
Chapter 39

Approximation Algorithms for the Vertex Feedback Set Problem with
Applications to Constraint Satisfaction and Bayesian Inference

Reuven Bar-Yehuda’t Dan Geiger** Joseph (Seffi) Naors” Ron M. Roth*

Abstract

A vertex feedback set of an undirected graph is a subset of
vertices that intersects with the vertex set of each cycle in
the graph. Given an undirected graph G with n vertices
and weights on its vertices, polynomial-time algorithms are
provided for approximating the problem of finding a vertex
feedback set of G with a smallest weight. When the weights
of all vertices in G are equal, the performance ratio attained
by these algorithms is 4 - (2/n). This improves a previous
algorithm which achieved an approximation factor of G
for this case. For general vertex weights, the performance
ratio becomes min{2A2, 41og, n} where A denotes the max-
imum degree in G. For the special case of planar graphs this
ratio is reduced to 10. An interesting special case of weighted
graphs where a performance ratio of 4 - (2/n) is achieved is
the one where a prescribed subset of the vertices, so called
blackout vertices, is not allowed to participate in any vertex
feedback set. It is shown how these algorithms can improve
the search performance for constraint satisfaction problems.
An application in the area of Bayesian inference of graphs
with blackout vertices is also presented.

1 Introduction.

Let G = (V,E) b e an undirected graph, and let u) :
V(G) + IR + be a weight function on the vertices of
G. A cycle in G is a path whose two terminal vertices
coincide. A vertex feedback set of G is a subset of
vertices F C V(G) such that each cycle in G passes
through at least one vertex in F. In other words, a
vertex feedback set F is a set of vertices of G such that
by removing F from G, along with all the edges incident

*Computer Science Department, Teclmion, Haifa 32000, Israel.
rPart of this research was done while the author was visiting

SUNY at Buffalo.
*This research was supportedin part by Teclmion V.P.R Fund

and M. Rochlin Research Fund.
§Part of this research was done while the author was visiting

DIMACS, Rutgers University, NJ. This research was supportedin
part by Teclmion V.P.R. Fund and by Gram No. W-00225/1 from
the United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel.

with F, we obtain a forest. A minimum vertex feedback
set of a weighted graph (G, 1~) is a vertex feedback set of
G of minimum weight. The weight of a minimum vertex
feedback set will be denoted by p(G, w).

The Weighted Vertex Feedback Set (WVFS) Prob-
lem is defined as finding a minimum vertex feedback
set of a given weighted graph (G, w). The special case
where w is the constant function 1 is called the Un-
weighted Vertex Feedback Set (UVFS) Problem. Given
a graph G and an integer k, the problem of deciding
whether p(G, 1) 5 k is k nown to be NP-Complete [8,
pp. 191-1921. Hence, it is natural to look for efficient
approximation algorithms for the vertex feedback set
problem, particularly in view of the recent applications
of such algorithms in artificial intelligence as we show
in the sequel.

Suppose A is an algorithm that finds a vertex
feedback set FA for any given undirected weighted
graph (G,w). We d enote the sum of weights of the
vertices in FA by I. The performance ratio of A
for (G, w) is defined by RA(G, w) = w(FA)/~(G, w).
When p(G, w) = 0 wedefineRA(G,w)=lifw(Fa)=O
and RA(G,w) = co if w(F*) > 0. The performance
ratio r~(n, 20) of A for w is the supremum of RA(G, w)
over all graphs G with n vertices and for the same weight
function w. When w is the constant function 1, we call
rA(n, 1) the unweighted performance ratio of A. Finally,
the performance ratio rA(n) of A is the supremum of
rA(n, w) over all weight functions w defined over graphs
with n vertices.

An approximation algorithm for the UVFS Prob-
lem that achieves an unweighted performance ratio of
2 loga n is essentially contained in a lemma due to Erdds
and P&a [6]. This result was improved by Monien and
Schulz [17], where they achieved a performance ratio
of m. In Section 2 we provide an approximation
algorithm for the UVFS Problem that achieves an un-
weighted performance ratio of at most 4 - (2/n). Our
algorithm draws upon a theorem by Simonovits [al] and
our analysis uses a result by Voss [25].

In Section 3 we present two algorithms for the
WVFS Problem. We first devise a primal-dual algo-

344

APPROXIMATING VERTEX FEEDBACK SETS 345

rithm which is based on formulating the WVFS Problem
as an instance of the set cozier problem. The algorithm
has a performance ratio of 10 for weighted planar graphs
and a performance ratio of 4 log, n for general weighted
graphs. This ratio is achieved by extending the Erd&s-
P&a Lemma to weighted graphs. The second algorithm
presented in Section 3 achieves a performance ratio of
2A2(G) for general weighted graphs, where A(G) is the
maximum degree of G. This result is in particular in-
teresting for low degree graphs. We conjecture that a
constant performance ratio is nevertheless attainable by
a polynomial time algorithm for all weighted graphs.

In Section 4 we consider a special case of the WVFS
problem, where a prescribed subset of the vertices,
called blackout vertices, is not allowed to participate
in any vertex feedback set. We further assume that
the blackout vertices induce a forest. We show that the
bounds previously achieved can be extended to this case
too.

Our interest in graphs with blackout vertices is
motivated by the loop cutset problem and its application
to the updating problem in Bayesian inference in Section
5. Let D be a directed graph. A loop in D is defined as a
subgraph whose underlying undirected graph is a cycle.
Given a weighted directed graph (D, w), the loop cutset
problem is defined as follows: find a minimum weight
set of vertices F in D such that the vertex set of every
loop F in D intersects with F at a vertex which has at
least one outgoing edge in I. The performance ratios
obtained for this problem are similar to those obtained
for the vertex feedback set problem.

Another application of approximation algorithms
for the UVFS Problem in artificial intelligence due to
Dechter and Pearl is as follows [5]. We are given a
set of variables cl, x2, . . . , x,, where each zi takes its
values from a finite domain Di. Also, for every i < j
we are given a constraint subset Ri,j c Di x Dj which
defines the allowable pairs of values that can be taken
by the pair of variables (xi, xj). Our task is to find an
assignment for all variables such that all the constraints
Ri,j are satisfied. With each instance of the problem we
can associate an undirected graph G whose vertex set is
the set of variables, and for each constraint Ri,j which is
strictly contained in Di x Dj (i.e., Ri,j # Di x Dj) there
is an edge in G connecting xi and xj. The resulting
graph G is called a constraint network and it is said to
represent a constraint satisfaction problem.

