
splitting weighted undirected graph D, with a weight
function w, as follows. Split each vertex v in D into
two vertices vi, and v,,, in D, such that all incoming
edges to v in D become undirected incident edges with
s, in D,, and all outgoing edges from v in D become
undirected incident edges with v,,, in D,. In addition,
connect q, and v,,, in D, by an undirected edge. Now
set ws(qn) = co and w,(v,,,) = w(v). For a set of
vertices X in D,, we define $ (X) as the set obtained by
replacing each vertex q, or v.,, in X by the respective
vertex v in D from which these vertices originated.

Our algorithm can now be easily stated.

Algor i thm R L C

Input : A Bayesian network D
Outpu t : A loop cutset of D

1. Construct the splitting graph D,
with weight function w,;

2. Apply WRA on (D,, w,) to obtain
a feedback vertex set F;

3. Output $(F).

It is immediately seen that if WRA outputs a feed-
back vertex set F of D, whose weight is minimum
with high probability, then $(F) is a loop cutset of D
with minimum weight with the same probability. This
observation holds because there is an obvious one-to-
one and onto correspondence between loops in D and
cycles in D, and because WRA never chooses a vertex
that has an infinite weight.

3 Algorithms for the WFVS problem

Recall that a feedback vertex set of G is a subset of ver-
tices F C V such that each cycle in G passes through
at least one vertex in F. In Section 3.1 we address
the problem of finding a FVS with a minimum num-
ber of vertices and in Sections 3.2 and 3.3 we address
the problem of finding a FVS with a minimum weight.
Throughout, we allow G to have parallel edges. If two
vertices u and v have parallel edges between them,
then every FVS of G includes either u, v, or both.

3.1 The basic algorithms

In this section we present a random algorithm for the
FVS problem. First we introduce some additional ter-
minology and notation. Let G = (V, E) be an undi-
rected graph. The degree of a vertex v in G, denoted
by d(v), is the number of vertices adjacent to u. A
self-loop is an edge with two endpoints a t the same
vertex. A leaf is a vertex with degree less or equal 1,
a linkpoint is a vertex with degree 2 and a branchpoint
is a vertex with degree strictly higher than 2. The
cardinality of a set X is denoted by 1x1.
A graph is called rich if every vertex is a branchpoint
and it has no self-loops. Given a graph G, by repeat-
edly removing all leaves, and bypassing every linkpoint
with an edge, a graph G' is obtained such that the size
of a minimum FVS in G' and in G are equal and ev-
ery minimum FVS of G' is a minimum WFVS of G.
Since every vertex involved in a self-loop belongs to
every FVS, we can transform G' to a rich graph G' by
adding the vertices involved in self loops to the output
of the algorithm.

Our algorithm is based on the observation that if we
pick an edge at random from a rich graph there is a
probability of a t least 112 that a t least one endpoint
of the edge belongs to any given FVS F . A precise
formulation of this claim is given by Lemma 1 whose
proof appears implicitly in [Vo68, Lemma 41.

Lemma 1 Let G = (V, E) be a rich graph, F be a
feedback vertex set of G and X = V \ F. Let Ex
denote the set of edges in E whose endpoints are all
vertices in X and EF,x denote the set of edges in G
that connect vertices in F unth vertices in X. Then,
lExl I l E ~ , x l .

Proof. The graph obtained by deleting a feedback

52 Becker, Bar-Yehuda, and Geiger

vertex set F of a graph G(V, E) is a forest with vertices defined by the user. If in one of the iterations a FVS
X = V \ F . Hence, /Ex/ < 1x1. However, each vertex of size I k is found, then output this FVS, otherwise,
in X is a branchpoint in G, and so, increase k by one and continue.

Thus, [Ex[I IEF,xI.

Lemma 1 implies that when picking an edge a t random
from a rich graph, it is at least as likely to pick an edge
in EF,x than an edge in Ex. Consequently, selecting
a vertex a t random from a randomly selected edge has
a probability of a t least 114 to belong to a minimum
FVS. This idea yields a simple algorithm to find a FVS.

A L G O R I T H M SingleGuess(G,k)

Input: An undirected graph Go
and an integer k > 0.

