
Chapter 39 

Approximation Algorithms for the Vertex Feedback Set Problem with 
Applications to Constraint Satisfaction and Bayesian Inference 

Reuven Bar-Yehuda’t Dan Geiger** Joseph (Seffi) Naors” Ron M. Roth* 

Abstract 

A vertex feedback set of an undirected graph is a subset of 
vertices that intersects with the vertex set of each cycle in 
the graph. Given an undirected graph G with n vertices 
and weights on its vertices, polynomial-time algorithms are 
provided for approximating the problem of finding a vertex 
feedback set of G with a smallest weight. When the weights 
of all vertices in G are equal, the performance ratio attained 
by these algorithms is 4 - (2/n). This improves a previous 
algorithm which achieved an approximation factor of G 
for this case. For general vertex weights, the performance 
ratio becomes min{2A2, 41og, n} where A denotes the max- 
imum degree in G. For the special case of planar graphs this 
ratio is reduced to 10. An interesting special case of weighted 
graphs where a performance ratio of 4 - (2/n) is achieved is 
the one where a prescribed subset of the vertices, so called 
blackout vertices, is not allowed to participate in any vertex 
feedback set. It is shown how these algorithms can improve 
the search performance for constraint satisfaction problems. 
An application in the area of Bayesian inference of graphs 
with blackout vertices is also presented. 

1 Introduction. 

Let G = (V,E) b e an undirected graph, and let u) : 
V(G) + IR + be a weight function on the vertices of 
G. A cycle in G is a path whose two terminal vertices 
coincide. A vertex feedback set of G is a subset of 
vertices F C V(G) such that each cycle in G passes 
through at least one vertex in F. In other words, a 
vertex feedback set F is a set of vertices of G such that 
by removing F from G, along with all the edges incident 
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with F, we obtain a forest. A minimum vertex feedback 
set of a weighted graph (G, 1~) is a vertex feedback set of 
G of minimum weight. The weight of a minimum vertex 
feedback set will be denoted by p(G, w). 

The Weighted Vertex Feedback Set (WVFS) Prob- 
lem is defined as finding a minimum vertex feedback 
set of a given weighted graph (G, w). The special case 
where w is the constant function 1 is called the Un- 
weighted Vertex Feedback Set (UVFS) Problem. Given 
a graph G and an integer k, the problem of deciding 
whether p(G, 1) 5 k is k nown to be NP-Complete [8, 
pp. 191-1921. Hence, it is natural to look for efficient 
approximation algorithms for the vertex feedback set 
problem, particularly in view of the recent applications 
of such algorithms in artificial intelligence as we show 
in the sequel. 

Suppose A is an algorithm that finds a vertex 
feedback set FA for any given undirected weighted 
graph (G,w). We d enote the sum of weights of the 
vertices in FA by I. The performance ratio of A 
for (G, w) is defined by RA(G, w) = w(FA)/~(G, w). 
When p(G, w) = 0 wedefineRA(G,w)=lifw(Fa)=O 
and RA(G,w) = co if w(F*) > 0. The performance 
ratio r~(n, 20) of A for w is the supremum of RA(G, w) 
over all graphs G with n vertices and for the same weight 
function w. When w is the constant function 1, we call 
rA(n, 1) the unweighted performance ratio of A. Finally, 
the performance ratio rA(n) of A is the supremum of 
rA(n, w) over all weight functions w defined over graphs 
with n vertices. 

An approximation algorithm for the UVFS Prob- 
lem that achieves an unweighted performance ratio of 
2 loga n is essentially contained in a lemma due to Erdds 
and P&a [6]. This result was improved by Monien and 
Schulz [17], where they achieved a performance ratio 
of m. In Section 2 we provide an approximation 
algorithm for the UVFS Problem that achieves an un- 
weighted performance ratio of at most 4 - (2/n). Our 
algorithm draws upon a theorem by Simonovits [al] and 
our analysis uses a result by Voss [25]. 

In Section 3 we present two algorithms for the 
WVFS Problem. We first devise a primal-dual algo- 
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rithm which is based on formulating the WVFS Problem 
as an instance of the set cozier problem. The algorithm 
has a performance ratio of 10 for weighted planar graphs 
and a performance ratio of 4 log, n for general weighted 
graphs. This ratio is achieved by extending the Erd&s- 
P&a Lemma to weighted graphs. The second algorithm 
presented in Section 3 achieves a performance ratio of 
2A2(G) for general weighted graphs, where A(G) is the 
maximum degree of G. This result is in particular in- 
teresting for low degree graphs. We conjecture that a 
constant performance ratio is nevertheless attainable by 
a polynomial time algorithm for all weighted graphs. 

In Section 4 we consider a special case of the WVFS 
problem, where a prescribed subset of the vertices, 
called blackout vertices, is not allowed to participate 
in any vertex feedback set. We further assume that 
the blackout vertices induce a forest. We show that the 
bounds previously achieved can be extended to this case 
too. 

Our interest in graphs with blackout vertices is 
motivated by the loop cutset problem and its application 
to the updating problem in Bayesian inference in Section 
5. Let D be a directed graph. A loop in D is defined as a 
subgraph whose underlying undirected graph is a cycle. 
Given a weighted directed graph (D, w), the loop cutset 
problem is defined as follows: find a minimum weight 
set of vertices F in D such that the vertex set of every 
loop F in D intersects with F at a vertex which has at 
least one outgoing edge in I. The performance ratios 
obtained for this problem are similar to those obtained 
for the vertex feedback set problem. 

Another application of approximation algorithms 
for the UVFS Problem in artificial intelligence due to 
Dechter and Pearl is as follows [5]. We are given a 
set of variables cl, x2, . . . , x,, where each zi takes its 
values from a finite domain Di. Also, for every i < j 
we are given a constraint subset Ri,j c Di x Dj which 
defines the allowable pairs of values that can be taken 
by the pair of variables (xi, xj). Our task is to find an 
assignment for all variables such that all the constraints 
Ri,j are satisfied. With each instance of the problem we 
can associate an undirected graph G whose vertex set is 
the set of variables, and for each constraint Ri,j which is 
strictly contained in Di x Dj (i.e., Ri,j # Di x Dj) there 
is an edge in G connecting xi and xj. The resulting 
graph G is called a constraint network and it is said to 
represent a constraint satisfaction problem. 