A common method for solving a constraint satisfac-
tion problem is by backtracking, that is, by repeatedly
assigning values to the variables in a predetermined or-
der and then backtracking whenever reaching a dead
end. This approach can be improved as follows. First,
find a vertex feedback set of the constraint network.

Then, arrange the variables so that variables in the
vertex feedback set precede all other variables, and ap-
ply the backtracking procedure. Once the values of the
variables in the vertex feedback set are determined by
the backtracking procedure, the algorithm switches to a
polynomial-time procedure SOLVE-TREE that solves the
constraint satisfaction problem in the remaining forest.
If SOLVE-TREE succeeds, a solution is found; otherwise,
another backtracking phase occurs.

The complexity of the above modified backtracking
algorithm grows exponentially with the size of the ver-
tex feedback set: If a vertex feedback set contains k vari-
ables, each having a domain of size 2, then the procedure
SOLVE-TREE might be invoked up to 2k times. A pro-
cedure SOLVE-TREE that runs in polynomial-time was
developed by Dechter and Pearl, who also proved the
optimality of their tree algorithm [4]. Consequently, our
approximation algorithm for finding a small vertex feed-
back set reduces the complexity of solving constraint
satisfaction problems through the modified backtrack-
ing algorithm. Furthermore, if the domain size of the
variables varies, then SOLVE-TREE is called a number of
times which is bounded from above by the product of
the domain-sizes of the variables whose corresponding
vertices participate in the vertex feedback set. If we
take the logarithm of the domain size as the weight of
a vertex, then solving the WVFS problem with these
weights optimizes the complexity of the modified back-
tracking algorithm in the case where the domain size is
allowed to vary.

2 The Unweighted Vertex Feedback Set
Problem.

In this section we consider the approximation of the
UVFS Problem described in Section 1. Namely, given
an undirected graph G, find a small vertex feedback
set for (G, 1). Throughout this section a graph means
an undirected graph with at least one vertex and with
possibly parallel edges and self-loops.

2.1 Definitions.

Let G be an undirected graph with a set of vertices V(G)
and a set of edges E(G) and let v be a vertex in G. A
neighbor of v is a vertex u E V(G) which is connected
to v by an edge in E(G). The degree AC(V) of v in G
is the number of edges that are incident with v in G. A
self-loop at a vertex v contributes 2 to the degree of v.
The degree of G, denoted A(G), is the largest among
all degrees of vertices in G.

A vertex in G of degree 1 is called an endpoint. A
vertex of degree 2 is called a linkpoint and a vertex of
any higher degree is called a branchpoint. A graph G
is called rich if every vertex in G is a branchpoint. A

346 BAR-YEHUDA ET AL.

graph is called a singleton if it contains only one vertex. feedback set of G;
A singleton is called naked if it has no edges; otherwise (b) p(G’, 1) = p(G, 1).
it is called self-looped. Note that for a singleton we have
p(G, 1) = 1 ‘f ‘t

The next two properties of reduction graphs are also
1 1 is self-looped and p(G, 1) = 0 if it is easily verified.

naked.
Two cycles in a graph G are independent if their

LEMMA 2.2. Let G be a graph with no endpoints

vertex sets are disjoint. Note that the size of any
and let G’ be a reduction of G. Then, every branchpoint

vertex feedback set of G is bounded from below by the
in G is also a branchpoint en G’ and Aoj = AG.

largest number of pairwise independent cycles that can LEMMA 2.3. Let G be a connected graph and let G’

be found in G. A cycle I in G is called simple if it visits be a reduction Of G. Then (I -’ is either a connected rich

every vertex in V(G) at most once. Clearly, a set F is a graph or a singleton, and G’ is a naked singleton if and

vertex feedback set of G if and only if it intersects with Only if G is a tree,
every simple cycle in G. Note that the reduction of a graph G is unique

A graph G is connected if for every two vertices up to isomorphism. The complexity of computing the
there is a connecting path in G. Every graph G reduction of G is at most linear in IE(G)J.
can be decomposed uniquely into isolated connected
components Gi, Ga, . . . , Gk. Similarly, every vertex 2.2 Performance ratio less than 4.
feedback set F of G can be partitioned into vertex The b asis of the first approximation algorithm is the
feedback sets FI, F2, . . . , Fk such that Fi is a vertex following lemma due to ErdGs and P&a [6].
feedback set of Gi. Hence, p(G, 1) = xi”=, p(Gi, 1).

For a graph G we define the reduction G’ of G by
LEMMA 2.4. ([6], LEMMA 3) The shortest cycle in

the following procedure.
any rich graph G is of length < 2 log, IV(G)I.

This lemma suggests the following algorithm for

Algorithm Reduction (Input: graph G;
finding a small vertex feedback set in a graph G. First,

Output: reduction G’ of G);
find the reduction G’ of G, and then find the shortest

H + G;
cycle I? in G’. Add V(P) to the feedback set and

While H contains an endpoint v do
remove it from the graph. This is repeated until the

delete w and its incident edge from H;
graph becomes a forest. By Lemma 2.4, it is clear

While H contains a linkpoint w without a Self-
that the performance ratio of this algorithm is at most
210g~V(G)l .

loop do begin:
F' de g m m a shortest cycle can be done by

Connect the two neighbors of ‘u by a new
BFS. A more efficient approach for finding the shortest

edge;
cycle is described in [13].

Remove v from the graph with its two
Lemma 2.4 was obtained by ErdBs and P&a while

incident edges;
estimating the smallest number of edges in a graph

end;
which contains a given number of pairwise indepen-

G’ + H.
dent cycles. Later on, in [7], they provided bounds on
the value of p(G, 1) in terms of the largest number of

Let Hl,Hz,..., Ht-1, Ht = G’ be the values of H pairwise independent cycles in G. Tighter bounds on

while starting each reduction iteration of the second p(G, 1) were obtained by Simonovits [21] and Voss [25].

loop in REDUCTION. Also, let zli be the linkpoint that An approximation algorithm which achieved a perfor-

was removed from Hi to obtain Hi+l. Suppose F is a mance ratio of fi was then given by Monien and

vertex feedback set of Hi+1 for some i, 1 5 i < t and let Schulz [17].
F be a cycle in Hi that passes through vi. A reduction We now show how to obtain better approximation

of I’ obtained by replacing the linkpoint vi on F by an algorithms for the UVFS Problem. We first present the

edge connecting the neighbors of vi yields a cycle I! in following lemma due to Voss.