Output : A feedback vertex set F of size 5 k,
or "Fail" otherwise.

For i = l , ..., k
1. Reduce Gi-1 to a rich graph Gi

while placing self loop vertices in F .
2. If Gi is the empty graph R e t u r n F
3. Pick an edge e = (u, v) a t random from Ei
4. Pick a vertex vi at random from (u, v)
5. F t F U {vi)
6. V t V \ {vi)

R e t u r n "Fail"

Due to Lemma 1, when SINGLEGUESS terminates with
a FVS of size k, there is a probability of a t least 1 1 4 ~
that the output is a minimum FVS.

Note that steps 1 and 2 in SINGLEGUESS determine a
vertex v by first selecting an arbitrary edge and then
selecting an arbitrary endpoint of this edge. An equiv-
alent way of achieving the same selection rule is to
choose a vertex with probability proportional to its
degree:

To see the equivalence of these two selection methods,
define I'(v) to be a set of edges whose one endpoint is
v , and note that for graphs without self-loops,

This equivalent phrasing of the selection criterion is
easier to extend to the weighted case and will be used
in the following sections.

An algorithm for finding a minimum FVS with high
probability, which we call REPEATEDGUESS, can now
be described as follows: Start with k = 1. Repeat
SINGLEGUESS c . 4k times where c > 1 is a parameter

ALGORITHM RepeatedGuess(G,c)

Input: An undirected graph G
and a constant c > 1.

Output: A feedback vertex set F .
For k = I, . . . , IVI

Repeat c . 4k t imes
1 . F t SINGLEGUESS(G, k)
2. If F is not "Fail" t h e n R e t u r n F

E n d {Repeat)
End {For)

The main claims about these algorithms are given by
the following theorem.

Theorem 2 Let G be an undirected graph and c >
1 be a constant. Then, SINGLEGUESS(G, k) outputs
a FVS whose expected size is no more than 4k, and
REPEATEDGUESS(G, C) outputs, after 0(4k kn) steps,
a minimum FVS with probability at least 1 - (1 - f) c ~ ' ,

where k is the size of a minimum FVS and n 8s the
number of vertices.

The claims about the probability of success and num-
ber of steps follow immediately from the fact that the
probability of success of SingleGuess is at least (114)~
and that, in case of success, 0(4&) iterations are per-
formed each taking O(kn) steps. The proof about the
expected size of a single guess is presented in the next
section.

Theorem 2 shows that each guess produces a FVS
which, on the average, is not too far from the mini-
mum, and that after enough iterations, the algorithm
converges to the minimum with high probability. In
the weighted case, discussed next, we managed to
achieve each of these two guarantees in a separate algo-
rithm, but we were unable to achieve both guarantees
in a single algorithm.

3.2 T h e weighted algorithms

We now turn to the weighted FVS problem (WFVS)
of size k which is to find a feedback vertex set F of
a vertex-weighted graph (G, w), w : V -t IR', of size
less or equal k such that w(F) is minimized.

Note that for the weighted FVS problem we cannot
replace each linkpoint v with an edge, since if v has
weight lighter than its branchpoint neighbors then v
can participate in a minimum weight FVS of size k.

A graph is called branchy if it has no endpoints, no
self loops, and, in addition, each linkpoint is connected
only to branchpoints [BGNR94]. Given a graph G, by
repeatedly removing all leaves, and bypassing with an
edge every linkpoint that has a neighbor with equal or
lighter weight, a graph G' is obtained such that the

Random Algorithms for the Loop Cutset Problem 53

weight of a minimum weight FVS (of size k) in G'
and in G are equal and every minimum WFVS of G'
is a minimum WFVS of G. Since every vertex with
a self-loop belongs to every FVS, we can transform
G' to a branchy graph without self-loops by adding
the vertices involved in self loops to the output of the
algorithm.