A common method for solving a constraint satisfac- 
tion problem is by backtracking, that is, by repeatedly 
assigning values to the variables in a predetermined or- 
der and then backtracking whenever reaching a dead 
end. This approach can be improved as follows. First, 
find a vertex feedback set of the constraint network. 

Then, arrange the variables so that variables in the 
vertex feedback set precede all other variables, and ap- 
ply the backtracking procedure. Once the values of the 
variables in the vertex feedback set are determined by 
the backtracking procedure, the algorithm switches to a 
polynomial-time procedure SOLVE-TREE that solves the 
constraint satisfaction problem in the remaining forest. 
If SOLVE-TREE succeeds, a solution is found; otherwise, 
another backtracking phase occurs. 

The complexity of the above modified backtracking 
algorithm grows exponentially with the size of the ver- 
tex feedback set: If a vertex feedback set contains k vari- 
ables, each having a domain of size 2, then the procedure 
SOLVE-TREE might be invoked up to 2k times. A pro- 
cedure SOLVE-TREE that runs in polynomial-time was 
developed by Dechter and Pearl, who also proved the 
optimality of their tree algorithm [4]. Consequently, our 
approximation algorithm for finding a small vertex feed- 
back set reduces the complexity of solving constraint 
satisfaction problems through the modified backtrack- 
ing algorithm. Furthermore, if the domain size of the 
variables varies, then SOLVE-TREE is called a number of 
times which is bounded from above by the product of 
the domain-sizes of the variables whose corresponding 
vertices participate in the vertex feedback set. If we 
take the logarithm of the domain size as the weight of 
a vertex, then solving the WVFS problem with these 
weights optimizes the complexity of the modified back- 
tracking algorithm in the case where the domain size is 
allowed to vary. 

2 The Unweighted Vertex Feedback Set 
Problem. 

In this section we consider the approximation of the 
UVFS Problem described in Section 1. Namely, given 
an undirected graph G, find a small vertex feedback 
set for (G, 1). Throughout this section a graph means 
an undirected graph with at least one vertex and with 
possibly parallel edges and self-loops. 

2.1 Definitions. 

Let G be an undirected graph with a set of vertices V(G) 
and a set of edges E(G) and let v be a vertex in G. A 
neighbor of v is a vertex u E V(G) which is connected 
to v by an edge in E(G). The degree AC(V) of v in G 
is the number of edges that are incident with v in G. A 
self-loop at a vertex v contributes 2 to the degree of v. 
The degree of G, denoted A(G), is the largest among 
all degrees of vertices in G. 

A vertex in G of degree 1 is called an endpoint. A 
vertex of degree 2 is called a linkpoint and a vertex of 
any higher degree is called a branchpoint. A graph G 
is called rich if every vertex in G is a branchpoint. A 
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graph is called a singleton if it contains only one vertex. feedback set of G; 
A singleton is called naked if it has no edges; otherwise (b) p(G’, 1) = p(G, 1). 
it is called self-looped. Note that for a singleton we have 
p(G, 1) = 1 ‘f ‘t 

The next two properties of reduction graphs are also 
1 1 is self-looped and p(G, 1) = 0 if it is easily verified. 

naked. 
Two cycles in a graph G are independent if their 

LEMMA 2.2. Let G be a graph with no endpoints 

vertex sets are disjoint. Note that the size of any 
and let G’ be a reduction of G. Then, every branchpoint 

vertex feedback set of G is bounded from below by the 
in G is also a branchpoint en G’ and Aoj = AG. 

largest number of pairwise independent cycles that can LEMMA 2.3. Let G be a connected graph and let G’ 

be found in G. A cycle I in G is called simple if it visits be a reduction Of G. Then (I -’ is either a connected rich 

every vertex in V(G) at most once. Clearly, a set F is a graph or a singleton, and G’ is a naked singleton if and 

vertex feedback set of G if and only if it intersects with Only if G is a tree, 
every simple cycle in G. Note that the reduction of a graph G is unique 

A graph G is connected if for every two vertices up to isomorphism. The complexity of computing the 
there is a connecting path in G. Every graph G reduction of G is at most linear in IE(G)J. 
can be decomposed uniquely into isolated connected 
components Gi, Ga, . . . , Gk. Similarly, every vertex 2.2 Performance ratio less than 4. 
feedback set F of G can be partitioned into vertex The b asis of the first approximation algorithm is the 
feedback sets FI, F2, . . . , Fk such that Fi is a vertex following lemma due to ErdGs and P&a [6]. 
feedback set of Gi. Hence, p(G, 1) = xi”=, p(Gi, 1). 

For a graph G we define the reduction G’ of G by 
LEMMA 2.4. ([6], LEMMA 3) The shortest cycle in 

the following procedure. 
any rich graph G is of length < 2 log, IV(G)I. 

This lemma suggests the following algorithm for 

Algorithm Reduction (Input: graph G; 
finding a small vertex feedback set in a graph G. First, 

Output: reduction G’ of G); 
find the reduction G’ of G, and then find the shortest 

H + G; 
cycle I? in G’. Add V(P) to the feedback set and 

While H contains an endpoint v do 
remove it from the graph. This is repeated until the 

delete w and its incident edge from H; 
graph becomes a forest. By Lemma 2.4, it is clear 

While H contains a linkpoint w without a Self- 
that the performance ratio of this algorithm is at most 
210g~V(G)l . 

loop do begin: 
F' de g m m a shortest cycle can be done by 

Connect the two neighbors of ‘u by a new 
BFS. A more efficient approach for finding the shortest 

edge; 
cycle is described in [13]. 