&+I. The vertex set of F intersects the set F. Hence, F LEMMA 2.5. ([25], LEMMA 4) Let G be a rich

is also a vertex feedback set of Hi. On the other hand, graph. Then, for every vertex feedback set F of G,

every vertex feedback set F of Hi can be made a vertex
feedback set of Hi+1 by replacing vi in F with one of IV(G)I 5 (A(G) + 1) IFI - 2.
its neighbors in Hi. Therefore, we have the following.

Proof Suppose F = V(G). In this case we have
LEMMA 2.1. Let G be a graph and let G’ be a IV(G)1 5 41V(G)(- 2 5 (A(G) + l)]V(G)] - 2 and,

reduction of G. Then, therefore, the lemma holds trivially. So we assume from
(a) every vertex feedback set of G’ is also a vertex now on that (FI < IV(G)l.

APPROXIMATING VERTEX FEEDBACK SETS

Let EF denote the set of edges in E(G) whose
terminal vertices are all vertices in F. Define X = V-F
and let EX denote the set of edges in E(G) whose
terminal vertices are all vertices in X. Also, let EF,X
denote the set of those edges in G that connect vertices
in F with vertices in X. Clearly, EF, Ex, and EF,X
form a partition on E(G). Now, the graph obtained
by deleting F from G is a nonempty forest on X and,
therefore, IExl 5 (XI - 1. However, each vertex in X is
a branchpoint in G and, so,

31x1 I C AG(~> = IEF,xI + 2 Pxl
VEX

i.e.,

I l~JG,xl + 2(1x1 - 1)

IEF,xI 2 1x1 + 2 = IV(G)1 - IFI + 2.

On the other hand,

A(G) PI L CAG(V) = IEF,xI + 2 IEFI .
VEF

Combining the last two inequalities we obtain

IV(G)1 5 (A(G) + 1) IFI - 2 /EF[- 2. 0

For our next algorithm, we need te following defi-
nitions. Let G be a graph. A G3-subgraph of G is a
subgraph H of G such that the degree in H of every
vertex is 2 or 3. Similarly, a maximal 2-3-subgraph of G
is a 2-3-subgraph of G which is not a subgraph of any
other 2-3-subgraph of G.

A linkpoint v in a 2-3-subgraph H of G is called
a critical linkpoint if there is a cycle r in G such that
V(r) 1-7 V(H) = {v}. Such a cycle l? in G is called a
witness cycle of v. Note that we can assume a witness
cycle to be simple and, so, verifying whether a linkpoint
v in H is a critical linkpoint is easy: Remove the set of
vertices V(H) - {v} f rom G, with all incident edges, and
apply BFS to check whether there is a cycle through v
in the remaining graph.

Let T be a simple cycle which is an isolated con-
nected component of a 2-3-subgraph H of G. In each
such cycle, we set one linkpoint arbitrarily to be the
representing linkpoint of l?.

Algorithm SubG-2-3(Input: graph G;
Output: vertex feedback set F of G);
If G is a forest then

F + 0;
Else begin:

347

of G;
Using BFS, find the set X of critical
linkpoints in H;
Let Y be the set of branchpoints in H;
Find the set Z of representing linkpoints of
those isolated cycles in H that do not
contain any critical linkpoints;
FcXUYuZ;

end.

It is straightforwrd to verify that the complexity of
SUB&~-~ is linear in IE(G)I. The analysis of SUB&~-
3 is based on the following two lemmas that were used
in the proof of Theorem 1 in [21].

LEMMA 2.6. Let H be a maximal b-3-subgraph of
G and let r be a simple cycle in G. Then, one of the
following holds:

(a) r is a witness cycle of some critical linkpoint of
H, or -

(b) T passes through some branchpoint of H, or -
(c) r is an isolated connected component of H.

Proof. Let l’ be a cycle in G and assume to the
contrary that neither of (a)-(c) holds. This implies in
particular that r cannot be entirely contained in H. We
distinguish between two cases:

Case 1: T does not intersect with H at all. In this
case we could join T and H to obtain a 2-3-subgraph
H* of G that contains H as a proper subgraph. This
however contradicts the maximality of H.

Case 2: I’ intersects with H only in linkpoints of
the latter. First note that l? must intersect with H in
at least two distinct linkpoints of H, or else I’ would be
a witness cycle of the intersecting (critical) linkpoint.
Since T is not contained in H by assumption, we can
find two linkpoints VI and v2 in V(r) n V(H) that are
connected by a path P along r such that V(P)nV(H) =
{VI, ~2) and P is not entirely contained in H. Joining P
and H, we obtain a 2-3-subgraph of G that contains H
as a proper subgraph, thus contradicting the maximality
of H. 0

LEMMA 2.7. Let H be a maximal 2-3-subgraph of
G and let rl and r2 be witness cycles in G of two
distinct critical linkpoints in H. Then rl and rz are
independent cycles.

Proof. Let vi and 02 be the critical linkpoints
associated with Tr and Tz, respectively, and assume
to the contrary that V(I’l) II V(rz) contains a vertex
u E V(G). Then, there is a path P in G that runs along
parts of the cycles I’r and Tz, starting from vl, passing
through u, and ending at vs. Since Tr and T2 are witness
cycles, we have V(P) n V(H) = {vr,v~}. And, since
vi and 212 are distinct critical linkpoints, the vertex u

Using DFS, find a maximal 2-3-subgraph H cannot possibly coincide with either of them. Therefore,

348 BAR-YEHUDA ET AL.

the path P is not entirely contained in H. Joining P
and H we obtain a 2-3-subgraph of G that contains H
as a proper subgraph, thus reaching a contradiction. Cl

PROPOSITION 2.1. For every graph G, the set F
computed by SUBG-2-3 is a vertex feedback set of G.

Proof. Let r be a cycle in G. We follow the three
cases of Lemma 2.6 to show that V(I) n F # 0.

(a) I’ is a witness cycle of some critical linkpoint of
H. By construction, all critical linkpoints of H are in
F.

(b) T passes through some branchpoint of H. By
construction, all branchpoints of H are in F.