To address the WFVS problem we offer two slight
modifications to the algorithm SINGLEGUESS pre-
sented in the previous section. The first algorithm,
which we call SINGLEWGUESSI, is identical to SIN-
GLEGUESS except that in each iteration we make a
reduction to a branchy graph instead of a reduction to
a rich graph. I t chooses a vertex with probability pro-
portional to the degree using p (~) = d (~) / CuEy d (~) .
Note that this probability does not take the weight of
a vertex into account. A second algorithm, which we
call SINGLEWGUESSII, chooses a vertex with proba-
bility proportional to the ratio of its degree over its
weight,

A L G O R I T H M SingleWGuessI(G,k)

Input : A n undirected weighted gmph Go
and a n integer k > 0.

Output : A feedback vertex set F of size 5 k,
or "Fail" otherwise.

For i = 1, ..., k
1. Reduce Gi-i to a branchy graph Gi(V,, Ei)

while placing self loop vertices in F.
2. If Gi is the empty graph R e t u r n F
3. Pick a vertex vi E Vi at random with

probability pi(v) = d,(v)/ CuEV, di(u)
4. F t F U {vi}
5. v t v \ {Vi}

R e t u r n "Fail"

The second algorithm uses Eq 2 for computing p(v) in
Line 1. These two algorithms have remarkably differ-
ent guarantees of performance. Version I guarantees
that choosing a vertex that belongs to any given FVS
is larger than 116, however, the expected weight of a
FVS produced by version I cannot be bounded by a
constant times the weight of a minimum WFVS. Ver-
sion I1 guarantees that the expected weight of its out-
put is bounded by 6 times the weight of a minimum
WFVS, however, the probability of converging to a
minimum after any fixed number of iterations can be
arbitrarily small. We first demonstrate via an example
the negative claims. The positive claims are phrased
more precisely in Theorem 3 and proven thereafter.

Consider the graph shown in Figure 1 with three ver-
tices a ,b and c, and corresponding weights w(a) = 6,
w(b) = 3e and w(c) = 3m, with three parallel edges
between a and b, and three parallel edges between b

w(c) = 36 w (a) = 6 w (b) = 3m
n -

Figure 1: The minimum WFVS F* = {a}.

and c. The minimum WFVS F* with size 1 consists
of vertex a. According to Version 11, the probability
of choosing vertex a is (Eq. 2):

So if e is arbitrarily small and m is sufficiently large,
then the probability of choosing vertex a is arbitrarily
small. Thus, the probability of choosing a vertex from
some F* by the criterion d(v)/w(v), as done by Version
11, can be arbitrarily small. If, on the other hand,
Version I is used, then the probability of choosing a, b,
or c is 1/2,1/4,1/4, respectively. Thus, the expected
weight of the first vertex to be chosen is 314. (e +
m + 4), while the weight of a minimum WFVS is 6.
Consequently, if m is sufficiently large, the expected
weight of a WFVS found by Version I can be arbitrarily
larger than a minimum WFVS.

The algorithm for repeated guesses, which we call
REPEATEDWGUESSI is as follows: repeat SIN-
GLEWGUESSI c . 6k times, where k is the number of
vertices (size) of a minimum WFVS we seek. If no FVS
is found of size 5 k, the algorithm outputs that the size
of a minimum WFVS is larger than k with high prob-
ability, otherwise, it outputs the lightest FVS of size
less or equal k among those explored. The following
theorem summarizes the main claims.

Theorem 3 Let G be a weighted undirected graph and
c 2 1 be a constant.
a) The algorithm REPEATEDWGUESSI(G, C) outputs,
after O(6"n) steps, a m in imum FVS with probability
at least 1 - (1 - &) c ~ * , where k i s the size of a mini-
m u m weight FVS of G and n is the number of vertices.
b) The algorithm SINGLEWGUESSII(G) outputs a
feedback vertex set whose expected weight i s n o more
than six times the weight of the m i n i m u m WFVS.

The proof of each part requires a preliminary lemma.

Lemma 4 Let G = (V, E) be a branchy graph, F be
a feedback vertex set of G and X = V \ F . Let Ex
denote the set of edges i n E whose endpoints are all
vertices i n X and EF,X denote the set of edges in G
that connect vertices in F with vertices in X . Then,
IExI 5 2 . IEF,xI.