Remove v from the graph with its two 
Lemma 2.4 was obtained by ErdBs and P&a while 

incident edges; 
estimating the smallest number of edges in a graph 

end; 
which contains a given number of pairwise indepen- 

G’ + H. 
dent cycles. Later on, in [7], they provided bounds on 
the value of p(G, 1) in terms of the largest number of 

Let Hl,Hz,..., Ht-1, Ht = G’ be the values of H pairwise independent cycles in G. Tighter bounds on 

while starting each reduction iteration of the second p(G, 1) were obtained by Simonovits [21] and Voss [25]. 

loop in REDUCTION. Also, let zli be the linkpoint that An approximation algorithm which achieved a perfor- 

was removed from Hi to obtain Hi+l. Suppose F is a mance ratio of fi was then given by Monien and 

vertex feedback set of Hi+1 for some i, 1 5 i < t and let Schulz [17]. 
F be a cycle in Hi that passes through vi. A reduction We now show how to obtain better approximation 

of I’ obtained by replacing the linkpoint vi on F by an algorithms for the UVFS Problem. We first present the 

edge connecting the neighbors of vi yields a cycle I! in following lemma due to Voss. 

&+I. The vertex set of F intersects the set F. Hence, F LEMMA 2.5. ([25], LEMMA 4) Let G be a rich 

is also a vertex feedback set of Hi. On the other hand, graph. Then, for every vertex feedback set F of G, 

every vertex feedback set F of Hi can be made a vertex 
feedback set of Hi+1 by replacing vi in F with one of IV(G)I 5 (A(G) + 1) IFI - 2. 
its neighbors in Hi. Therefore, we have the following. 

Proof Suppose F = V(G). In this case we have 
LEMMA 2.1. Let G be a graph and let G’ be a IV(G)1 5 41V(G)( - 2 5 (A(G) + l)]V(G)] - 2 and, 

reduction of G. Then, therefore, the lemma holds trivially. So we assume from 
(a) every vertex feedback set of G’ is also a vertex now on that (FI < IV(G)l. 
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Let EF denote the set of edges in E(G) whose 
terminal vertices are all vertices in F. Define X = V-F 
and let EX denote the set of edges in E(G) whose 
terminal vertices are all vertices in X. Also, let EF,X 
denote the set of those edges in G that connect vertices 
in F with vertices in X. Clearly, EF, Ex, and EF,X 
form a partition on E(G). Now, the graph obtained 
by deleting F from G is a nonempty forest on X and, 
therefore, IExl 5 (XI - 1. However, each vertex in X is 
a branchpoint in G and, so, 

31x1 I C AG(~> = IEF,xI + 2 Pxl 
VEX 

i.e., 

I l~JG,xl + 2(1x1 - 1) 

IEF,xI 2 1x1 + 2 = IV(G)1 - IFI + 2. 

On the other hand, 

A(G) PI L CAG(V) = IEF,xI + 2 IEFI . 
VEF 

Combining the last two inequalities we obtain 

IV(G)1 5 (A(G) + 1) IFI - 2 /EF[ - 2. 0 

For our next algorithm, we need te following defi- 
nitions. Let G be a graph. A G3-subgraph of G is a 
subgraph H of G such that the degree in H of every 
vertex is 2 or 3. Similarly, a maximal 2-3-subgraph of G 
is a 2-3-subgraph of G which is not a subgraph of any 
other 2-3-subgraph of G. 

A linkpoint v in a 2-3-subgraph H of G is called 
a critical linkpoint if there is a cycle r in G such that 
V(r) 1-7 V(H) = {v}. Such a cycle l? in G is called a 
witness cycle of v. Note that we can assume a witness 
cycle to be simple and, so, verifying whether a linkpoint 
v in H is a critical linkpoint is easy: Remove the set of 
vertices V(H) - {v} f rom G, with all incident edges, and 
apply BFS to check whether there is a cycle through v 
in the remaining graph. 

Let T be a simple cycle which is an isolated con- 
nected component of a 2-3-subgraph H of G. In each 
such cycle, we set one linkpoint arbitrarily to be the 
representing linkpoint of l?. 

Algorithm SubG-2-3(Input: graph G; 
Output: vertex feedback set F of G); 
If G is a forest then 

F + 0; 
Else begin: 
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of G; 
Using BFS, find the set X of critical 
linkpoints in H; 
Let Y be the set of branchpoints in H; 
Find the set Z of representing linkpoints of 
those isolated cycles in H that do not 
contain any critical linkpoints; 
FcXUYuZ; 

end. 

It is straightforwrd to verify that the complexity of 
SUB&~-~ is linear in IE(G)I. The analysis of SUB&~- 
3 is based on the following two lemmas that were used 
in the proof of Theorem 1 in [21]. 

LEMMA 2.6. Let H be a maximal b-3-subgraph of 
G and let r be a simple cycle in G. Then, one of the 
following holds: 

(a) r is a witness cycle of some critical linkpoint of 
H, or - 

(b) T passes through some branchpoint of H, or - 
(c) r is an isolated connected component of H. 

Proof. Let l’ be a cycle in G and assume to the 
contrary that neither of (a)-(c) holds. This implies in 
particular that r cannot be entirely contained in H. We 
distinguish between two cases: 

Case 1: T does not intersect with H at all. In this 
case we could join T and H to obtain a 2-3-subgraph 
H* of G that contains H as a proper subgraph. This 
however contradicts the maximality of H. 

Case 2: I’ intersects with H only in linkpoints of 
the latter. First note that l? must intersect with H in 
at least two distinct linkpoints of H, or else I’ would be 
a witness cycle of the intersecting (critical) linkpoint. 
Since T is not contained in H by assumption, we can 
find two linkpoints VI and v2 in V(r) n V(H) that are 
connected by a path P along r such that V(P)nV(H) = 
{VI, ~2) and P is not entirely contained in H. Joining P 
and H, we obtain a 2-3-subgraph of G that contains H 
as a proper subgraph, thus contradicting the maximality 
of H. 0 

LEMMA 2.7. Let H be a maximal 2-3-subgraph of 
G and let rl and r2 be witness cycles in G of two 
distinct critical linkpoints in H. Then rl and rz are 
independent cycles. 