(c) r is an isolated connected component of H. By
construction, there always exists a vertex 21 of V(r)
which is contained in F: either v is a critical linkpoint
or 21 is a representing linkpoint of r. cl

LEMMA 2.8. Let F be the vertex feedback set com-
puted by SUB&2-3 for a graph G which is not a forest.
Then,

IFI I 4,dG, 1) - 2.

Proof. Let H, X, Y, and Z be as in SUBS-2-3.
Suppose p(G, 1) = 1. Then, all cycles in G pass through
some vertex v in G and, so, no vertex other than v can
be a critical linkpoint in H. Now, if v is a linkpoint
in H, then H is a cycle. Otherwise, one can readily
verify that H must contain exactly two branchpoints.
In either case we have IFI 5 2. We assume from now
on that p(G, 1) 2 2.

For every vi E X, let ri be some witness cycle of
vi in G. By Lemma 2.7, the cycles ra are pairwise
independent.

Let {rj+} be the set of the IZI isolated cycles in H
that do not contain any critical linkpoints of H. Clearly,
these cycles are pairwise independent. Furthermore,
neither of them intersects with any of the witness cycles
ri. It thus follows that every vertex feedback set of
G must contain at least one vertex of each of the
1x1 + JZJ independent cycles {I’i} U {I’;}. Therefore,

p(G, 1) 2 IXI+ IZI. On th e other hand, we recall that

IFI = IN + WI + l-4.
We distinguish between the following two cases.
Case 1: IYI 5 21x1. Here we have,

PI = WI+ WI + I-4 I 31X1+ I-4 5 3/l(G, 1)

5 4p(G, 1) - 2.

Case 2: IYI > 21x1. Let H1 be the subgraph of
H obtained by removing all critical linkpoints and all
isolated cycles of H. We further assume here that, with
each deletion of a critical linkpoint from H, we also
remove recursively all the resulting endpoints (clearly,
each vertex is removed with its incident edges). Hence,

the graph H1 contains no endpoints. Now, a deletion
of each linkpoint from H:, along with any resulting
endpoints, can decrease the number of branchpoints
by 2 at most. Therefore, the number of branchpoints
left in H1 is at least lYl - 21x1 > 0.

Let Hi be a reduction of H1 and let Hz be obtained
by removing all the singleton components from Hi. By
Lemma 2.2, the graph Hz is a rich graph and contains
at least IYI - 21X(b ranchpoints. Hence, by Lemma 2.5
and Lemma 2.1(b),

IyI-2lxI 5 4p(Hz,l)-2 _< 4p(H:,1)-2

= 4~(~,1)-2,

and, so,

IFI = I-Y+ IV+ l-4
5 41-q + 4l2l+ p-1 - 21x1

(2.1) I 4(1X1+ IZI + P(HI, 1)) - 2.

Now, any cycle of G which is entirely contained in H1
cannot possibly intersect with any of the cycles I’i and
r;. so,

PI+ IA + AHI, 1) 5 P(G, 1) .

The claim now follows by plugging the last inequality
into (2.1). cl

THEOREM 2.1. The unweighted performance ratio
of sung-2-3 is at most 4 - (2/IV(G)I).

Proof. This follows immediately from Lemma 2.8.0

3 Weighted Vertex Feedback Set.

In this section we consider the approximation of the
WVFS Problem described in Section 1. Namely, given
an undirected graph G and a weight function w on
its vertices, find a vertex feedback set of (G, w) with
minimum weight. As in the previous section, we assume
that G may contain parallel edges and self loops.

A graph is called brunchy if it has no endpoints
and, in addition, its set of linkpoints induces an inde-
pendent set, i.e., each linkpoint is connected only to
branchpoints. For a weighted graph (G, w), we define
the reduction (G’, w’) of (G, w) by the following proce-
dure REDUCTIONW that repeatedly replaces a chain of
linkpoints by a single linkpoint with weight equal to the
minimum weight of the vertices in the chain.

Algorithm ReductionW (Input: (G, 20);
Output: reduction (G’, 20’) of (G, w));

(G’, w’> + (G, w>;
While G’ contains an endpoint v do

APPROXIMATING VERTEX FEEDBACK SETS 349

Delete v and its incident edge from G’;
While G’ contains a linkpoint v adjacent to
another linkpoint VJ do begin:

Connect the two neighbors of v by a new
edge;
Set the new weight 20’ of u to be
min(w/(U), w’(v));
Remove v from the graph with its two
incident edges;

end.

The following lemma can be easily verified.

LEMMA 3.1. Le2 (G,w) be a weighted graph and let
(G’, w’) be a reduction of (G, w). Then, G’ is a branchy
graph and p(G’, w’) = p(G, w).

We note that the complexity of REDUCTIONW is
linear in]E(G)(.

We are now ready to present our algorithms for
finding an approximation for a minimum-weight vertex
feedback set of a given weighted graph. In Section 3.1
we give an algorithm that achieves a performance ratio
of 4log]V(G)]. I n ec ion 3.2 we present an algorithm S t
that achieves a performance ratio of 2A2(G).

3.1 The primal-dual algorithm.

The algorithm presented in this section is a generaliza-
tion of the one implied by Lemma 2.4. In each iteration
of the algorithm, we first find a reduction of the graph
and then find a cycle r with a smallest number of ver-
tices in the reduction graph. The algorithm then sets
6 to be the smallest among the weights of vertices in
V(r). This value of 6 is subtracted, in turn, from the
weight of each vertex in V(r). Vertices whose weight
becomes zero are added to the vertex feedback set and
deleted from the graph. Each such iteration is repeated
until the graph is exhausted.

Algorithm MiniWCycle (Input: (G, w);
Output: vertex feedback set F of (G, w));

F + 0; (H, WH) * (G, w>;

While H is not a forest do begin:
Using ReductionW, find the reduction

(H’, WP) of (H, WH);

Find a cycle I” in H’ with the smallest
number of vertices;
set 6 + minvEV(p) wHl(v)j
set WHl(v) C WHJ(V) - 6 for every 21 E v(r’);

Let x = {v c v(r’) : wH’(v) = 0);

Remove X (with all incident edges) from

fit WH) - (H’, WH’);
F+-XuF;

end.

It is not hard to see that MINIWCYCLE computes a
vertex feedback set of G. We now analyze the algorithm.
The analysis uses techniques similar to those used in
[ll], [12], and [15]. We note that the theorem can also
be proved using the Local Ratio Theorem of Bar-Yehuda
and Even [l].