Proof. Let X b be the set of branchpoints in X.
We replace every linkpoint in X by an edge between

54 Becker, Bar-Yehuda, and Geiger

its neighbors, and denote the resulting set of edges
between vertices in X b by E i b and between vertices
in X b and F by E;,,,. The proof of Lemma 1 shows
that

I ~ i b l 5 l ~ k , X b 1 .
Since every linkpoint in X has both neighbors in the
set xb U F , the following holds:

Hence, lExl 5 2 . I E F , ~ ~ .

An immediate consequence of Lemma 4 is that the
probability of randomly choosing an edge that has a t
least one endpoint that belongs to a FVS is greater or
equal 113. Thus, selecting a vertex a t random from
a randomly selected edge has a probability of a t least
116 to belong to a FVS. Consequently, if the algorithm
terminates after c .6' iterations, with a WFVS of size
k, there is a probability of a t least 1 - (1 - that
the output is a minimum WFVS of size a t most k.
This proves part (a) of Theorem 3.

The second part requires the following lemma.

The expected weight Ei(w(v)) = w(v) . pi(.)
of a chosen vertex in iteration i is denoted with ai.
Thus, due to the linearity of the expectation operator,
E(w(F)) = c:=, a,, assuming IF1 = k. We define a
normalization constant for iteration i as follows:

Then, pi(v) = 7 , Yi $# and

Let F* be a minimum FVS of G and F: be minimum
weight FVS of the graph G i . The expected weight
Ei(w(v)lv E F t)) of a vertex chosen from F: in itera-
tion i is denoted with bi. We have,

By Lemma 5 , ai/bi 5 6 for every i.

L e m m a 5 Let G be a branchy graph and F be a FVS Recall that by definition F,' is the minimum FVS in

of G . Then, the branchy graph Gz obtained from G l \ { v l) . We
get,

~ -
because the right hand side is the expected weight of

Proof. Denote by d y (v) the number of edges between the output F assuming the algorithm finds a minimum
a vertex v and a set of vertices Y. Then, FVS on Gz and just needs to select one additional ver-

tex, while the left hand side is the unrestricted expec- x d(v) = x d(v) + d(v) =
vEV V E X W E F x d x (v) + x ~ F (v) + d(v) .

V E X V E X vEF

Due to Lemma 4,

V E X V E X

Consequently,

C ~ F (v) + d(v) i 6 d(v)
V E X vEF V E F

as claimed.

We can now prove part (b) of Theorem 3 analyzing the
performance of SINGLEWGUESSII(G). Recall that Vi
is the set of vertices in graph Gi in iteration i, di(v)
is the degree of vertex v in G i , and vi is the vertex
chosen in iteration i. Furthermore, recall that pi(v) is
the probability to choose vertex v in iteration i.

tation. By repeating this argument we get,

Using xi ai l xi bi 5 maxi ailbi 5 6 , we obtain

Hence, E(w(F)) 1 6 . w (F 8) as claimed.

The proof that SINGLEGUESS(G, k) outputs a FVS
whose expected size is no more than 4k (Theorem 2)
where k is the size of a minimum FVS is analogous
to the proof of Theorem 3 in the following sense.
We assign a weight 1 to all vertices and replace the
reference to Lemma 5 by a reference to the follow-
ing claim: If F is a FVS of a rich graph G , then
EuEv d(v) 5 4 x V E F d (v) . The proof of this claim is
ident~cal to the proof of Lemma 5 except that instead
of using Lemma 4 we use Lemma 1.

3.3 The practical algori thm

In previous sections we presented several algorithms
for finding minimum FVS with high probability. The

Random Algorithms for the Loop Cutset Problem 55

description of these algorithms was geared towards
analysis, rather than as a prescription to a program-
mer. In particular, SINGLEWGUESSI(G,K) discards
all the work done for finding a FVS whenever more
than k vertices are chosen. This feature allowed us to
regard each call to SINGLEWGUESSI(G,K) made by
REPEATEDWGUESSI as an independent process. Fur-
thermore, there is a small probability for a very long
run even when the size 'of the minimum FVS is small.