Proof. Let vi and 02 be the critical linkpoints 
associated with Tr and Tz, respectively, and assume 
to the contrary that V(I’l) II V(rz) contains a vertex 
u E V(G). Then, there is a path P in G that runs along 
parts of the cycles I’r and Tz, starting from vl, passing 
through u, and ending at vs. Since Tr and T2 are witness 
cycles, we have V(P) n V(H) = {vr,v~}. And, since 
vi and 212 are distinct critical linkpoints, the vertex u 

Using DFS, find a maximal 2-3-subgraph H cannot possibly coincide with either of them. Therefore, 
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the path P is not entirely contained in H. Joining P 
and H we obtain a 2-3-subgraph of G that contains H 
as a proper subgraph, thus reaching a contradiction. Cl 

PROPOSITION 2.1. For every graph G, the set F 
computed by SUBG-2-3 is a vertex feedback set of G. 

Proof. Let r be a cycle in G. We follow the three 
cases of Lemma 2.6 to show that V(I) n F # 0. 

(a) I’ is a witness cycle of some critical linkpoint of 
H. By construction, all critical linkpoints of H are in 
F. 

(b) T passes through some branchpoint of H. By 
construction, all branchpoints of H are in F. 

(c) r is an isolated connected component of H. By 
construction, there always exists a vertex 21 of V(r) 
which is contained in F: either v is a critical linkpoint 
or 21 is a representing linkpoint of r. cl 

LEMMA 2.8. Let F be the vertex feedback set com- 
puted by SUB&2-3 for a graph G which is not a forest. 
Then, 

IFI I 4,dG, 1) - 2. 

Proof. Let H, X, Y, and Z be as in SUBS-2-3. 
Suppose p(G, 1) = 1. Then, all cycles in G pass through 
some vertex v in G and, so, no vertex other than v can 
be a critical linkpoint in H. Now, if v is a linkpoint 
in H, then H is a cycle. Otherwise, one can readily 
verify that H must contain exactly two branchpoints. 
In either case we have IFI 5 2. We assume from now 
on that p(G, 1) 2 2. 

For every vi E X, let ri be some witness cycle of 
vi in G. By Lemma 2.7, the cycles ra are pairwise 
independent. 

Let {rj+} be the set of the IZI isolated cycles in H 
that do not contain any critical linkpoints of H. Clearly, 
these cycles are pairwise independent. Furthermore, 
neither of them intersects with any of the witness cycles 
ri. It thus follows that every vertex feedback set of 
G must contain at least one vertex of each of the 
1x1 + JZJ independent cycles {I’i} U {I’;}. Therefore, 

p(G, 1) 2 IXI+ IZI. On th e other hand, we recall that 

IFI = IN + WI + l-4. 
We distinguish between the following two cases. 
Case 1: IYI 5 21x1. Here we have, 

PI = WI+ WI + I-4 I 31X1+ I-4 5 3/l(G, 1) 

5 4p(G, 1) - 2. 

Case 2: IYI > 21x1. Let H1 be the subgraph of 
H obtained by removing all critical linkpoints and all 
isolated cycles of H. We further assume here that, with 
each deletion of a critical linkpoint from H, we also 
remove recursively all the resulting endpoints (clearly, 
each vertex is removed with its incident edges). Hence, 

the graph H1 contains no endpoints. Now, a deletion 
of each linkpoint from H:, along with any resulting 
endpoints, can decrease the number of branchpoints 
by 2 at most. Therefore, the number of branchpoints 
left in H1 is at least lYl - 21x1 > 0. 

Let Hi be a reduction of H1 and let Hz be obtained 
by removing all the singleton components from Hi. By 
Lemma 2.2, the graph Hz is a rich graph and contains 
at least IYI - 21X( b ranchpoints. Hence, by Lemma 2.5 
and Lemma 2.1(b), 

IyI-2lxI 5 4p(Hz,l)-2 _< 4p(H:,1)-2 

= 4~(~,1)-2, 

and, so, 

IFI = I-Y+ IV+ l-4 
5 41-q + 4l2l+ p-1 - 21x1 

(2.1) I 4(1X1+ IZI + P(HI, 1)) - 2. 

Now, any cycle of G which is entirely contained in H1 
cannot possibly intersect with any of the cycles I’i and 
r;. so, 

PI+ IA + AHI, 1) 5 P(G, 1) . 

The claim now follows by plugging the last inequality 
into (2.1). cl 

THEOREM 2.1. The unweighted performance ratio 
of sung-2-3 is at most 4 - (2/IV(G)I). 

Proof. This follows immediately from Lemma 2.8.0 

3 Weighted Vertex Feedback Set. 

In this section we consider the approximation of the 
WVFS Problem described in Section 1. Namely, given 
an undirected graph G and a weight function w on 
its vertices, find a vertex feedback set of (G, w) with 
minimum weight. As in the previous section, we assume 
that G may contain parallel edges and self loops. 

A graph is called brunchy if it has no endpoints 
and, in addition, its set of linkpoints induces an inde- 
pendent set, i.e., each linkpoint is connected only to 
branchpoints. For a weighted graph (G, w), we define 
the reduction (G’, w’) of (G, w) by the following proce- 
dure REDUCTIONW that repeatedly replaces a chain of 
linkpoints by a single linkpoint with weight equal to the 
minimum weight of the vertices in the chain. 

Algorithm ReductionW (Input: (G, 20); 
Output: reduction (G’, 20’) of (G, w)); 

(G’, w’> + (G, w>; 
While G’ contains an endpoint v do 
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Delete v and its incident edge from G’; 
While G’ contains a linkpoint v adjacent to 
another linkpoint VJ do begin: 

Connect the two neighbors of v by a new 
edge; 
Set the new weight 20’ of u to be 
min(w/(U), w’(v)); 
Remove v from the graph with its two 
incident edges; 

end. 

The following lemma can be easily verified. 