THEOREM 3.1. The performance ratio of algorithm
MINIWCYCLE is at most 410g2 IV(G)l.

Proof. Given a vertex feedback set F of (G, w), let

2 = [d&‘(G) be the indicator vector of F, namely,
2 v = 1 if v E F and x, = 0 otherwise. We denote
by C the set of cycles in G. The problem of finding a
minimum-weight vertex feedback set of (G, w) can be
formulated in terms of x by an integer programming
problem as follows:

minimize C vet’(G) w(v) . Xu

ranging over all nonnegative integer vectors

(3.1) x = [x,,],EV(G) such that

c xv > 1 for every r E C .

VEV(l-)

Let C,, denote the set of cycles passing through ver-
tex v in G and consider the following integer program-
ming packing problem:

maximize Crec m
ranging over all nonnegative integer vectors

(3.2) y = [yr]rec such that

C m 5 w(v) for every v E V .
IXC”

Clearly, the linear relaxation of (3.2) is the dual of the
linear relaxation of (3.1), with w, r E C, being the dual
variables.

Let (H’,wH,) be a reduction graph computed at
some iteration of algorithm MINIWCYCLE. Then, for
each cycle I” E H’, we associate a unique cycle T’ E G as
follows: If all vertices in V(P) belong to G, then r = I”.
Otherwise, we “unfold” the reduction steps in backward
order, i.e., from the current iteration back to the first
iteration in REDUCTIONW: In each such step we add to
I” chains of linkpoints (connecting vertices in I?) that
were deleted by algorithm REDUCTIONW. When this
process finishes, the cycle I” of H’ transforms into a
cycle r of G.

We now show that MINIWCYCLE can be inter-
preted as a primal-dual algorithm. We first show that it
computes a dual feasible solution for (3.2) with a certain
maximality property. The initial dual feasible solution
is the one in which all the dual variables m are zero.

Let I’: be a cycle chosen at iteration i of MINIW-
CYCLE and let ri be the associated cycle in G. We may

350 BAR-YEHUDA ET AL.

view the computation of iteration i of MINIWCYCLE as
setting the value of the dual variable yri to the weight
6 of a lightest vertex in V(I’:). The updated weight
WHY of every v E V(r:) is precisely the slack of the
dual constraint

(3.3) c Yr I w(v)
I-EC”

that corresponds to v.
It is clear that by the choice of 6, the values of the

dual variables ?/r at the end of iteration i of MINIW-
CYCLE satisfy the dual constraints (3.3) corresponding
to vertices v E V(I’:). It thus follows that the dual con-
straints hold for all vertices v E V(H’) at iteration i.

Let v be a vertex that was removed from H to
obtain H’ in iteration i of MINIWCYCLE. It remains
to show that the dual constraint (3.3) corresponding to
such a vertex holds in each iteration j of the algorithm
for every j 2 i.

We show this by backward induction on j. By the
previous discussion it follows that the constraints cor-
responding to vertices that exist in the last iteration
all hold. Suppose now that the dual constraints corre-
sponding to vertices in V(H’) in iteration j are not vio-
lated. We show that the dual constraints corresponding
to vertices in V(H) - V(H’) in that iteration are also
not violated. Let c be a chain of linkpoints in H in iter-
ation j. Algorithm REDUCTIONW deletes all vertices in
c except for a representative v which has the minimum
weight in c. We now observe that the set of cycles that
pass through a vertex of c is the same for all vertices in c.
This implies that if the dual constraint corresponding to
v is not violated, then the dual constraints correspond-
ing to any vertex in c is also not violated.

The algorithm essentially constructs a primal solu-
tion z from the dual solution y: It selects into the vertex
feedback set all vertices for which: (i) the corresponding
dual constraints are tight; and (ii) in the iteration the
constraint first became tight, the corresponding vertex
belonged to the graph. As stated earlier, this construc-
tion yields a feasible solution.

Let z* = [z:],,eV(G) and y* = [y;]rEc denote the
optimal primal and dual fractional solutions, respec-
tively. It follows from the Duality Theorem that

(3.4) c w(v). 2, > c w(v) .x; = c y;
VEV(G) vet’(G) I-CC

L CYr.

I-CC

Hence, to prove the theorem, it suffices to bound the
ratio between the LHS and the RHS of (3.4). First note
that ?/r # 0 only for cycles I’ in G that are associated

with cycles I? that were chosen at some iteration of
MINIWCYCLE. By the above construction of 2, it is
clear that the dual variable w of each such cycle I
contributes its value to at most V(P) vertices. Hence,

vEV(G) uEV(G)rf& ret

Now, in each iteration, the graph H’ is a branchy graph.
Therefore, by arguments similar to those appearing in
the proof of Lemma 2.4, we have [V(I”)(5 4 log, n.
Hence the theorem is proved. Cl

PROPOSITION 3.1. For planar graphs, the weighted
performance ratio of MINIWCYCLE is at most 10.

3.2 Low-degree graphs.

The algorithm presented in this section is based on
the following generalization of Lemma 2.5 to branchy
graphs.

LEMMA 3.2. Let G be a branchy graph. Then, for
every vertex feedback set F of G,

IV(G)1 I 2A2(G). IFI

We now present a weighted greedy algorithm for
finding a feedback set in a graph G.

Algorithm WGreedy (Input: (G, w);
Output: vertex feedback set F of (G, w));
F + 8; i + 1; (H, WH) + (G, w);
while H is not a forest do begin:

(H:,
using REDUCTIONW, find the reduction

WHj) of
(H, WH);
ai + mbv(w) WH;(V);
Vi + {u E V(H:) 1 w&) = (~i};
F + FUUi;
remove Vi from Hi with its incident edges;

(H, WH) + @,I, WH:);

ici+l;
end.

For a subset S c V, let w(S) denote the sum of
weights of the vertices in S. The proof of the following
theorem is given in the full paper.

THEOREM 3.2. Let G be a brunchy graph. De-
note by F the vertex feedback set computed by algorithm
WGREEDY, and by F* a minimum-weight vertex feed-
back set in G. Then, w(F) 5 2A2(G) . w(F*).

It follows from Lemma 3.1 that the performance
ratio of algorithm WGREEDY for (G, w) is at most
2A2(G) for any graph G.