We now slightly modify REPEATEDWGUESSI to ob-
tain an algorithm, termed WRA, which does not
suffer from these deficiencies. The new algorithm
works as follows. Repeat SINGLEWGUESSI(G, (V()
for min(Max,c. 6w(F)) iterations, where w(F) is the
weight of the lightest WFVS found so far and Max
is some specified constant determining the maximum
number of iterations of SINGLEWGUESSI.

ALGORITHM WRA(G, c, Max)

Input: An undirected weighted graph G(V, E)
and constants Max and c > 1

Output: A feedback vertex set F
F ~ S I N G L E W G U E S S I (G, IVI)
M t min(Maz, c . ~ ~ (~ 1)
i t 1;
While i 5 M do

1. F' CSINGLEWGUESSI(G, IVI)
2. If w(Ff) 5 w(F) then

F t F';
M t min(Max, c . 6w(F))

3. i t i + l ;
End {While)
Return F

Theorem 6 If Max 2 c6" where k is the size of a
minimum WFVS of an undirected weighted graph G,

- - then WRA(G, c, Max) outputs a minimum WFVS of
1 csk, G with probability at least 1 - (1 - $)

The proof is an immediate corollary of Theorem 3.

The choise of Max and c depend on the application. A
decision-theoretic approach for selecting such values
for any-time algorithms is discussed in [BH90].

4 Experimental results -
The experiments compared the outputs of WRA vis-
B-vis a greedy algorithm GA and a modified greedy
algorithm MGA [BG96] based on randomly generated
graphs and on some real graphs contributed by the
Hugin group (www.hugin.com).

The random graphs are divided into three sets. Graphs
with 15 vertices and 25 edges where the number of
values associated with each vertex is randomly cho-
sen between 2 and 6, 2 and 8, and between 2 and 10.

Figure 2: Number of graphs in which MGA or WRA
yield a smaller loop cutset. Each line is based on 100
graphs.

Graphs with 25 vertices and 55 edges where the num-
ber of values associated with each vertex is randomly
chosen between 2 and 6, 2 and 8, and between 2 and
10. Graphs with 55 vertices and 125 edges where the
number of values associated with each vertex is ran-
domly chosen between 2 and 10. Each instance of the
three classes is based on 100 random graphs generated
as described by [SC90]. The total number of random
graphs we used is 700.

The results are summarized in the table below. WRA
is run with M m = 300 and c = 1. The two algorithms,
MGA and WRA, output loop cutsets of the same size
in only 17 graphs and when the algorithms disagree,
then in 95% of these graphs WRA performed better
than MGA.

The actual run time of WRA(G, 1,300) is about 300
times slower than GA (or MGA) on G. On the
largest random graph we used, it took 4.5 minutes.
Most of the time is spend in the last improvement of
WRA. Considerable run time can be saved by letting
Max = 5. For all 700 graphs, WRA(G,1,5) has already
obtained a better loop cutset than MGA. The largest
improvement, with Max = 300, was from a weight of
58.0 (log2 scale) to a weight of 35.9. The improvements
in this case were obtained in iterations 1,2,36,83,189
with respective weights of 46.7, 38.8, 37.5, 37.3, 35.9
and respective sizes of 22, 18, 17, 18, and 17 nodes.
On the average, after 300 iterations, the improvement
for the larger 100 graphs was from a weight of 52 to
39 and from size 22 to 20. The improvement for the
smaller 600 graphs was from a weight of 15 to 12.2 and
from size 9 to 6.7.

The second experiment compared between GA, MGA
and WRA on four real Bayesian networks showing that
WRA outperformed both GA and MGA after a sin-
gle call to SINGLEWGUESSI. The weight of the output
continued to decrease logarithmically with the number
of iterations. We report the results with Max = 1000
and c = 1. Run time was between 3 minutes for Wa-
ter and 15 minutes for Muninl on a Pentium 133 with
32M RAM. The results also indicate that Pearl's con-
ditioning algorithm can not run on these graphs due

56 Becker, Bar-Yehuda, and Geiger

Figure 3: Log size (base 2) of the loop cutsets found
by MGA or WRA.

to the large cutset needed.

Acknowledgement

We thank Seffi Naor for fruitful discussions.