LEMMA 3.1. Le2 (G,w) be a weighted graph and let 
(G’, w’) be a reduction of (G, w). Then, G’ is a branchy 
graph and p(G’, w’) = p(G, w). 

We note that the complexity of REDUCTIONW is 
linear in ]E(G)(. 

We are now ready to present our algorithms for 
finding an approximation for a minimum-weight vertex 
feedback set of a given weighted graph. In Section 3.1 
we give an algorithm that achieves a performance ratio 
of 4log]V(G)]. I n ec ion 3.2 we present an algorithm S t 
that achieves a performance ratio of 2A2(G). 

3.1 The primal-dual algorithm. 

The algorithm presented in this section is a generaliza- 
tion of the one implied by Lemma 2.4. In each iteration 
of the algorithm, we first find a reduction of the graph 
and then find a cycle r with a smallest number of ver- 
tices in the reduction graph. The algorithm then sets 
6 to be the smallest among the weights of vertices in 
V(r). This value of 6 is subtracted, in turn, from the 
weight of each vertex in V(r). Vertices whose weight 
becomes zero are added to the vertex feedback set and 
deleted from the graph. Each such iteration is repeated 
until the graph is exhausted. 

Algorithm MiniWCycle (Input: (G, w); 
Output: vertex feedback set F of (G, w)); 

F + 0; (H, WH) * (G, w>; 

While H is not a forest do begin: 
Using ReductionW, find the reduction 

(H’, WP) of (H, WH); 

Find a cycle I” in H’ with the smallest 
number of vertices; 
set 6 + minvEV(p) wHl(v)j 
set WHl(v) C WHJ(V) - 6 for every 21 E v(r’); 

Let x = {v c v(r’) : wH’(v) = 0); 

Remove X (with all incident edges) from 

fit WH) - (H’, WH’); 
F+-XuF; 

end. 

It is not hard to see that MINIWCYCLE computes a 
vertex feedback set of G. We now analyze the algorithm. 
The analysis uses techniques similar to those used in 
[ll], [12], and [15]. We note that the theorem can also 
be proved using the Local Ratio Theorem of Bar-Yehuda 
and Even [l]. 

THEOREM 3.1. The performance ratio of algorithm 
MINIWCYCLE is at most 410g2 IV(G)l. 

Proof. Given a vertex feedback set F of (G, w), let 

2 = [d&‘(G) be the indicator vector of F, namely, 
2 v = 1 if v E F and x, = 0 otherwise. We denote 
by C the set of cycles in G. The problem of finding a 
minimum-weight vertex feedback set of (G, w) can be 
formulated in terms of x by an integer programming 
problem as follows: 

minimize C vet’(G) w(v) . Xu 

ranging over all nonnegative integer vectors 

(3.1) x = [x,,],EV(G) such that 

c xv > 1 for every r E C . 

VEV(l-) 

Let C,, denote the set of cycles passing through ver- 
tex v in G and consider the following integer program- 
ming packing problem: 

maximize Crec m 
ranging over all nonnegative integer vectors 

(3.2) y = [yr]rec such that 

C m 5 w(v) for every v E V . 
IXC” 

Clearly, the linear relaxation of (3.2) is the dual of the 
linear relaxation of (3.1), with w, r E C, being the dual 
variables. 

Let (H’,wH,) be a reduction graph computed at 
some iteration of algorithm MINIWCYCLE. Then, for 
each cycle I” E H’, we associate a unique cycle T’ E G as 
follows: If all vertices in V(P) belong to G, then r = I”. 
Otherwise, we “unfold” the reduction steps in backward 
order, i.e., from the current iteration back to the first 
iteration in REDUCTIONW: In each such step we add to 
I” chains of linkpoints (connecting vertices in I?) that 
were deleted by algorithm REDUCTIONW. When this 
process finishes, the cycle I” of H’ transforms into a 
cycle r of G. 

We now show that MINIWCYCLE can be inter- 
preted as a primal-dual algorithm. We first show that it 
computes a dual feasible solution for (3.2) with a certain 
maximality property. The initial dual feasible solution 
is the one in which all the dual variables m are zero. 

Let I’: be a cycle chosen at iteration i of MINIW- 
CYCLE and let ri be the associated cycle in G. We may 
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view the computation of iteration i of MINIWCYCLE as 
setting the value of the dual variable yri to the weight 
6 of a lightest vertex in V(I’:). The updated weight 
WHY of every v E V(r:) is precisely the slack of the 
dual constraint 

(3.3) c Yr I w(v) 
I-EC” 

that corresponds to v. 
It is clear that by the choice of 6, the values of the 

dual variables ?/r at the end of iteration i of MINIW- 
CYCLE satisfy the dual constraints (3.3) corresponding 
to vertices v E V(I’:). It thus follows that the dual con- 
straints hold for all vertices v E V(H’) at iteration i. 

Let v be a vertex that was removed from H to 
obtain H’ in iteration i of MINIWCYCLE. It remains 
to show that the dual constraint (3.3) corresponding to 
such a vertex holds in each iteration j of the algorithm 
for every j 2 i. 

We show this by backward induction on j. By the 
previous discussion it follows that the constraints cor- 
responding to vertices that exist in the last iteration 
all hold. Suppose now that the dual constraints corre- 
sponding to vertices in V(H’) in iteration j are not vio- 
lated. We show that the dual constraints corresponding 
to vertices in V(H) - V(H’) in that iteration are also 
not violated. Let c be a chain of linkpoints in H in iter- 
ation j. Algorithm REDUCTIONW deletes all vertices in 
c except for a representative v which has the minimum 
weight in c. We now observe that the set of cycles that 
pass through a vertex of c is the same for all vertices in c. 
This implies that if the dual constraint corresponding to 
v is not violated, then the dual constraints correspond- 
ing to any vertex in c is also not violated. 

The algorithm essentially constructs a primal solu- 
tion z from the dual solution y: It selects into the vertex 
feedback set all vertices for which: (i) the corresponding 
dual constraints are tight; and (ii) in the iteration the 
constraint first became tight, the corresponding vertex 
belonged to the graph. As stated earlier, this construc- 
tion yields a feasible solution. 