APPROXIMATING VERTEX FEEDBACK SETS 351

4 Graphs with Blackout Vertices.

We now consider a generalization of the unweighted ver-
tex feedback set problem where we mark each vertex of
a graph as either an allowed vertex or a blackout vertex.
In such graphs, vertex feedback sets cannot contain any
blackout vertices. The motivation for dealing with this
modified problem is clarified in the next section where
we use the algorithms developed herein to reduce the
computational complexity of Bayesian inference. Note
that a vertex feedback set can be found in a graph G
with blackout vertices if and only if every cycle in G
contains at least one allowed vertex. A graph G with
the latter property will be called a valid graph. Every
subgraph of a valid graph is valid.

that is, a branchpoint-free cycle passes only through
linkpoints and blackout vertices of G. A reduction
graph of a valid graph G is not necessarily valid, since
the reduction process may generate a cycle consisting
of blackout vertices only. However, if we assume G to
have no endpoints and no branchpoint-free cycles, then
the following can be easily verified.

LEMMA 4.2. Let G be a valid graph without any
branchpoint-free cycles and with no endpoints. Then,
the reduction G’ ojG is valid and p(G’, 1) = p(G, l),

The following algorithm achieves an unweighted
performance ratio of less than 4.

The vertex feedback set problem for graphs with
blackout vertices is in effect a special case of the
weighted vertex feedback set problem. Indeed, given
a valid graph G, we assign weight IV(G)1 to each
blackout vertex and unit weight to all other vertices.
It is clear that, with this choice of weights, there is no
point in choosing a blackout vertex to a vertex feedback
set. Furthermore, setting a large enough weight (say,
4JV(G)llog, IV(G)!) to the blackout vertices in G, we
can apply MINIWCYCLE to find a vertex feedback set
of (G, 1) and the upper bound on the performance ratio
stated in Theorem 3.1 will still hold. We now show that
this bound can be improved, and that the same bounds
obtained for the unweighted case can be achieved here
as well.

Algorithm ResSubG-2-3 (Input: valid graph G;
Output: vertex feedback set F of G);
If G is a forest then

F + 0;
Else begin:

Using DFS, find a maximal 2-3-subgraph H
of G;
Using BFS, find the set X of critical
linkpoints in H;
Find a set W that covers all branchpoint-
free cycles of H which are not covered by
X;
Set Y to be the set of branchpoints in H;
F+XuYuW;

end.

We denote the set of allowed vertices in G by A(G)
and the set of blackout vertices by B(G). Let A,(G)
denote the maximum degree of an allowed vertex in G.
We first generalize Lemma 2.5.

LEMMA 4.1. Let G be a valid rich graph. Then, for
every vertex feedback set F of G,

IV(G)1 L (L(G) +I> IFI - 2.

Proof. Replace each occurrence of A(G) in the
proof of Lemma 2.5 by Aa(cl

We next modify several of the definitions of the
previous sections. Let G be a valid graph. A 2-3-
subgraph of G is a subgraph H of G such that the
degree in H of every vertex in A(G) is either 2 or 3.
The degree of a vertex belonging to B(G) in H is not
restricted. Similarly, a maximal 2-J-subgraph of G is
a 2-3-subgraph which is not a subgraph of any other
2-3-subgraph of G.

We now elaborate on how the set W is computed.
Let Ha be the subgraph of H induced by linkpoints and
blackout vertices. For every isolated cycle in Hg, we
arbitrarily choose an allowed linkpoint from that cycle
to W. Next, we replace each maximal (with respect to
containment) chain of allowed linkpoints in Hb by an
edge, resulting in a graph Hz. We assign a unit cost to
all edges corresponding to a chain of linkpoints, and a
zero cost to all other edges, and compute a minimum-
cost spanning forest T of H,*. We now add to W one
linkpoint from each chain of allowed linkpoints in Hb
that corresponds to an edge in Hz - T.

The analysis of REsSUBG-~-~ is based on the
following lemmas.

A linkpoint v in a 2-3-subgraph H is called a critical
linkpoint if v is an allowed vertex, and there is a cycle
I in G such that V(I) fl V(H) c {v} U B(G). We refer
to such a cycle I? in G as a witness cycle of v.

A cycle in a valid graph G is branchpoint-free if

LEMMA 4.3. Let H be a maximal 2-J-subgraph of a
valid graph G and let r be a simple cycle in G. Then,
one of the following holds:

as a witness cycle of some critical linkpoint of H Gy’
9 0

(b) I’ passes through some allowed branchpoint of
H, or -

(c) I? is a cycle in H that consists only of blackout
vertices and linkpoints.

it does not pass through any allowed branchpoints; LEMMA 4.4. Let H be a maximal 2-J-subgraph ojG

352 BAR-YEHUDA ET AL.

and let I’i and I’2 be witness cycles in G of two distinct
critical linkpoints in H. Then V(Tl) f~ V(ru) E B(G).

The proof of the lemma is similar to that of Lemma
2.7. The proof of the following proposition is based on
Lemma 4.3.

PROPOSITION 4.1. For every graph G, the set F
computed by RES%JBG-~-~ is a vertex feedback set of
G.

LEMMA 4.5. Let F be the vertex feedback set com-
puted by RESSUBG-2-3 for a valid graph G which is not
a forest. Then,

IFI L ~/J(G, 1) - 2.

The proof is similar to that of Lemma 2.8.
THEOREM 4.1. The unweighted performance ratio

of R~s!?h~G-2-3 is at most 4 - (2/IV(G)I).

Proof. This follows immediately from Lemma 4.5.0

5 The Loop Cutset Problem and its
Application.

In this section we consider a variant of the WVFS
Problem for directed graphs. The underlying graph of
a directed graph D is the undirected graph formed by
ignoring the directions of the edges in D. A loop in D
is a subgraph of D whose underlying graph is a cycle.
A vertex v is a sink with respect to a loop F if the two
edges adjacent to v in I’ are directed into u. Every loop
must contain at least one vertex that is not a sink with
respect to that loop. Each vertex that is not a sink with
respect to that loop F is called an allowed vertex with
respect to r. A loop cutset of a directed graph D is a
set of vertices that contains at least one allowed vertex
with respect to each loop in D. Our problem is to find
a minimum-weight loop cutset of a given directed graph
D and a weight function w. We denote by p(D, w)
the sum of weights of the vertices in such a loop cutset.
Greedy approaches to the loop cutset problem have been
suggested by [23] and [22]. Both methods can be shown
to have a performance ratio as bad as fi(n/4) in certain
planar graphs [22]. An application of approximation
algorithms to the loop cutset problem in the area of
Bayesian inference is described later in this section.