References

[BBF95] Bafna V., Berman P., and Fujito T., Con-
stant ratio approximations of the weighted feedback
vertex set problem for undirected graphs, Proceed-
ings Sixth Annual Symposium on Algorithms and
Computation (ISAAC95), 142-151.

[BGNR94] Bar-Yehuda R., Geiger D., Naor J., and
Roth R. Approximation algorithms for the feedback
vertex set problems with applications to constraint
satisfaction and Bayesian inference. Proceedings of
the 5th Annual ACM-Siam Symposium On Discrete
Algorithms, 1994,344-354.

[BG94] Becker A,, and Geiger D., Approximation al-
gorithms for the loop cutset problem, Proceedings
of the 10th conference on Uncertainty in Artificial
Intelligence, 1994, 60-68.

[BG96] Becker A,, and Geiger D., Optimization of
Pearl's method of conditioning and greedy-like ap-
proximation algorithms for the feedback vertex set
problem, Artificial Intelligence, 83:167-188, 1996.

[BGS98] Becker A., Geiger D., and Schaer A.A. Au-
tomatic selection of loop breakers for genetic linkage
analysis, Human Heredity, 48(1):47-60, 1998

[Bog01 Bodlaender H.L. On disjoint cycles. Int. J.
Found. Comp. Sc. 5, 1994, 59-68.

[BH90] Breese J., and Horvitz E., Ideal reformulation
of belief netwroks, Proceedings of the 6th conference
on Uncertainty in Artificial Intelligence, 1990, 64-
72.

[De90] Dechter R., Enhancement schemes for con-
straint processing: backjumping, learning, and cut-
set decomposition, Artificial Intelligence, 41:273-
312, 1990.

[DF92] Downey R.G., and Fellows M.R., Fixed
parameter tractability and completeness, Congr.
Num., 87:161-187, 1992.

[DF95] Downey R., and Fellows M., Parameterized
Computational Feasibility, 219-244, 1995.

[Fu96] Fujito T., A note on approximation of the ver-
tex cover and feedback vertex set problems - Unified
approach, Information Processing Letters, 59:59-63,
1996.

[GJ79] Garey M.R., and Johnson D.S., Computers
and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman, San Francisco, Cali-
fornia, 1979.

[GPSO] Geiger D., and Pearl J., On the logic of causal
models, In Uncertainty in Artificial Intelligence 4 ,
Eds. Shachter R.D., Levitt T.S., Kana1 L.N., and
Lemmer J.F., North-Holland, New York, 1990, 3-
14.

[GVP9O] Geiger D., Verma T.S., and Pearl J., Identi-
fying independence in Bayesian networks, Networks,
20 (1990), 507-534.

[KP83] Kim H., and Pearl J., A computational model
for combined causal and diagnostic reasoning in in-
ference systems, Proceedings of the Eighth IJCAI,
1983, 190-193.

[LS88] Lauritzen S.L., and Spiegelhalter D.J., Local
computations with probabilities on graphical struc-
tures and their application to expert systems (with
discussion). Journal Royal Statistical Society, B,
1988, 50(2):157-224.

[Ot91] Ott J., Analysis of human genetic linkage, The
Johns Hopkins University Press, 1991, revised edi-
tion.

[Pe86] Pearl, J., Fusion, propagation and structuring
in belief networks, Artificial Intelligence, 29:3:241-
288, 1986.

[Peg81 Pearl, J., Probabilistic reasoning in intelligent
systems: Networks of plausible inference. Morgan
Kaufmann, San Mateo, California, 1988.

[Sh86] Shachter R.D., Evaluating influence diagrams,
Operations Research, 1986, 34:871-882.

[SC90] Suermondt H.J., and Cooper G.F., Proba-
bilistic inference in multiply connected belief net-
works using loop cutsets, Int. J. Approx. Reasoning,
4:283-306, 1990.

[VP88] Verma T., and Pearl, J., Causal networks:
Semantics and expressiveness, Proceedings of Fourth
Workshop on Uncertainty in Artificial Intelligence,
Minneapolis, Minnesota, 1988, 352-359.

[Vo68] Voss H.J., Some properties of graphs contain-
ing k independent circuits, Proceedings of Colloq.
Tihany, Academic Press, New York, 1968, 321-334.