Let z* = [z:],,eV(G) and y* = [y;]rEc denote the 
optimal primal and dual fractional solutions, respec- 
tively. It follows from the Duality Theorem that 

(3.4) c w(v). 2, > c w(v) .x; = c y; 
VEV(G) vet’(G) I-CC 

L CYr. 

I-CC 

Hence, to prove the theorem, it suffices to bound the 
ratio between the LHS and the RHS of (3.4). First note 
that ?/r # 0 only for cycles I’ in G that are associated 

with cycles I? that were chosen at some iteration of 
MINIWCYCLE. By the above construction of 2, it is 
clear that the dual variable w of each such cycle I 
contributes its value to at most V(P) vertices. Hence, 

vEV(G) uEV(G)rf& ret 

Now, in each iteration, the graph H’ is a branchy graph. 
Therefore, by arguments similar to those appearing in 
the proof of Lemma 2.4, we have [V(I”)( 5 4 log, n. 
Hence the theorem is proved. Cl 

PROPOSITION 3.1. For planar graphs, the weighted 
performance ratio of MINIWCYCLE is at most 10. 

3.2 Low-degree graphs. 

The algorithm presented in this section is based on 
the following generalization of Lemma 2.5 to branchy 
graphs. 

LEMMA 3.2. Let G be a branchy graph. Then, for 
every vertex feedback set F of G, 

IV(G)1 I 2A2(G). IFI 

We now present a weighted greedy algorithm for 
finding a feedback set in a graph G. 

Algorithm WGreedy (Input: (G, w); 
Output: vertex feedback set F of (G, w)); 
F + 8; i + 1; (H, WH) + (G, w); 
while H is not a forest do begin: 

(H:, 
using REDUCTIONW, find the reduction 

WHj) of 
(H, WH); 
ai + mbv(w) WH;(V); 
Vi + {u E V(H:) 1 w&) = (~i}; 
F + FUUi; 
remove Vi from Hi with its incident edges; 

(H, WH) + @,I, WH:); 

ici+l; 
end. 

For a subset S c V, let w(S) denote the sum of 
weights of the vertices in S. The proof of the following 
theorem is given in the full paper. 

THEOREM 3.2. Let G be a brunchy graph. De- 
note by F the vertex feedback set computed by algorithm 
WGREEDY, and by F* a minimum-weight vertex feed- 
back set in G. Then, w(F) 5 2A2(G) . w(F*). 

It follows from Lemma 3.1 that the performance 
ratio of algorithm WGREEDY for (G, w) is at most 
2A2(G) for any graph G. 
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4 Graphs with Blackout Vertices. 

We now consider a generalization of the unweighted ver- 
tex feedback set problem where we mark each vertex of 
a graph as either an allowed vertex or a blackout vertex. 
In such graphs, vertex feedback sets cannot contain any 
blackout vertices. The motivation for dealing with this 
modified problem is clarified in the next section where 
we use the algorithms developed herein to reduce the 
computational complexity of Bayesian inference. Note 
that a vertex feedback set can be found in a graph G 
with blackout vertices if and only if every cycle in G 
contains at least one allowed vertex. A graph G with 
the latter property will be called a valid graph. Every 
subgraph of a valid graph is valid. 

that is, a branchpoint-free cycle passes only through 
linkpoints and blackout vertices of G. A reduction 
graph of a valid graph G is not necessarily valid, since 
the reduction process may generate a cycle consisting 
of blackout vertices only. However, if we assume G to 
have no endpoints and no branchpoint-free cycles, then 
the following can be easily verified. 

LEMMA 4.2. Let G be a valid graph without any 
branchpoint-free cycles and with no endpoints. Then, 
the reduction G’ ojG is valid and p(G’, 1) = p(G, l), 

The following algorithm achieves an unweighted 
performance ratio of less than 4. 

The vertex feedback set problem for graphs with 
blackout vertices is in effect a special case of the 
weighted vertex feedback set problem. Indeed, given 
a valid graph G, we assign weight IV(G)1 to each 
blackout vertex and unit weight to all other vertices. 
It is clear that, with this choice of weights, there is no 
point in choosing a blackout vertex to a vertex feedback 
set. Furthermore, setting a large enough weight (say, 
4JV(G)llog, IV(G)!) to the blackout vertices in G, we 
can apply MINIWCYCLE to find a vertex feedback set 
of (G, 1) and the upper bound on the performance ratio 
stated in Theorem 3.1 will still hold. We now show that 
this bound can be improved, and that the same bounds 
obtained for the unweighted case can be achieved here 
as well. 

Algorithm ResSubG-2-3 (Input: valid graph G; 
Output: vertex feedback set F of G); 
If G is a forest then 

F + 0; 
Else begin: 

Using DFS, find a maximal 2-3-subgraph H 
of G; 
Using BFS, find the set X of critical 
linkpoints in H; 
Find a set W that covers all branchpoint- 
free cycles of H which are not covered by 
X; 
Set Y to be the set of branchpoints in H; 
F+XuYuW; 

end. 

We denote the set of allowed vertices in G by A(G) 
and the set of blackout vertices by B(G). Let A,(G) 
denote the maximum degree of an allowed vertex in G. 
We first generalize Lemma 2.5. 

LEMMA 4.1. Let G be a valid rich graph. Then, for 
every vertex feedback set F of G, 

IV(G)1 L (L(G) +I> IFI - 2. 

Proof. Replace each occurrence of A(G) in the 
proof of Lemma 2.5 by Aa( cl 

We next modify several of the definitions of the 
previous sections. Let G be a valid graph. A 2-3- 
subgraph of G is a subgraph H of G such that the 
degree in H of every vertex in A(G) is either 2 or 3. 
The degree of a vertex belonging to B(G) in H is not 
restricted. Similarly, a maximal 2-J-subgraph of G is 
a 2-3-subgraph which is not a subgraph of any other 
2-3-subgraph of G. 