The approach we take is to reduce the weighted
loop cutset problem to the weighted vertex feedback
set problem solved in the previous section. Given a
weighted directed graph (D, w), we define the splitting
weighted undirected graph (Da, w,) as follows. Split
each vertex v in D into two vertices vin and v,,* in D,
such that all incoming edges to v become undirected
incident edges with vi,, and all outgoing edges from 2,
become undirected incident edges with vout. In addition,

we connect vi. and v,., by an undirected edge. Set
w,(v,,) = 00 and w,(v,,,) =: w(v). For a set of vertices
X in D,, we define $(X) as t,he set obtained by replacing
each vertex vi,, or vollt in X by the respective vertex v
in D from which these vertices originated.

Our algorithm can now be easily stated.

Algorithm LoopCutset (Input: (D, w);
Output: loop cutset F of (D, w));
Construct (D, , ws);
Apply MINIWCYCLE on (DS, w,) to obtain a vertex
feedback set X;

F + @O

Note that each loop in D is associated with a unique
cycle in DS, and vice-versa, in a straightforward manner.
Let I(F) denote the loop image of a cycle I? in D,, and
I-‘(K) denote the cycle image of a loop K in D. It is
clear that the mapping I is 1 - 1 and onto.

The next lemma states that algorithm LOOPCUT-
SET outputs a loop cutset of (D, w).

LEMMA 5.1. Let (D, w) be a directed weighted
graph and (Da, wr) be its splitting graph. Then: (i)
If F is a vertex feedback set of (OS, w,) having ji-
nite weight, then r,b(F) is a loop cutset of (D, w), and
w,(F) = w($(F)). (ii) If U is loop cutset of D, then the
set U, obtained from U by replacing each vertex v E U
by vertex v,,* E D, is a vertex feedback set of D,, and

w(U) = ws(Us).
It follows from Lemma 5.1 that t~(D,w) =

p(DS, ws). In addition, due to Theorem 3.1 applied
to the graph D,, and since the number of vertices in
D, is twice the number of vertices in D, we get the
following bound on the performance ratio of algorithm
LOOPCUTSET.

THEOREM 5.1. The performance ratio of LOOP-
CUTSET is at most 4log,(2]I/(D)().

For planar graphs we have:
THEOREM 5.2. The performance ratio of LOOP-

CUTSET is at most 10 for planar graphs.
Proof Since the splitting graph of a planar graph

is planar we have,

w($(F)) = w(F) 5 10 p(Ds, ws)

where the equality is due to Lemma 5.1 and the inequal-
ity is due to Lemma3.1. Since p(DS, WS) = p(D, w), the
claim is proved. Cl

We now show that in the unweighted loop cutset
problem, we can achieve a performance ratio better than
4. In this case, for each vertex v E D, the weight of
Zlin E D, is one unit, and the weight of v.,.~ E D, is

APPROXIMATING VERTEX FEEDBACK SETS 353

co. This is exactly the case considered in the previous
section, since vertices with infinite weight in D, can be
treated as blackout vertices. We can therefore apply
BEsSUBC-2-3 in the LOOPCUTSET algorithm instead
of applying MINIWCYCLE and obtain the following
improved performance ratio.

THEOREM 5.3. When using REsSIJBG-2-3, the
vnweighted performance ratio of LOOPCUTSET is at
most 4 - (2/jV(D)l).

Proof. We have,

w(lCI(F)) = w,(F) I 4~u(D,, ws> - 2

where the equality is due to Lemma 5.1, and the
inequality is due to Lemma 4.5. Since p(Ds, w,) =
p(D, w) 5 n, the claim is proved. cl

5.1 An application.

We conclude this section with an application of approx-
imation algorithms for the loop cutset problem.

Let P(ui,..., u,,) be a probability distribution
where each ui draws values from a finite set called the
domain of ui. A directed graph D with no directed cy-
cles is called a Bayesian network of P if there is a l-l
mapping between (~1, . . . , u,} and vertices in D, such
that ui is associated with vertex i and P can be written
as follows:

(5.1) P(Ul, . . .) %J) = fi p(“i 1 %I y . . . y %j(i))

i=l

where ii,. . . , ij(i) are the source vertices of the incoming
edges to vertex i in D. For a complete exploration of
this subject see [20].

Suppose now that some variables {vi, . . . , ~1)
among {u~,...,u~} are assigned specific values

{WT..., 211) respectively. The updating problem is to
compute the probability P(ui] wi = ~1,. . . , vl = UI)
for i = 1,. . , n. In principle, such computations are
straightforward because each Bayesian network defines
the joint probability distribution P(u1, . . . , un) from
which all conditional probabilities can be computed by
dividing the appropriate sums. However, such computa-
tions are inefficient both in time and space unless they
use conditional independence assumptions defined by
Eq. (5.1).

Pearl [20] informally describes how approximation
algorithms for the loop cutset problem can reduce the
computations needed for solving the updating problem.
Suermondt and Cooper [23] describe a heuristic for
solving the loop cutset problem. Stillman [22] shows
that this heuristic has an approximation factor as bad
as fi(n/4) for certain instances.

6 Discussion.

It is useful to relate the vertex feedback set problem
with the vertex cover problem in order to establish
lower bounds on the performance ratios attainable for
the vertex feedback set problem. A vertex cover of
an undirected graph is a subset of the vertex set that
intersects with each edge in the graph. The vertex cover
problem is to find a minimum weight vertex cover of a
given graph. There is a simple polynomial reduction
from the vertex cover problem to the vertex feedback
set problem: Given a graph G, we extend G to a graph
H by adding a vertex we for each edge e E E(G),
and connecting v, with the vertices in G with which
e is incident in G. It is easy to verify that there
always exists a minimum vertex feedback set in H whose
vertices are all in V(G) and this vertex feedback set
is also a minimum vertex cover of G. In essence, this
reduction replaces each edge in G with a cycle in H, thus
transforming any vertex cover of G to a vertex feedback
set of H.