We now elaborate on how the set W is computed. 
Let Ha be the subgraph of H induced by linkpoints and 
blackout vertices. For every isolated cycle in Hg, we 
arbitrarily choose an allowed linkpoint from that cycle 
to W. Next, we replace each maximal (with respect to 
containment) chain of allowed linkpoints in Hb by an 
edge, resulting in a graph Hz. We assign a unit cost to 
all edges corresponding to a chain of linkpoints, and a 
zero cost to all other edges, and compute a minimum- 
cost spanning forest T of H,*. We now add to W one 
linkpoint from each chain of allowed linkpoints in Hb 
that corresponds to an edge in Hz - T. 

The analysis of REsSUBG-~-~ is based on the 
following lemmas. 

A linkpoint v in a 2-3-subgraph H is called a critical 
linkpoint if v is an allowed vertex, and there is a cycle 
I in G such that V(I) fl V(H) c {v} U B(G). We refer 
to such a cycle I? in G as a witness cycle of v. 

A cycle in a valid graph G is branchpoint-free if 

LEMMA 4.3. Let H be a maximal 2-J-subgraph of a 
valid graph G and let r be a simple cycle in G. Then, 
one of the following holds: 

as a witness cycle of some critical linkpoint of H Gy’ 
9 0 

(b) I’ passes through some allowed branchpoint of 
H, or - 

(c) I? is a cycle in H that consists only of blackout 
vertices and linkpoints. 

it does not pass through any allowed branchpoints; LEMMA 4.4. Let H be a maximal 2-J-subgraph ojG 
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and let I’i and I’2 be witness cycles in G of two distinct 
critical linkpoints in H. Then V(Tl) f~ V(ru) E B(G). 

The proof of the lemma is similar to that of Lemma 
2.7. The proof of the following proposition is based on 
Lemma 4.3. 

PROPOSITION 4.1. For every graph G, the set F 
computed by RES%JBG-~-~ is a vertex feedback set of 
G. 

LEMMA 4.5. Let F be the vertex feedback set com- 
puted by RESSUBG-2-3 for a valid graph G which is not 
a forest. Then, 

IFI L ~/J(G, 1) - 2. 

The proof is similar to that of Lemma 2.8. 
THEOREM 4.1. The unweighted performance ratio 

of R~s!?h~G-2-3 is at most 4 - (2/IV(G)I). 

Proof. This follows immediately from Lemma 4.5.0 

5 The Loop Cutset Problem and its 
Application. 

In this section we consider a variant of the WVFS 
Problem for directed graphs. The underlying graph of 
a directed graph D is the undirected graph formed by 
ignoring the directions of the edges in D. A loop in D 
is a subgraph of D whose underlying graph is a cycle. 
A vertex v is a sink with respect to a loop F if the two 
edges adjacent to v in I’ are directed into u. Every loop 
must contain at least one vertex that is not a sink with 
respect to that loop. Each vertex that is not a sink with 
respect to that loop F is called an allowed vertex with 
respect to r. A loop cutset of a directed graph D is a 
set of vertices that contains at least one allowed vertex 
with respect to each loop in D. Our problem is to find 
a minimum-weight loop cutset of a given directed graph 
D and a weight function w. We denote by p(D, w) 
the sum of weights of the vertices in such a loop cutset. 
Greedy approaches to the loop cutset problem have been 
suggested by [23] and [22]. Both methods can be shown 
to have a performance ratio as bad as fi(n/4) in certain 
planar graphs [22]. An application of approximation 
algorithms to the loop cutset problem in the area of 
Bayesian inference is described later in this section. 

The approach we take is to reduce the weighted 
loop cutset problem to the weighted vertex feedback 
set problem solved in the previous section. Given a 
weighted directed graph (D, w), we define the splitting 
weighted undirected graph (Da, w,) as follows. Split 
each vertex v in D into two vertices vin and v,,* in D, 
such that all incoming edges to v become undirected 
incident edges with vi,, and all outgoing edges from 2, 
become undirected incident edges with vout. In addition, 

we connect vi. and v,., by an undirected edge. Set 
w,(v,,) = 00 and w,(v,,,) =: w(v). For a set of vertices 
X in D,, we define $(X) as t,he set obtained by replacing 
each vertex vi,, or vollt in X by the respective vertex v 
in D from which these vertices originated. 

Our algorithm can now be easily stated. 

Algorithm LoopCutset (Input: (D, w); 
Output: loop cutset F of (D, w)); 
Construct (D, , ws); 
Apply MINIWCYCLE on (DS, w,) to obtain a vertex 
feedback set X; 

F + @O 

Note that each loop in D is associated with a unique 
cycle in DS, and vice-versa, in a straightforward manner. 
Let I(F) denote the loop image of a cycle I? in D,, and 
I-‘(K) denote the cycle image of a loop K in D. It is 
clear that the mapping I is 1 - 1 and onto. 

The next lemma states that algorithm LOOPCUT- 
SET outputs a loop cutset of (D, w). 

LEMMA 5.1. Let (D, w) be a directed weighted 
graph and (Da, wr) be its splitting graph. Then: (i) 
If F is a vertex feedback set of (OS, w,) having ji- 
nite weight, then r,b(F) is a loop cutset of (D, w), and 
w,(F) = w($(F)). (ii) If U is loop cutset of D, then the 
set U, obtained from U by replacing each vertex v E U 
by vertex v,,* E D, is a vertex feedback set of D,, and 

w(U) = ws(Us). 
It follows from Lemma 5.1 that t~(D,w) = 

p(DS, ws). In addition, due to Theorem 3.1 applied 
to the graph D,, and since the number of vertices in 
D, is twice the number of vertices in D, we get the 
following bound on the performance ratio of algorithm 
LOOPCUTSET. 

THEOREM 5.1. The performance ratio of LOOP- 
CUTSET is at most 4log,(2]I/(D)(). 

For planar graphs we have: 
THEOREM 5.2. The performance ratio of LOOP- 

CUTSET is at most 10 for planar graphs. 
Proof Since the splitting graph of a planar graph 

is planar we have, 

w($(F)) = w(F) 5 10 p(Ds, ws) 

where the equality is due to Lemma 5.1 and the inequal- 
ity is due to Lemma3.1. Since p(DS, WS) = p(D, w), the 
claim is proved. Cl 

We now show that in the unweighted loop cutset 
problem, we can achieve a performance ratio better than 
4. In this case, for each vertex v E D, the weight of 
Zlin E D, is one unit, and the weight of v.,.~ E D, is 
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co. This is exactly the case considered in the previous 
section, since vertices with infinite weight in D, can be 
treated as blackout vertices. We can therefore apply 
BEsSUBC-2-3 in the LOOPCUTSET algorithm instead 
of applying MINIWCYCLE and obtain the following 
improved performance ratio. 

THEOREM 5.3. When using REsSIJBG-2-3, the 
vnweighted performance ratio of LOOPCUTSET is at 
most 4 - (2/jV(D)l). 

Proof. We have, 

w(lCI(F)) = w,(F) I 4~u(D,, ws> - 2 

where the equality is due to Lemma 5.1, and the 
inequality is due to Lemma 4.5. Since p(Ds, w,) = 
p(D, w) 5 n, the claim is proved. cl 

5.1 An application. 

We conclude this section with an application of approx- 
imation algorithms for the loop cutset problem. 

Let P(ui,..., u,,) be a probability distribution 
where each ui draws values from a finite set called the 
domain of ui. A directed graph D with no directed cy- 
cles is called a Bayesian network of P if there is a l-l 
mapping between (~1, . . . , u,} and vertices in D, such 
that ui is associated with vertex i and P can be written 
as follows: 

(5.1) P(Ul, . . .) %J) = fi p(“i 1 %I y . . . y %j(i)) 

i=l 

where ii,. . . , ij(i) are the source vertices of the incoming 
edges to vertex i in D. For a complete exploration of 
this subject see [20]. 

Suppose now that some variables {vi, . . . , ~1) 
among {u~,...,u~} are assigned specific values 

{WT..., 211) respectively. The updating problem is to 
compute the probability P(ui ] wi = ~1,. . . , vl = UI) 
for i = 1,. . , n. In principle, such computations are 
straightforward because each Bayesian network defines 
the joint probability distribution P(u1, . . . , un) from 
which all conditional probabilities can be computed by 
dividing the appropriate sums. However, such computa- 
tions are inefficient both in time and space unless they 
use conditional independence assumptions defined by 
Eq. (5.1). 

Pearl [20] informally describes how approximation 
algorithms for the loop cutset problem can reduce the 
computations needed for solving the updating problem. 
Suermondt and Cooper [23] describe a heuristic for 
solving the loop cutset problem. Stillman [22] shows 
that this heuristic has an approximation factor as bad 
as fi(n/4) for certain instances. 

6 Discussion. 

It is useful to relate the vertex feedback set problem 
with the vertex cover problem in order to establish 
lower bounds on the performance ratios attainable for 
the vertex feedback set problem. A vertex cover of 
an undirected graph is a subset of the vertex set that 
intersects with each edge in the graph. The vertex cover 
problem is to find a minimum weight vertex cover of a 
given graph. There is a simple polynomial reduction 
from the vertex cover problem to the vertex feedback 
set problem: Given a graph G, we extend G to a graph 
H by adding a vertex we for each edge e E E(G), 
and connecting v, with the vertices in G with which 
e is incident in G. It is easy to verify that there 
always exists a minimum vertex feedback set in H whose 
vertices are all in V(G) and this vertex feedback set 
is also a minimum vertex cover of G. In essence, this 
reduction replaces each edge in G with a cycle in H, thus 
transforming any vertex cover of G to a vertex feedback 
set of H. 

Due to this reduction, it follows that the perfor- 
mance ratio obtainable for the vertex feedback set prob- 
lem cannot be better than the one obtainable for the 
vertex cover problem. The latter problem has attracted 
a lot of attention over the years but has so far resisted 
any approximation algorithm that achieves in general 
graphs a constant performance ratio less than 2. We 
note that the above reduction retains planarity. How- 
ever, for planar graphs, Baker [2] provided a Polynomial 
Approximation Scheme (PAS) for the vertex cover prob- 
lem. For the UVFS problem, there are examples show- 
ing that 4 is the tightest constant performance ratio of 
algorithm SUBG-2-3. It is an open question whether 
there exists an algorithm for the vertex feedback set 
problem that achieves precisely the performance ratio 
obtainable for the vertex cover problem. 

Another consequence of the above reduction is 
a lower bound on the unweighted performance ratio 
of the following greedy algorithm, GREEDYCYC, for 
the vertex feedback set problem. In each iteration, 
GREEDYCYC removes a vertex of maximal degree from 
the graph, adds it to the vertex feedback set, and 
removes all endpoints in the graph. A similar greedy 
algorithm for the vertex cover problem is presented 
in [14] and in [18]. The latter algorithm was shown to 
have an unweighted performance ratio no better than 
R(log IV(G)l) [14]. Due to the reduction to the cycle 
cover problem, the same lower bound holds also for 
GREEDYCYC, as demonstrated by the graphs of [14]. A 
tight upper bound on the worst-case performance ratio 
of GREEDYCYC is unknown. 

Finally, one should notice that the following heuris- 
tics may improve the performance ratios of our algo- 
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rithms. For example, in each iteration MINIWCYCLE 

chooses to place in the cover all zero-weight vertices 
found on the smallest cycle. This choice might be rather [I31 
poor especially if many weights are equal. It may be 
useful in this case to perturb the weights of the ver- P41 

tices before running the algorithm. Similarly, in algo- 
rithm SUB&2-3, there is no point in taking blindly all 
branchpoints of H. An appropriate heuristic here may 

L15I 

be to pick the branchpoints one by one in decreasing 
order of residual degrees. Furthermore, the subgraph 
H itself should be constructed such that it contains as 
many high degree vertices as possible. [1’4 
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