Due to this reduction, it follows that the perfor-
mance ratio obtainable for the vertex feedback set prob-
lem cannot be better than the one obtainable for the
vertex cover problem. The latter problem has attracted
a lot of attention over the years but has so far resisted
any approximation algorithm that achieves in general
graphs a constant performance ratio less than 2. We
note that the above reduction retains planarity. How-
ever, for planar graphs, Baker [2] provided a Polynomial
Approximation Scheme (PAS) for the vertex cover prob-
lem. For the UVFS problem, there are examples show-
ing that 4 is the tightest constant performance ratio of
algorithm SUBG-2-3. It is an open question whether
there exists an algorithm for the vertex feedback set
problem that achieves precisely the performance ratio
obtainable for the vertex cover problem.

Another consequence of the above reduction is
a lower bound on the unweighted performance ratio
of the following greedy algorithm, GREEDYCYC, for
the vertex feedback set problem. In each iteration,
GREEDYCYC removes a vertex of maximal degree from
the graph, adds it to the vertex feedback set, and
removes all endpoints in the graph. A similar greedy
algorithm for the vertex cover problem is presented
in [14] and in [18]. The latter algorithm was shown to
have an unweighted performance ratio no better than
R(log IV(G)l) [14]. Due to the reduction to the cycle
cover problem, the same lower bound holds also for
GREEDYCYC, as demonstrated by the graphs of [14]. A
tight upper bound on the worst-case performance ratio
of GREEDYCYC is unknown.

Finally, one should notice that the following heuris-
tics may improve the performance ratios of our algo-

354

rithms. For example, in each iteration MINIWCYCLE

chooses to place in the cover all zero-weight vertices
found on the smallest cycle. This choice might be rather [I31
poor especially if many weights are equal. It may be
useful in this case to perturb the weights of the ver- P41

tices before running the algorithm. Similarly, in algo-
rithm SUB&2-3, there is no point in taking blindly all
branchpoints of H. An appropriate heuristic here may

L15I

be to pick the branchpoints one by one in decreasing
order of residual degrees. Furthermore, the subgraph
H itself should be constructed such that it contains as
many high degree vertices as possible. [1’4

Acknowledgement.

We would like to thank David Johnson for bringing [6] to
our attention, and Samir Khuller for helpful discussions.

L17I

References

PI

PI

PI

[51

P1

t71

PI

PI

PO1

[Ill

WI

Bar-Yehuda R. and Even S., A local-ratio theorem
for approximating the weighted vertex cover problem,
Annals of Discrete Mathematics, 25 (1985), 27-46.
Baker B. S., Approximation algorithms for NP-
complete problems on planar graphs, Proceedings 24th
IEEE Symposium on Foundations of Computer Sci-
ence, 1983, 265-273.
Dechter R. and Pearl J., The cycle cutset method for
improving search performance in Al, Proceedings 3rd
IEEE on A I Applications, Orlando, 1987.
Dechter R. and Pearl J., Network-based heuristics
for constraint satisfaction problems, Artificial Intel-
ligence, 34 (1988), l-38.
Dechter R. and Pearl J., Enhancement schemes for
constraint processing: backjumping, learning, and CU t-
set decomposition, Artificial Intelligence, 41 (1990),
273-312.
ErdGs P. and P&a L., On the maximal number of
disjoint circuits of a graph, Publ. Math Debrecen, 9
(1962), 3-12.
ErdGs P. and P&a L., On the independent circuits
contained in agraph, Canad. J. Math, 17 (1964), 347-
352.
Garey M.R. and Johnson D.S., Computers and
Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman, San Francisco, Cali-
fornia, 1979.
Geiger, D. and Pearl, J., On the logic of causal
models, In Uncertainty in Artificial Intelligence 4,
Eds. Shachter R.D., Levitt T.S., Kanal L.N., and
Lemmer J.F., North-Holland, New York, 1990, 3-14.
Geiger, D., Verma, T.S., and Pearl, J., Identifying
independence in Bayesian networks, Networks, 20
(1990), 507-534.
Hochbaum D.S., Approximation algorithms for set
covering and vertex covering problems, SIAM J.
Computing, 11 (1982), 555-556.
Hochbaum D.S., Efficient bounds for the stable set,

W31

WI

DOI

WI

P21

[23l

[241

[251

BAR-YEHUDA ET AL.

vertex cover, and set packing problems, Discrete
Applied Math, 6 (1983), 243-254.
Itai A. and Rodeh M., Finding a minimum circuit in
a graph, SIAM .I. Computing, 7 (1978), 413-423.
Johnson D.S., Approximation algorithms for combina-
torical problems, J. Comput. Sys. Sciences, 9 (1974),
256-278.
Khuller S., Vishkin U., and Young, N., A primal-dual
parallel approximation technique applied to weighted
set and vertex cover, In Proceedings of Integer Pro-
gramming and Combinatorial Optimization, 1993, 333-
341.
Kim H. and Pearl J., A computational model for
combined causal and diagnostic reasoning in inference
systems, In Proceedings oj the Eighth IJCA I, Morgan-
Kaufmann, San Mateo, California, 1983, 190-193.
Monien B.and Schulz R., Four approximation algo-
rithms for the feedback vertex set problem, In Proceed-
ings of the 7th Conference on Graph Theoretic Con-
cepts of Computer Science, 1981, 315-326.
Lov&sz L., On the ratio of optimal integral and
fractional covers, Discrete Math., 13 (1975), 383-390.
Pearl, J., Fusion, propagation and structuring in belief
networks, Artificial Intelligence, 29:3 (1986), 241-288.
Pearl, J., Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann,
San Mateo, California, 1988.
Simonovits M., A new proof and generalizations of a
theorem by Erd& and P&a on graphs without k + 1
independent circuits, Acta Mathematics Academiae
Hungaricae Tomus, 18 (1967), 191-206.
Stillman, J., On heuristics for finding loop cutsets
in multiply connected belief networks, In Proceedings
of the Sixth Conference on Uncertainty in Artificial
Intelligence, Cambridge, Massachusetts, 1990, 265-
272.
Suermondt H.J. and Cooper G.F., Probabilistic infer-
ence in multiply connected belief networks using loop
cutsets, Int. J. Approx. Reasoning, 4 (1990), 283-306.
Verma, T. and Pearl, J., Causal networks: Semantics
and expressiveness, In Proceedings of Fourth Workshop
on Uncertainty in Artificial Intelligence, Minneapolis,
Minnesota (published by the Association for Uncer-
tainty in Artificial Intelligence, Mountain View, Cal-
ifornia), 1988, 352-359.
Voss H.J., Some properties of graphs containing k
independent circuits, Proc. Colloq. Tihany, Academic
Press, New York, 1968, 321-334.

